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Abstract: Various aryl-substituted purine derivatives were synthesized through the direct arylation of
halopurines with aromatic compounds, facilitated by the combination of triflic acid and fluoroalcohol.
This metal-free method is complementary to conventional coupling reactions using metal catalysts
and reagents for the syntheses of aryl-substituted purine analogues.
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1. Introduction

Biogenic purine bases are heteroaromatic compounds that constitute the basic subunits of DNA
and RNA and play a crucial role in biological processes. In addition to these natural nucleosides,
various chemically modified purine nucleosides have recently been discovered, and detailed analyses
of their bioactivities have attracted much attention. Purine derivatives bearing an aryl substituent are
of particular interest among these extensively studied classes of compounds, and their preparation
has gained much attention owing to the promising biological properties of the derivatives, such as
cytotoxicity and antitumor activity [1–3]. In addition, their applications as biological probes have also
been consistent with the synthetic advances in artificial purine compounds [4].

The classical methods for the preparation of purines bearing aryl substituents are based on
heterocyclization; however, the cyclization methodology usually requires multistep procedures.
Consequently, the synthesis of the target aryl purines afforded only moderate to low yields [5]. The
recent methods for the synthesis of aryl-substituted purines involve the transition metal-catalyzed
cross-coupling reactions of aryl organometallics (Ar-M) with halopurines (Scheme 1A) [6,7]. For
example, Suzuki–Miyaura [8–16], Stille [17,18], Negishi [19], and Kumada [20] coupling reactions have
been frequently used for the preparation of aryl-substituted purines. Indeed, these approaches represent
versatile and reliable synthetic methods; however, these coupling reactions require stoichiometric
amounts of metallic reagents and the protection of the nucleophilic functional groups—such as
the hydroxyl and amino groups—in the substrates. Hence, direct arylation of 6-chloropurines by
electron-rich arenes using a three-fold excess of aluminum chloride (AlCl3) was reported by Guo’s
group as an alternative method for preparing aryl purines in a short synthetic step (Scheme 1B) [21].
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Scheme 1. General synthetic routes to obtain aryl-substituted purines from halopurines. (A) 

Stepwise synthesis. (B) Direct synthesis.  

Despite these synthetic advances brought about by the alternative method, there unfortunately 

remain some limitations regarding the structural diversity of the obtainable aryl purines. To the best 

of our knowledge, the preparation of N-7-substituted 6-arylpurines has seldom been reported in the 

scientific literature [22–24]. To expand the synthetic scope for obtaining highly functionalized aryl 

purines with greater structural and steric diversities, developing a new practical method for 

preparing a variety of aryl-substituted purines is still necessary. In our continuous study on the 

development of a new method for the synthesis of functionalized nucleobases [25–27], we would like 

to report herein the metal-free arylation of purine derivatives facilitated by the combination of triflic 

acid and fluoroalcohol (Scheme 2). 

 

Scheme 2. Direct arylation of halopurines facilitated by Brønsted acid in fluoroalcohol. ArH: aryl 

nucleophile, TfOH: triflic acid. 

2. Results and Discussions 

Fluoroalcohols, such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 2,2,2-trifluoroethanol 

(TFE), possess specific properties that differentiate them from other non-fluorinated alcohols; they 

are highly polar [28] and weakly nucleophilic [29] and exhibit remarkable hydrogen-bond donor 

abilities [30]. Owing to their unique physical properties, these fluoroalcohols can dramatically direct 

the course of reactions; thus, as a means of developing new reactions, the authors utilized HFIP and 

TFE as attractive and distinctive alternatives to ordinary solvents in hypervalent iodine chemistry 

[31–33]. In these studies, we unexpectedly discovered the metal-free SNAr-type arylation of 

heteroaromatic diaryliodonium salts by nucleophilic aromatic compounds facilitated by Lewis and 

Brønsted acids, i.e., boron trifluoride, trimethylsilyl triflate, and triflic acid (TfOH), in fluoroalcohols 

[34–36]. Golding’s group also reported that the combination of trifluoroacetic acid (TFA) and TFE 

allowed the amination of halopurines by various substituted anilines under metal-free conditions; 

this method involves C–N bond formation [37–40]. Meanwhile, the metal-free nucleophilic arylation 

of halopurines involving C–C bond formation has not been reported. 

In a pilot experiment, we first examined the SNAr-type coupling reaction of 6-chloropurine 1a 

initiated by a Brønsted acid [34,35], using methyl indole 2a as an aromatic nucleophile in HFIP as the 

model case (Table 1). In order to optimize the coupling reaction, varying equivalents (Entries 1–4) of 

TfOH were used, and the desired arylation product of purine 3aa was obtained in excellent yield 

when we used 0.5 to 1.0 equiv. of TfOH for the reactions (Entries 3 and 4). The usage of alternative 

Brønsted acids as additives, such as H3PO4, p-TsOH, and even TFA [37–40], was not as effective and 

provided inferior results in comparison with the use of TfOH. The fluoroalcohol HFIP plays an 

essential role in the reaction, and a solvent mixture of HFIP and 1,2-dichloroethane (DCE) did not 

smoothly produce the coupling product 3aa. (Entry 5). Also, the replacement of HFIP with TFE and 

the use of methanol and acetonitrile as the solvent instead of HFIP yielded low or null amounts of 

product 3aa. 

 

Scheme 1. General synthetic routes to obtain aryl-substituted purines from halopurines. (A) Stepwise
synthesis. (B) Direct synthesis.

Despite these synthetic advances brought about by the alternative method, there unfortunately
remain some limitations regarding the structural diversity of the obtainable aryl purines. To the best
of our knowledge, the preparation of N-7-substituted 6-arylpurines has seldom been reported in the
scientific literature [22–24]. To expand the synthetic scope for obtaining highly functionalized aryl
purines with greater structural and steric diversities, developing a new practical method for preparing
a variety of aryl-substituted purines is still necessary. In our continuous study on the development of a
new method for the synthesis of functionalized nucleobases [25–27], we would like to report herein the
metal-free arylation of purine derivatives facilitated by the combination of triflic acid and fluoroalcohol
(Scheme 2).
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2. Results and Discussions

Fluoroalcohols, such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 2,2,2-trifluoroethanol (TFE),
possess specific properties that differentiate them from other non-fluorinated alcohols; they are highly
polar [28] and weakly nucleophilic [29] and exhibit remarkable hydrogen-bond donor abilities [30].
Owing to their unique physical properties, these fluoroalcohols can dramatically direct the course
of reactions; thus, as a means of developing new reactions, the authors utilized HFIP and TFE as
attractive and distinctive alternatives to ordinary solvents in hypervalent iodine chemistry [31–33].
In these studies, we unexpectedly discovered the metal-free SNAr-type arylation of heteroaromatic
diaryliodonium salts by nucleophilic aromatic compounds facilitated by Lewis and Brønsted acids, i.e.,
boron trifluoride, trimethylsilyl triflate, and triflic acid (TfOH), in fluoroalcohols [34–36]. Golding’s
group also reported that the combination of trifluoroacetic acid (TFA) and TFE allowed the amination
of halopurines by various substituted anilines under metal-free conditions; this method involves C–N
bond formation [37–40]. Meanwhile, the metal-free nucleophilic arylation of halopurines involving
C–C bond formation has not been reported.

In a pilot experiment, we first examined the SNAr-type coupling reaction of 6-chloropurine 1a
initiated by a Brønsted acid [34,35], using methyl indole 2a as an aromatic nucleophile in HFIP as the
model case (Table 1). In order to optimize the coupling reaction, varying equivalents (Entries 1–4) of
TfOH were used, and the desired arylation product of purine 3aa was obtained in excellent yield when
we used 0.5 to 1.0 equiv. of TfOH for the reactions (Entries 3 and 4). The usage of alternative Brønsted
acids as additives, such as H3PO4, p-TsOH, and even TFA [37–40], was not as effective and provided
inferior results in comparison with the use of TfOH. The fluoroalcohol HFIP plays an essential role in
the reaction, and a solvent mixture of HFIP and 1,2-dichloroethane (DCE) did not smoothly produce
the coupling product 3aa. (Entry 5). Also, the replacement of HFIP with TFE and the use of methanol
and acetonitrile as the solvent instead of HFIP yielded low or null amounts of product 3aa.
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Table 1. Optimization of the reaction conditions a.
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nitromethane as an internal standard. HFIP: hexafluoroisopropanol, DCE: 1,2-dichloroethane. 
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reaction conditions was examined (Table 2). The reaction of N-protected 9-benzyl-6-chloro-9H-purine 

1b cleanly favored the corresponding product 3ba with good yield. When non-N-protected indoles 

2b–d were subjected to analogous reaction conditions, the desired products 3bb–bd were also 

obtained in excellent yields. However, it was revealed that the reaction of indoles bearing electron-

withdrawing groups, such as 5-nitroindole 2e, did not proceed under these reaction conditions due 

to the deactivation of the aromatic nucleophile by hydrogen bonding with HFIP [41–43]. 

Furthermore, other electron-rich arenes were as compatible as the aromatic nucleophiles; similarly, 

good results were obtained from the coupling reactions with 1-naphthol 2f, 1-methoxynaphthalene 
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Table 2. Scope of substrates a 

 

    
3aa: quant. 3ba: 82% 3bb: quant. 3bc: 96% 

    
3bd: 90% 3be: n.r 3af: 97% 3ag: 85% 

    

    

3bg: 92% 3bh: quant. 3bi: quant. 3bj: quant. 

Entry Solvent TfOH Yield (%) b

1 HFIP 0.1 equiv. 8
2 HFIP 0.2 equiv. 54
3 HFIP 0.5 equiv. 89
4 HFIP 1.0 equiv. quant.
5 HFIP/DCE = 9:1 1.0 equiv. 60

a Reaction conditions: The reactions were performed using chloropurine 1a (0.50 mmol), 1-methylindole 2a
(0.55 mmol), and TfOH in solvent (0.1 M). b Determined by 1H-NMR using nitromethane as an internal standard.
HFIP: hexafluoroisopropanol, DCE: 1,2-dichloroethane.

To evaluate the generality of the reaction system, the substrate scope under the optimized reaction
conditions was examined (Table 2). The reaction of N-protected 9-benzyl-6-chloro-9H-purine 1b cleanly
favored the corresponding product 3ba with good yield. When non-N-protected indoles 2b–d were
subjected to analogous reaction conditions, the desired products 3bb–bd were also obtained in excellent
yields. However, it was revealed that the reaction of indoles bearing electron-withdrawing groups,
such as 5-nitroindole 2e, did not proceed under these reaction conditions due to the deactivation of
the aromatic nucleophile by hydrogen bonding with HFIP [41–43]. Furthermore, other electron-rich
arenes were as compatible as the aromatic nucleophiles; similarly, good results were obtained from the
coupling reactions with 1-naphthol 2f, 1-methoxynaphthalene 2g, several alkoxybenzenes 2h,i, and
resorcinol 2j.

Table 2. Scope of substrates a.
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One of the significant advantages of the present reaction system is the production of structural
and sterically diverse N-7-substituted 6-arylpurines; these arylpurines are not easily accessible by other
synthetic methods [22–24]. As a result, the proposed reaction conditions were also utilized for the
coupling of 7-benzyl-6-chloro-7H-purine 1c with indole 2k and naphthalene nucleophile 2f to afford
the corresponding 6-arylated N-7-substituted purines 3ck and 3cf in good yields (Scheme 3).
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When using p-anisidine 4 as a substrate, our reaction system with TfOH became valuable for the
chemoselective N-arylation of halopurines at the 6 position under mild temperature (Scheme 4) [37].
We subjected 9H-chloropurine 1d and aniline 4 to our optimized conditions at 60 ◦C, obtaining selective
N-arylation that smoothly provided N-(4-methoxyphenyl)-9H-purine-6-amine 5 in 79% yield, without
the formation of the C-arylated purine coupling product 5′. On the other hand, Guo’s group previously
reported the reaction of purines and anilines or naphthylamines in the presence of a three-fold excess
of AlCl3 in DCE, which alternatively gave the C-arylated coupling products and likewise the biaryl
5′ [21]. Therefore, our reaction system is complementary to the AlCl3-mediated coupling reaction [21]
for the syntheses of C6-aryl-substituted purine derivatives in view of product selectivity.
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The success of the metal-free coupling reaction relies on the use of HFIP as the solvent. Although
the precise role of HFIP [44–46] remains unclear, we presume that HFIP can increase the acidity of
TfOH (Brønsted acid activation by H-bond donor) to enhance the reactivity of halopurine electrophiles
through the purine nitrogen atoms [47–50]. Importantly, HFIP offers a means of improving the
leaving group ability of the chloride atom in the purine substrates through hydrogen bonding as
well as solvation [51]. Recently, such unique role of fluoroalcohol as the H-bond donor has been
discussed in several Brønsted acid catalyzed reactions in regard to its ability to accelerate substitution
processes [37,47–51]. Interestingly, these cases would involve intermediates activated by hydrogen
bonding with fluoroalcohol, and, with our present system, the formation of a similar intermediate
would also be expected to facilitate the aromatic substitution reactions.
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3. Conclusions

In conclusion, we have developed a new metal-free coupling method of halopurines for the
syntheses for diverse C6-aryl-substituted purine derivatives based on Brønsted acid activation. The
combination of TfOH and HFIP is an efficient and practical methodology for the direct nucleophilic
arylation of halopurines under mild conditions. We have elucidated that the unique properties of
HFIP (hydrogen-bonding formation and weak nucleophilicity) could facilitate the direct arylation of
halopurines by various nucleophilic arene molecules. Further investigations on the utilization of the
obtained purine biaryls are currently underway in our research group.

4. Experimental Section

The melting points (mp) are uncorrected. The 1H-NMR (and 13C-NMR) spectra of the coupling
products 3 and 5 were recorded by a JEOL JMN-400 spectrometer (JEOL Ltd., Tokyo, Japan) operating at
400 MHz (100 MHz for 13C-NMR) in DMSO-d6 at 25 ◦C with tetramethylsilane as the internal standard.
The data are reported as follows: chemical shift in part per million (δ), multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, br = broad singlet, m = multiplet), integration, and coupling
constant (Hz). The infrared spectra (IR) were obtained using a Hitachi 270–50 spectrometer (Hitachi
Ltd., Tokyo, Japan); absorptions are reported in reciprocal centimeters (cm−1) for representative
peaks. High-resolution mass spectra were measured with a Thermo Scientific Exactive Plus Orbitrap
(Thermo Fisher Scientific., Inc., Waltham, MA, USA). All chemicals used in this study are commercially
available and were used without further purification. Regarding fluoroalcohol, we used commercial
water-containing hexafluoroisopropanol (HFIP) as supplied for the reactions.

4.1. General Procedure for Brønsted Acid Catalyzed Arylation of Halopurines in Fluoroalcohol (Table 2 and
Scheme 3)

To a stirred solution of chloropurine 1 (0.50 mmol) in hexafluoroisopropanol (5 mL), aromatic
nucleophile 2 (0.55 mmol, 1.1 equiv) and trifluoromethanesulfonic acid (TfOH, 44 µL, 0.5 mmol, 1 equiv)
were successively added. The resulting mixture was stirred at 60 ◦C for 24 h. After completion of the
reaction checked by TLC, the reaction mixture was poured into sat. NaHCO3 aqueous. The resultant
solution was extracted with ethyl acetate, dried with solid sodium sulfate, and then concentrated. The
residue was purified by short-column chromatography on silica gel using hexane-ethyl acetate as the
eluent to give the purine aromatic-linked compound 3 in the indicated yield in Table 2 or Scheme 3.

Compound 6-(1-methyl-1H-indol-3-yl)-7H-purine (3aa). A yellow powder, mp 346–350 ◦C. IR: 3647,
1732 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 3.95 (s, 3H), 7.21–7.31 (m, 2H), 7.55 (d, J = 7.9 Hz, 1H),
8.49 (s, 1H), 8.81–8.84 (m, 2H), 8.97 (s, 1H), 13.4 (bs, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6) δ 33.1,
110.4 (x 2), 121.0, 122.4, 122.9, 126.2, 128.0, 136.2, 137.2, 142.7, 151.3, 152.1, 152.3 ppm; HRMS (DART):
Calcd. for C14H12N5 [M + H]+: 250.1087, found: 250.1087.

Compound 6-(1-methyl-1H-indol-3-yl)-9-phenylmethyl)-9H-purine (3ba) [21]. A yellow powder, mp
163–166 ◦C. IR: 3047, 2932, 1581, 1536, 1498, 1475 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 3.96 (s, 3H),
5.51(s, 2H), 7.23–7.59 (m, 7H), 7.57 (d, 1H, J = 7.8 Hz), 8.68 (s, 1H), 8.80 (d, 1H, J = 7.8 Hz), 8.86 (s, 1H),
8.96 (s, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6) δ 33.0, 54.9, 110.2, 110.3, 121.1, 122.5, 122.8, 126.2,
127.6, 127.8, 128.1, 128.7, 136.3, 136.8, 137.2, 144.4, 150.3, 152.3, 152.7 ppm.

Compound 6-(1H-indol-3-yl)-9-phenylmethyl-9H-purine (3bb) [21]. A yellow powder, mp 178–180 ◦C.
IR: 3631, 1688 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 5.51 (s, 2H), 7.17–7.41 (m, 7H), 7.52 (d, 1H,
J = 6.8 Hz), 8.66 (s, 1H), 8.76–8.89 (m, 2H), 8.99 (s, 1H), 12.0 (s, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6)
δ 46.3, 111.2, 112.0, 120.9, 122.4, 122.7, 125.7, 127.9, 128.4, 128.8, 132.8, 136.6, 136.9, 144.5, 150.3, 152.3,
153.1 ppm.

Compound 6-(5-methyl-1H-indol-3-yl)-9-phenylmethyl-9H-purine (3bc). A brown liquid, IR: 3649, 1690,
1559, 1540 cm–1. 1H-NMR (400 MHz, DMSO-d6) δ 2.36 (s, 3H), 5.45 (s, 2H), 7.08 (d, J = 8.3 Hz, 1H),
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7.26−7.36 (m, 6H), 8.53 (s, 1H), 8.59 (s, 1H), 8.82 (s, 1H), 8.90 (s, 1H), 11.8 (s, 1H) ppm; 13C-NMR
(100 MHz, DMSO-d6) δ 21.5, 46.0, 110.8, 111.7, 122.3, 124.0, 126.0, 127.6, 127.9, 128.3, 128.8, 129.5, 132.9,
135.0, 136.9, 144.3, 150.2, 152.3, 153.2 ppm; HRMS (DART): Calcd. for C21H18N5

+ [M + H]+: 340.1557,
found: 340.1557.

Compound 6-(5-methoxy-1H-indol-3-yl)-9-phenylmethyl-9H-purine (3bd). A brown solid, mp 229–231 ◦C.
IR: 3595, 1704, 1559, 1508, 1437 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 3.89 (s, 3H), 5.57 (s, 2H), 6.92 (d,
1H, J = 8.6 Hz), 7.31–7.49 (m, 6H), 8.38 (s, 1H), 8.71 (s, 1H), 8.93 (s, 1H), 9.01 (s, 1H), 11.9 (s, 1H) ppm;
13C-NMR (100 MHz, DMSO-d6) δ 46.3, 55.4, 104.6, 111.0, 112.2, 112.7, 126.4, 127.6, 127.9, 128.2, 128.8,
131.6, 133.2, 136.9, 144.3, 150.2, 152.3, 153.2, 154.7 ppm; HRMS (DART): Calcd. for C21H18N5O+ [M +

H]+: 356.1506, found: 356.1507.

Compound 4-(7H-purin-6-yl)-naphthalene-1-ol (3af). A yellow powder, mp 204–208 ◦C. IR: 3650, 1541 cm−1.
1H-NMR (400 MHz, DMSO-d6) δ 7.09 (d, 1H, J = 8.6 Hz), 7.51–7.57 (m, 2H), 8.06–8.63 (m, 4H), 9.06 (s,
1H), 10.8 (bs, 1H), 13.3 (bs, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6) δ 107.8, 122.6, 123.5, 125.0, 125.3,
125.8, 127.3, 131.4, 132.2, 152.0, 155.5 ppm; HRMS (DART): Calcd. for C15H11N4O+ [M + H]+: 263.0927,
found: 263.0928.

Compound 6-(4-methoxynaphthalen-1-yl)-7H-purine (3ag). A yellow powder, mp 170–172 ◦C. IR: 3629,
1704, 1542, 1508 cm–1. 1H-NMR (400 MHz, DMSO-d6) δ 4.06 (s, 3H), 7.16 (d, 1H, J = 8.6 Hz), 7.49–7.59
(m, 2H), 8.22–8.30 (m, 3H), 8.58 (bs, 1H), 9.02 (s, 1H), 13.6 (bs, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6)
δ 56.0, 103.9, 121.7, 124.8, 125.0, 125.6, 127.1, 131.5, 151.6, 156.3 ppm; HRMS (DART): Calcd. for
C16H13N4O+ [M + H]+: 277.1084, found: 277.1082.

Compound 6-(4-methoxynaphthalen-1-yl)-9-phenylmethyl-9H-purine (3bg) [21]. A white solid, mp
197–198 ◦C. IR: 3672, 2968, 1507 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 4.02 (s, 3H), 5.55 (s,
2H), 7.12 (d, 1H, J = 8.0 Hz), 7.24–7.36 (m, 3H), 7.42 (d, 2H, J = 7.4 Hz), 7.48–7.55 (m, 2H), 8.13 (d, 1H,
J = 8.6 Hz), 8.24–8.28 (m, 1H), 8.44–8.49 (m, 1H), 8.75 (s, 1H), 9.09 (s, 1H) ppm; 13C-NMR (100 MHz,
DMSO-d6) δ 46.5, 55.8, 103.8, 121.7, 124.5, 125.0, 125.4, 125.9, 127.0, 127.8, 127.9, 128.7, 131.6, 131.8, 136.5,
146.1, 151.7, 151.8, 156.4, 156.5 ppm.

Compound 6-(1,3,5-trimethoxyphen-4-yl)-9-phenylmethyl-9H-purine (3bh) [21]. A white solid, mp
251–253 ◦C. IR: 3650, 1698 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 3.58 (s, 6H), 3.84 (s, 3H), 5.49 (s, 2H),
6.35 (s, 2H), 7.27–7.47 (m, 5H), 8.61 (s, 1H), 8.90 (s, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6) δ 46.6,
55.5, 55.7, 91.0, 106.6, 128.1, 128.8, 133.6, 136.6, 145.7, 150.8, 151.8, 154.2, 158.7, 162.0 ppm.

Compound 6-(1,3-dimethoxyphen-4-yl)-9-phenylmethyl-9H-purine (3bi) [52]. A white solid, mp 125–127 ◦C.
IR: 3671, 1707 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 3.74 (s, 3H), 3.83 (s, 3H), 5.50 (s, 2H), 6.66 (d,
1H, J = 8.8 Hz), 6.73 (s, 1H), 7.24–7.42 (m, 5H), 7.53 (d, 1H, J = 8.3 Hz), 8.66 (s, 1H), 8.93 (s, 1H) ppm;
13C-NMR (100 MHz, DMSO-d6) δ 46.5, 55.4, 55.7, 98.9, 105.2, 117.8, 127.8, 128.0, 128.8, 131.9, 132.5,
136.7, 145.6, 151.1, 151.8, 155.4, 158.8, 162.0 ppm.

Compound 4-(9-phenylmethyl-9H-purin-6-yl)-benzene-1,3-diol (3bj) [21]. A yellow solid, mp 250–253 ◦C.
IR: 3691, 2983, 1686, 1507, 1318 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 5.47 (s, 2H), 6.36 (s, 1H), 6.48 (d,
1H, J = 8.8 Hz), 7.20–7.34 (m, 5H), 8.72 (s, 1H), 8.79 (s, 1H), 9.21 (d, 1H, J = 8.8 Hz), 14.6 (s, 1H) ppm;
13C-NMR (100 MHz, DMSO-d6) δ 46.6, 103.3, 106.4, 108.2, 109.1, 127.8, 128.8, 133.8, 136.5, 145.6, 149.5,
151.1, 154.4, 158.6, 162.5, 163.5 ppm.

Compound 6-(1-phenyl-1H-indol-3-yl)-7-phenylmethyl-7H-purine (3ck). A yellow powder, mp 191–194 ◦C.
IR: 1693, 1521 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 5.54 (s, 2H), 7.26–7.39 (m, 7H), 7.49–7.74 (m, 6H),
8.72 (s, 1H), 8.91–8.95 (m, 2H), 9.14 (s, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6) δ 46.4, 110.9, 112.8,
122.1, 123.2, 123.6, 124.5, 126.8, 127.6, 127.7, 127.9, 128.8, 130.1, 134.5, 136.0, 136.7, 138.2, 143.3, 145.0,
150.5, 152.0, 152.3 ppm. HRMS (DART): Calcd. for C26H20N5 [M + H]+: 402.1713, found: 402.1713.
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Compound 4-(7-phenylmethyl-7H-purin-6-yl)-naphthalene-1-ol (3cf). A yellow powder, mp 259–263 ◦C. IR:
3613, 2980, 1697 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 4.96-5.04 (m, 2H), 6.18 (d, 2H, J = 7.3 Hz), 6.77
(t, 2H, J = 7.3 Hz), 6.86 (t, 1H, J = 7.3 Hz), 6.93 (d, 1H, J = 7.8 Hz), 7.18 (d, 1H, J = 8.3 Hz), 7.26 (t, 2H,
J = 5.4 Hz), 7.42 (t, 1H, J = 7.3 Hz), 8.22 (d, 1H, J = 8.3 Hz), 8.91 (s, 1H), 9.04 (s, 1H), 10.7 (bs, 1H) ppm;
13C-NMR (100 MHz, DMSO-d6) δ 49.8, 107.0, 122.2, 123.4, 123.6, 124.3, 124.7, 124.9, 125.7, 126.9, 127.3,
127.9, 128.8, 132.3, 135.6, 150.8, 151.7, 152.0, 154.9, 161.6 ppm; HRMS (DART): Calcd. for C22H17N4O+

[M + H]+: 353.1397, found: 353.1395.

4.2. General Procedure for Brønsted Acid Catalyzed N-Coupling of Aniline Derivatives to Halopurines in
Fluoroalcohol (Scheme 4)

To a stirred solution of 9H-chloropurine 1d (77.3 mg, 0.50 mmol) in hexafluoroisopropanol (5
mL) p-methoxyaniline 4 (67.8 mg, 0.55 mmol, 1.1 equiv) and trifluoromethanesulfonic acid (TfOH, 44
µL, 0.5 mmol, 1 equiv) were successively added. The resulting mixture was stirred at 60 ◦C for 24 h.
After completion of the reaction checked by TLC, the reaction mixture was poured into sat. NaHCO3

aqueous. The resultant solution was extracted with ethyl acetate, dried with solid sodium sulfate, and
then concentrated. The residue was purified by short-column chromatography on silica gel using
hexane-ethyl acetate as the eluent to give N-(4-methoxyphenyl)-9H-purine-6-amine 5 in 79% yield
(95.3 mg, 0.395 mmol) as a white powder.

Compound N-(4-methoxyphenyl)-9H-purine-6-amine (5) [53]. A white solid, mp 266–267 ◦C. IR: 3673,
3630 cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 3.33 (s, 3H), 6.89 (d, 2H, J = 9.3 Hz), 7.79 (d, 2H, J = 8.8 Hz),
8.22 (s, 1H), 8.29 (s, 1H), 9.61 (s, 1H), 13.1 (bs, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6) δ 55.2, 113.6,
119.2, 122.4, 132.8, 139.5, 150.2, 151.9, 154.9, 159.7 ppm.
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