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Abstract
Prader-	Willi	Syndrome	(PWS)	is	a	rare	and	incurable	congenital	neurodevelopmental	
disorder,	resulting	from	the	absence	of	expression	of	a	group	of	genes	on	the	pater-
nally	acquired	chromosome	15q11-	q13.	Phenotypical	characteristics	of	PWS	include	
infantile	 hypotonia,	 short	 stature,	 incomplete	 pubertal	 development,	 hyperphagia	
and morbid obesity. Hypothalamic dysfunction in controlling body weight and food 
intake	is	a	hallmark	of	PWS.	Neuroimaging	studies	have	demonstrated	that	PWS	sub-
jects have abnormal neurocircuitry engaged in the hedonic and physiological control 
of feeding behavior. This is translated into diminished production of hypothalamic 
effector peptides which are responsible for the coordination of energy homeostasis 
and	satiety.	So	far,	studies	with	animal	models	for	PWS	and	with	human	post-	mortem	
hypothalamic specimens demonstrated changes particularly in the infundibular and 
the	 paraventricular	 nuclei	 of	 the	 hypothalamus,	 both	 in	 orexigenic	 and	 anorexi-
genic	 neural	 populations.	Moreover,	many	PWS	patients	 have	 a	 severe	 endocrine	
dysfunction,	 e.g.	 central	 hypogonadism	and/or	 growth	hormone	deficiency,	which	
may	contribute	to	the	development	of	increased	fat	mass,	especially	if	left	untreated.	
Additionally,	the	role	of	non-	neuronal	cells,	such	as	astrocytes	and	microglia	in	the	
hypothalamic	dysregulation	in	PWS	is	yet	to	be	determined.	Notably,	microglial	ac-
tivation	is	persistently	present	in	non-	genetic	obesity.	To	what	extent	microglia,	and	
other	glial	 cells,	 are	affected	 in	PWS	 is	poorly	understood.	The	elucidation	of	 the	
hypothalamic	dysfunction	in	PWS	could	prove	to	be	a	key	feature	of	rational	thera-
peutic	management	in	this	syndrome.	This	review	aims	to	examine	the	evidence	for	
hypothalamic	dysfunction,	both	at	the	neuropeptidergic	and	circuitry	levels,	and	its	
correlation	with	the	pathophysiology	of	PWS.

K E Y W O R D S
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1  | INTRODUC TION

Prader-	Willi	Syndrome	(PWS)	is	a	rare	congenital	neurodevelopmen-
tal	disorder	caused	by	 the	 loss	of	genes	and	non-	coding	RNAs	on	

chromosome	 15q11-	q13.1 The phenotypic features affiliated with 
PWS	are	due	to	a	multifactorial	disruption	of	homeostatic	processes	
at	cellular	and	tissue	level.	Many	features	are	present	from	a	young	
age;	motoric	and	linguistic	milestones	are	typically	delayed,	and	all	
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individuals have a certain degree of mental retardation.1- 3 In addi-
tion,	 PWS	 patients	 suffer	 from	 multiple	 endocrine	 abnormalities.	
PWS	 infants	present	with	hypotonia	which,	 among	others,	 causes	
an	impaired	feeding	behaviour	due	to	poor	suck	and	swallowing.	By	
contrast,	children	and	adults	are	characterised	by	gross	hyperphagia	
and	poor	satiety,	which	lead	to	a	severe	obese	phenotype.1,2 The es-
timated	prevalence	of	PWS	is	1/10	000-	1/30	000	cases	worldwide.	
Well-	defined,	widely	accepted	diagnostic	criteria	are	available	and	
can strengthen the suspicion as early as in the foetal period; how-
ever,	genetic	testing	remains	the	pillar	of	PWS	diagnosis	currently.2 
Clinical studies have provided substantial evidence for hypotha-
lamic	dysfunction	in	PWS	like	uncontrollable	hunger4,5 and impaired 
growth6,7	and	sexual	development.8	However,	the	current	shred	of	
evidence cannot pinpoint if the disorder is primarily due to hypo-
thalamic defects or the disruptive hypothalamic function is a conse-
quence	of	imbalance	elsewhere.	Further,	the	molecular	mechanisms	
behind	hypothalamic	dysfunction	in	PWS	are	yet	to	be	determined.	
In	this	review,	we	aim	to	discuss	the	evidence	for	hypothalamic	dys-
function and the correlation with the clinical and pathophysiological 
aspects	of	PWS.

2  | THE GENETIC S OF PWS

The	PWS	phenotype	results	 from	the	 loss	of	paternally	expressed	
components	on	chromosome	15q11-	q13.	The	same	genes	and	non-	
coding	RNAs	derived	from	the	mother	are	inactivated	by	imprinting;	
and	thus,	not	expressed	under	normal	conditions.	So	far,	it	is	impos-
sible	to	attribute	the	phenotypic	traits	to	a	single	gene;	but	rather,	
the	symptomology	of	PWS	is	a	consequence	of	the	entire	deletion.	
In	 this	 section,	 we	 will	 briefly	 discuss	 our	 current	 understanding	

of the role of each gene and its connections with the disruption of 
hypothalamic	 function.	 In	 addition,	 a	 schematic	 representation	 of	
the	 expression	map	 of	 chromosome	15	 can	 be	 found	 in	 Figure	 1.	
Importantly,	 PWS-	associated	 loss	 of	 expression	 can	 be	 extended	
to	a	non-	imprinted	 region,	 resulting	 in	a	more	 severe	phenotype.9 
Conventionally,	 the	extension	of	 the	deletion	 led	to	subdivision	of	
the	genotypes.	Namely,	PWS	T1	genotype	refers	to	those	that	lack	
expression	of	both,	 the	critical	and	non-	imprinted	region;	whereas	
PWS	T2	is	associated	with	deletion	exclusively	of	the	critical	region.9

2.1 | NIPA1

NIPA1	 encodes	 a	 transmembrane	 protein	 recruited	 upon	 fluctua-
tions in intracellular magnesium concentrations.10,11 There is no evi-
dence for the participation of this gene in energy homeostasis in the 
hypothalamus or periphery. Its localization with endosomes suggests 
a role in the secretion pathways.10	A	recent	report	has	demonstrated	
that	neurons	from	PWS	patients	have	decreased	secretory	granules	
and	neuropeptides	production.	However,	the	authors	attribute	this	
defect	to	the	MAGEL2	gene.12	Since	PWS	T1	have	more	severe	phe-
notypic	traits	it	is	possible	that	the	additional	loss	of	NIPA1	hampers	
the neuroendocrine maturation and secretion.12

2.2 | NIPA2

NIPA2	 shares	 structural	 and	 functional	 similarities	 with	 NIPA1.	 It	
is also a transmembrane protein sensitive to magnesium fluctua-
tions.13	Likewise,	there	are	no	in-	depth	studies	that	pinpoints	a	role	
for	 this	 protein	 in	 hypothalamic	 control	 of	 metabolism.	 However,	

F I G U R E  1  Schematic	expression	map	of	the	PWS	genomic	region.	PWS	is	caused	by	loss	of	expression	of	paternally	inherited	genes	
located	in	chrmosome	15.	The	extension	of	the	deletion	is	critical	for	the	severity	of	the	phenotype,	and	patients	that	lack	expression	of	
genes	in	the	non-	imprinted	region	are	reported	to	present	more	serious	symptons.	In	addition,	the	contribuition	of	the	PWS-	causative	genes	
to the phenotypic traits of the disease is given
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some	reports	suggest	that	NIPA2	has	a	role	in	neuronal	homeosta-
sis,	and	thus	its	deletion	might	impact	optimal	neuronal	functioning.	
Maternal	protein	restriction	leads	to	increased	expression	of	NIPA2	
in	 the	 foetal	 hypothalamus	 in	 rats,14 but the implications of these 
findings are yet to be clarified. The authors also report an enrich-
ment	 of	 mitochondrial	 metabolism	 proteins,	 which	 reinforces	 the	
hypothesis	 of	 the	 participation	 of	 NIPA2	 in	mitophagy.15	 Further,	
NIPA2	 absence	 has	 been	 linked	 to	 increased	 neuronal	 excitability	
in	the	cortex.16

2.3 | CYFIP1

CYFIP1	 is	 involved	 in	cytoskeleton	 regulation	and	neuronal	devel-
opment,	especially	axonal	outgrowth.17 It is particularly enriched in 
synaptosomes,18,19 which reinforces the idea of a neuropeptider-
gic	 imbalance	 in	PWS.	CYFIP	haploinsufficiency	 is	also	 linked	with	
compulsive- like behaviour and it can be connected with palatable 
food preference.20	 Therefore,	 CYFIP1	 expression	 may	 relate	 to	
PWS	symptomatology.	 In	addition	 to	neuronal	physiology,	CYFIP1	
impacts	myelination	as	well,	through	disruptions	of	oligodendrocyte	
biology.21

2.4 | TUBGCP5

This protein encoding gene has a notorious role in centrosome for-
mation,22 and therefore impacts the normal process of cellular divi-
sion.	Thus	far,	it	has	not	been	particularly	implicated	in	hypothalamic	
circuits.	Remarkably,	 disruption	of	 this	protein	 is	 implicated	 in	mi-
croencephaly22; indicating an important role in brain development. 
Similar	to	CYFIP1,	dysfunction	or	absence	of	TUBGCP5	is	associated	
with the promotion of compulsive behaviours in neuropsychiatric 
disorders,	such	as	the	autism	spectrum	disorder.23

2.5 | MKRN3

The	Makoring	 RING	 protein	 3	 (MKRN3)	 is	 a	 protein	 encoding	 al-
lele,	and	its	deletion	is	common	to	all	PWS	sub	genotypes.	Here,	it	
is	important	to	highlight	the	fact	that	a	paternal	deletion	of	MKRN3,	
MAGEL2	and	NDN	(the	last	two	will	be	discussed	in	sequence)	does	
not	result	in	PWS.24	This	study	reports	two	PWS	subjects	with	PWS-	
like	features,	but	who	do	not	display	the	core	of	PWS	deletion.	One	
of	them,	which	lacks	expression	of	the	three	mentioned	genes	had	
cognitive	 impairments	 and	 obesity,24 suggesting that those genes 
have	a	potential	role	in	the	phenotypic	traits	explored	in	this	review.

MRKN3	 in	 the	hypothalamus	 is	distinctly	 involved	 in	 the	 initia-
tion of puberty.25	Hypothalamic	MKRN3	is	highly	expressed	in	early	
life,	 both	 in	 rodents	 and	nonhuman	primates’	 restraining	 signals	of	
pubertal	 initiation.	With	 the	onset	of	puberty,	 its	 expression	grad-
ually	 decreases,	 which	 allows	 the	 expression	 of	 kisspeptin.	When	
untimely	 released,	 this	 leads	 to	 gonadotropin-	releasing	 hormone	

(GnRH)	secretion	and	sexual	development.25,26	Loss-	of	function	mu-
tations	 in	MRNK3	were	consistently	 linked	with	central	precocious	
puberty	(CPP).27,28	This	is	specially	intriguing,	since	CPP	is	extremely	
rare	in	PWS.	As	far	we	were	able	to	trace,	there	are	five	confirmed	
cases	 of	 CPP	 in	 genetically-	confirmed	 PWS	 patients29- 32 and the 
exact	mechanism	behind	this	phenomenon	is	still	poorly	understood.	
Unquestionably,	central	control	of	reproduction	is	complex	and	goes	
beyond	the	MRNK3-	Kisspeptin-	GnRH	axis	and	even	hormones	classi-
cally associated with metabolism have major reproductive controlling 
roles.33,34	Indeed,	although	evidence	is	still	very	fragmentary	for	any	
conclusions	in	PWS	biology	the	marked	hyperghrelinemia	(discussed	
further	 down)	 can	 be	 a	 key	 point	 to	 understanding	 this	 puzzle.	 A	
variety of studies demonstrate a suppressive role of ghrelin in the 
hypothalamic-	pituitary-	gonadal	axis	both	in	vitro	and	in	vivo35-	37 and 
initial hints indicate that in humans a similar pattern is found.38,39

2.6 | MAGEL2

Melanoma	antigen	L2	(MAGEL2)	is	perhaps	one	of	the	most	inten-
sively	 explored	 genes	 among	 the	 PWS	 deletion.	 Its	 cellular	 func-
tion is to facilitate endosomal membrane protein recycling.40 It is 
expressed	throughout	the	central	nervous	system	(CNS),	and	abun-
dantly present in the hypothalamus.41	Studies	in	MAGEL2	null	mice	
have	 been	 insightful	 and	many	 of	 the	 PWS	 features	 can	 be	 reca-
pitulated	 in	 this	model.	 For	 instance,	 impaired	 axonal	 growth	 and	
development	 of	 anorexigenic	 hypothalamic	 neuronal	 populations	
(pro-	opiomelanocortin	 and	 oxytocin	 related	 circuitry).42,43	 At	 the	
cellular	level,	its	loss	results	in	a	decreased	neuropeptide	production	
and secretory capacity.12	Moreover,	MAGEL2	 null	 new	 born	mice	
also	display	poor	sucking	as	PWS	infants.44

2.7 | NDN

Necdin	(NDN)	is	a	nuclear	protein	exclusively	expressed	in	differen-
tiated neurons.45 This protein is mainly implicated with the molecular 
identity of neuronal cells45 and their survival.46,47 The understand-
ing of the spatial and temporal events that underlie neuronal dys-
function	 in	PWS	pathology	 is	very	 limited.	 Interestingly,	among	all	
PWS-	related	animal	models	only	those	with	NDN	deletion	recapitu-
late	 the	 respiratory	 defects	 found	 in	 PWS-	patients48,49	 (i.e.	 sleep	
apnea).50	Recent	findings	demonstrate	that	NDN	deletion	disturbs	
the serotonergic cytoarchitecture leading to abnormal respiratory 
patterns.51	Lastly,	 in	the	murine	hypothalamus	the	NDN	transcript	
is	abundantly	present	in	the	superchiasmatic	nuclei,	the	master	reg-
ulator of circadian rhythms.52	NDN	presence	 controls	 the	expres-
sion of key clock genes and therefore largely impacts the circadian 
regulation.	 From	 the	 metabolic	 perspective,	 these	 findings	 have	
several implications. Circadian integration of metabolism optimizes 
energy	consumption	and	expenditure	across	 the	 light/dark	circles.	
Disruption of these patterns are tightly associated with obesity and 
its	comorbidities,	such	as	cardiovascular	diseases53 and diabetes.54
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2.8 | SNUFF- SNRPN

Little	is	known	about	the	contribution	of	this	protein	to	the	patho-
physiology	of	PWS.	This	 is	perhaps	 the	 least	explored	protein	en-
coding	gene	in	the	PWS	critical	genomic	region.	However,	a	report	
from Cao and colleagues demonstrates that a deletion that causes 
loss	of	function	of	SNUFF-	SNRPN	is	sufficient	to	promote	PWS-	like	
symptoms.55	The	authors	speculate	this	is	because	SNUFF-	SNRPN	
is	 responsible	 for	 the	expression	of	 key	 small	 nucleoar	RNAs	 (sno	
RNAs	–		discussed	next),	that	are	central	factors	in	the	PWS	symp-
tomatology traits.55

2.9 | sno RNAs

In	addition	to	the	protein-	coding	alleles,	non-	coding	RNAs	are	found	
in	the	critical	genomic	region	of	PWS,	especially	snoRNAs.	The	exact	
biology	of	these	RNAs	is	yet	to	be	defined,	but	it	has	been	proposed	
that	they	are	involved	in	the	modification	of	other	RNAs.56 One spe-
cial	 cluster	of	 these	biomolecules	–		 the	Snord116-		 is	 highly	 impli-
cated	in	PWS	and	has	gained	crescent	attention.	Snord116del	mice	
are	of	special	interest	in	PWS	research,	because	those	mice	in	which	
the	 snoRNA116	deletion	 is	of	paternal	 heritage	display	hyperpha-
gia.57	However,	 the	Snor116del	mice	do	not	 show	 increased	body	
weight,	even	when	fed	an	obesogenic	diet.	In	fact,	these	mice	pre-
sent	characteristically	reduced	body	weight,	delayed	sexual	matura-
tion and high rates of mortality prior to weaning. The hypothalamic 
dysfunction	associated	with	Snord116del	can	be	explained	by	endo-
crine imbalance and sensitivity to adipostatic signals. These will be 
discussed into more detail in the sections below.

Taken	 together,	 it	 is	 possible	 to	 conclude	 that	 none	 of	 the	 in-
dividual features of the syndrome can be attributed to any single 
causative	gene.	Rather,	the	PWS	symptomatology	is	a	direct	result	of	
the	cumulative	deletion.	Although	animal	models	allowed	us	to	have	
insights	into	the	participation	of	each	gene	in	the	phenotype,	we	are	
far	 from	understanding	PWS	at	 the	molecular	 level.	Certainly,	 the	
rarity of the syndrome and the limitations associated with human 
studies are the main sources of obstacles currently.

3  | HYPOTHAL AMIC NEUROCIRCUITS IN 
PWS

The	 insatiable	hunger	experienced	by	PWS	subjects	 is	strongly	 in-
dicating a malfunction of the hypothalamic control of feeding be-
haviour.	 Functional	 magnetic	 resonance	 imaging	 (fMRI)	 studies	 of	
the	 hypothalamus	 and	 cortex	 have	 given	 a	 better	 understanding	
of	 satiety-	related	 events	 in	 PWS.	 PWS	 patients	 display	 abnormal	
brain	 networks,	 engaged	 with	 physiological	 control	 of	 eating	 and	
the motivational component of feeding.58-	61 Holsen et al58	exposed	
healthy	controls	and	PWS	participants	to	visual	food	stimuli	in	a	pre-		
and post- meal condition and evaluated the activation of neuronal 
networks	 related	 to	 food	 motivation.	 Interestingly,	 PWS	 patients	

presented greater cortical activation to food stimuli in a post- meal 
state.	By	contrast,	healthy	subjects	presented	an	opposite	pattern,	
with stronger function in the pre- meal state.58	Consistently,	 upon	
glucose	consumption	PWS	subjects	have	delayed	satiety-	associated	
neural	circuit	activation	in	the	hypothalamus	and	extra	hypothalamic	
areas.59 These findings suggest that perception of nutritional status 
is	 delayed	 in	 PWS	patients,	 likely	 leading	 to	 a	 defective	 hypotha-
lamic	response	to	nutrients.	Interestingly,	it	has	been	shown	that	the	
hyperfunction of those neuronal networks is particularly associated 
with high caloric foods rather than low caloric stimuli.61	A	schematic	
overview of the neurocircuitry engaged in feeding at the hypotha-
lamic62-	64 and cortical65-	74	levels	can	be	found	in	Figure	2.

Undoubtedly,	neurocircuitries	in	the	brain	of	patients	with	PWS	
are already malfunctioning in the early life stage. This idea is sup-
ported by the study of Zhang et al who found alterations in the base-
line	brain	activity	of	PWS	children	compared	to	control	siblings.	In	
this	 study,	 a	 combination	of	 fMRI	with	 causality	 analysis	was	 em-
ployed to understand the behavioural and mechanistic components 
of	 hyperphagia	 in	 PWS.	 The	 study	 showed	 significantly	 increased	
impacts	 of	 amygdala	 onto	 the	 hypothalamus.	 Moreover,	 cortical	
influences on the amygdala were also increased.60 The cortical- 
amygdala-	hypothalamic	 axis	 is	 implicated	 in	 the	 coupling	 of	 the	
behavioural component of feeding with the neuronal populations 
engaged with initiation or termination of eating in the hypothala-
mus.75 The authors suggest that the enhanced cortical inputs into 
the amygdala play a crucial role in an imbalanced cognitive process-
ing,	which	can	lead	to	an	increased	eating	motivation	in	PWS.	The	
combination	 of	 abnormal	 cortical	 inputs,	 and	 increased	 influence	
onto hypothalamic circuits can lead to the insatiable state of hun-
ger	found	in	PWS	patients.	Those	findings	are	especially	interesting	
when the hyperstimulation of the hypothalamic circuits takes place 
in	the	baseline	condition,	meaning	that	a	hunger	state	is	evoked	re-
gardless	of	any	food	stimuli	(i.e.	visual).60

The hypothalamus is a highly heterogeneously structured area 
engaged	in	behavioural,	autonomic,	and	endocrine	functions	 in	re-
sponse to the environment.76-	78	 Extensive	 studies	 in	 rodents	 and	
humans demonstrated that disruption of different hypothalamic 
neurocircuitries that control energy homeostasis is underlying the 
development of metabolic diseases.79-	84 The infundibular nucleus 
(INF,	or	 arcuate	nucleus	 in	 rodents)	plays	a	key	 role	 in	 the	central	
management	of	 feeding	behaviour	and	energy	expenditure.	Under	
physiological	conditions,	feeding	activates	the	anorexigenic	neuro-
nal	population	 located	at	 the	 INF,	characterized	by	 the	expression	
of	 pro-	opiomelanocortin	 (POMC).85	 Antagonistically,	 an	 appetite-	
stimulating	 neuronal	 population	 is	 characterized	 by	 the	 expres-
sion	of	neuropeptide	Y	 (NPY)	and	agouti	 related	protein	 (AgRP).86 
Moreover,	the	activity	of	the	regulatory	neuronal	populations	asso-
ciated with energy homeostasis are modulated by humoral feedback 
from the periphery. Receptors for peripheral metabolic hormones 
such	as	insulin,	leptin	and	ghrelin	are	expressed	on	POMC	and	AgRP/
NPY	 neurons.87,88 The opposed nature of these neuronal popula-
tions creates a counter- regulatory system of energy homeostasis. 
The	INF	neuronal	populations	project	to	the	paraventricular	nucleus	
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of	the	hypothalamus	(PVN),89 in which the satiety or hunger signals 
will	 be	 perpetuated	 through	 neuroendocrine	 mediators	 or	 (para)
sympathetic	 outflow	 to	 peripheral	metabolic	 organs.	 Arginine	 va-
sopressin	 (AVP)-		 and	oxytocin	 (OXT)-		 expressing	neurons	are	 two	
major	neuronal	populations	located	in	the	PVN	and	are	largely	im-
plicated in inhibition of feeding behavior.90	Additionally,	other	neu-
ronal	populations	that	reside	in	the	PVN	are	implicated	in	the	global	
metabolic	control.	Corticotropin-	releasing	hormone-		(CRH)	express-
ing	neurons	inhibit	food	intake	and	promote	energy	expenditure.91 
Moreover,	CRH	neurons	 interact	with	 leptin-	sensitive	 inputs	 from	
the arcuate nucleus in mice.92	 Furthermore,	 thyrotropin-	releasing	
hormone-		 (TRH)	expressing	neurons	 in	 the	PVN	co-	express	 leptin	
receptors and participate in energy metabolism due to their involve-
ment	 in	 the	hypothalamus-	pituitary-	thyroid	axis	 impact	on	thyroid	
function.93	TRH	neurons	propagate	the	anorexigenic	signal93,94 and 
have a protagonist role in thermoregulation.95	Additionally,	 orexin	
neurons	 in	 the	 lateral	 hypothalamus	 (LH)	 are	 involved	 in	 feeding-	
regulation,96-	98	although	they	play	a	 less	potent	role	than	the	NPY	
and	AgRP	populations.99	In	the	fasting	state,	the	levels	of	the	precur-
sor	peptide	of	orexin	in	the	hypothalamus	are	elevated,100 whereas 
central	 administration	 of	 orexin	 leads	 to	 food	 intake	 in	 a	 dose-	
dependent manner.98	Moreover,	orexin	has	also	been	involved	in	the	
motivational component of feeding as well.101

Likely,	 the	 gross	 obesity	 of	 PWS	patients	 has	multiple	mecha-
nisms	 that	 culminate	 in	 the	disease	phenotype.	Among	 those	 fac-
tors,	it	is	possible	to	highlight	the	disruption	of	satiety	control,4,5,58 
endocrine	 dysregulation	 (central	 and	 peripheral),6,7 reduced en-
ergy	expenditure	due	to	hypotonia	and	behavioural	features	of	the	
syndrome.	 Indeed,	 studies	 with	 post-	mortem	 hypothalamic	 tissue	
specimens	have	 shown	 that	 in	PWS	patients,	neurons	 in	 a	variety	
of	 hypothalamic	 areas	 are	 affected,	 including	 the	 INF,	 PVN	 and	
LH.102,103

4  | HYPOTHAL AMIC NEUROPEPTIDERGIC 
SYSTEM IN PWS

Extensive	 studies	 in	 rodents	 and	 humans	 demonstrated	 that	 dis-
ruption of the hypothalamic neuropeptides engaged in energy ho-
meostasis promote the obese phenotype.104-	107	 Mutations	 in	 the	
melanocortin	 4	 receptor	 (MC4R)	 are	 the	 most	 common	 cause	 of	
monogenic obesity.80,108-	110	 In	 this	 case,	 obesity	 is	 a	 consequence	
of	the	lack	of	POMC-	derived	peptide	signalling	in	MC4R-	expressing	
neurons,	resulting	in	a	chronic	orexigenic	state.108,109	A	study	with	
post-	mortem	human	brain	 tissue	 also	 showed	 that	 the	 expression	
of	NPY	and	AgRP	has	a	close	correlation	with	the	individual’s	body	

F I G U R E  2   Schematic representation of the neurocircuitry mediating hunger and hedonic components of feeding. Diagrammatic 
representation	of	a	coronal	hypothalamic	human	section	highlighting	the	infundibular	nucleus	(INF),	paraventricular	nucleus	of	hypothalamus	
(PVN)	and	lateral	hypothalamus	(LH)	neuronal	populations	responsible	for	the	homeostatic	control	of	energy	homeostasis.	In	brief,	
peripheral	factors	(hormones	and	nutrients)	activate	INF	neurons,	which	will	propagate	the	orexigenic/anorexigenic	response	throughout	
the hypothalamus generating autonomic and neuroendocrine outputs consistent with primary signal247	(A).	Schematic	overview	of	the	
hypothalamic	and	cortical	(hedonic)	components	responsible	with	feeding.	Electrical	stimulation	of	LH	neurons	leads	to	inputs	in	cortical	
structures	involved	with	behavior	choices	of	feeding	and	reward	centers.	The	combination	of	the	homeostatic	drive	of	feeding,	learned	
behavior and hedonic components constitute the choice of eating.74	Next,	representation	of	the	known	disruptions	of	this	neurocircuitry	in	
PWS	(B).	INF,	Infundibular	nucleus;	LH,	lateral	hypothalamus;	NAc,	nucleus	accumbens;	OFC,	orbitofrontal	cortex;	PFC,	prefrontal	cortex;	
PVN,	paraventricular	nucleus;	PWS,	Prader	Willi	Syndrome;	VTA,	ventral	tegmental	area
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mass	 index	 (BMI).111 It is thought- provoking to address the impor-
tance and limitations of immunohistochemistry on post- mortem 
tissue,	which	 is	 the	major	source	of	 literature	on	neuropeptides	at	
the	protein	level	in	PWS.	Due	to	the	rarity	of	the	PWS	post-	mortem	
tissue and the lack of representative animal models that fully reca-
pitulates its phenotype functional interpretation is a challenge. Of 
notice,	 hypothalamic	 post-	mortem	 material	 has	 been	 extensively	
used	in	other	fields	of	research	and	has	proved	to	be	reliable,	such	
as	 in	 non-	genetic	 obesity,112	 diabetes,84 and mood disorders.113 
However,	the	analysis	of	neuropeptides’	 immunoreactivity	without	
other parameters or support of the literature requires caution. This 
is	especially	due	to	alterations	in	the	balance	of	synthesis,	matura-
tion,	and	secretion	of	 these	peptides.	 Increased	 levels	of	a	neuro-
peptide	can	be	explained	as	increased	production	or	a	defective	or	
decreased	transport	and	release.	 In	 the	same	way,	 reduced	 immu-
noreactivity can also indicate rapid turnover of the protein and not 
necessarily decreased production. This problem can be illustrated 
by the discrepancy between an increased vasopressin content in the 
SCN	together	with	an	diminished	vasopressin	production	in	female	
depressed patients.114	 Therefore,	 human	 post-	mortem	 material	 is	
a	reliable	and	stable	source	of	study,	especially	in	rare	pathophysi-
ology	such	as	PWS;	however	 the	 interpretation	of	data	 requires	a	
global overview of the studied systems.

4.1 | Hypothalamic orexigenic neuropeptides in PWS

NPY	neuron	numbers	are	consistently	downregulated	in	obese	and	
PWS-	obese	subjects.103	At	first	glance,	reduction	in	NPY	cell	counts	
seems counterintuitive since an insatiable hunger is a major feature 
of	PWS.4 The molecular mechanisms behind this reduction are yet to 
be	clarified.	Diminished	orexigenic	signalling	might	be	explained	by	
increased plasma levels of adipostatic hormones such as leptin and 
insulin,115,116	responsible	for	 inhibition	of	neuronal	activity	of	NPY	
and	AgRP	neurons.	Evidence	 from	murine	 studies	demonstrates	 a	
reduction	of	NPY	transcript	in	the	hypothalami	of	high	fat	diet-	fed	
animals.117-	119	It	is	believed	that	the	chronic	exposure	of	these	adi-
postatic factors leads to malfunctioning and eventual death of the 
orexigenic	neuronal	populations.117 The role of peripheral endocrine 
factors	in	the	pathophysiology	of	PWS	will	be	addressed	in	a	further	
section.

Interestingly,	in	the	study	with	post-	mortem	hypothalamic	tissues,	
Goldstone	et al103	reported	unchanged	expression	of	AgRP	in	PWS.	
The	authors	found	a	tendency	for	reduction	of	AgRP	immunoreactiv-
ity	in	the	INF	of	PWS	and	non-	genetic	obese	individuals,	which	was	
lost when the values were adjusted according to premorbid illness 
duration. This finding is consistent with reports of murine models of 
obesity,	 in	 which	 the	 AgRP	 expression	 is	 unaltered.120	 In	 contrast,	
a	 recent	 study	 examined	 the	 transcriptomic	 signature	 of	 PWS	 pa-
tients	 and	 found	 a	 3-	fold	 upregulation	 in	 the	 AgRP	 transcript.121 
Additionally,	genes	that	are	overrepresented	in	the	PWS	hypothalami	
overlap	with	the	murine	AgRP	identity.121 The discrepancy between 
both	 studies	 might	 be	 explained	 by	 a	 defective	 post	 translational	

processing	 of	 AgRP	 in	 PWS.	 The	 enzyme	 prohormone	 convertase	
PC1	 is	 responsible	 for	 the	 posttranslational	 cleavage	 of	 the	 AgRP	
transcript.122	Furthermore,	PWS	patients	have	reduced	levels	of	pro-
hormone	convertase	PC2,123,124 largely implicated in the posttrans-
lational processing of hypothalamic neuroendocrine mediators.125 
Interestingly,	 Burnett	 et al126	 found	 a	 reduction	 in	 PC1	 expression	
in neurons derived from induction of pluripotent stem cells obtained 
from	 a	 PWS	 patients,	 compared	 to	 those	 derived	 from	 unaffected	
controls.	Thus,	it	is	likely	that	even	though	there	is	an	enrichment	of	
an	AgRP-	related	 transcripts	 in	 the	hypothalami	of	PWS,	due	 to	de-
fective	peptide	maturation	unaltered	levels	of	protein	expression	are	
reported.	However,	a	more	solid	proof	of	concept	on	this	hypothesis	
is	needed.	It	is	also	worth	to	mention	that	PC1	is	not	only	responsi-
ble	for	AgRP	processing,	but	takes	place	in	POMC,	ghrelin	and	insulin	
post translational modifications.127	Thus,	the	infundibular	orexigenic	
neuronal	 population	 is	 hypoactive	 in	 PWS,	 either	 due	 to	 defective	
secretory	mechanisms	 or	 (possibly)	 chronic	 exposure	 to	 peripheral	
inputs	that	negatively	regulate	those	populations.	Further	investiga-
tion is necessary to understand this hypoactivity and the underlying 
mechanisms that allow hyperphagia in this condition.

The	 LH	 is	 a	 recognized	 orexigenic	 centre	 which	 receives	 INF	
projections.128	 Neuropeptides	 produced	 by	 neuronal	 populations	
in	 this	 area,	 such	 as	 hypocretin	 (orexin)	 exert	 appetite-	stimulating	
functions.129	 Interestingly,	 studies	 on	 post-	mortem	 hypothalamic	
specimens did not find alterations in the distribution and abundance 
of	 hypocretin-	expressing	 neurons	 in	 PWS	 compared	 to	 matched	
controls.130	Consistently,	hypocretin	levels	are	unaltered	in	the	ce-
rebrospinal	 fluid	 of	 PWS	 patients.	 Surprisingly,	 hypocretin	 plasma	
levels	 are	 increased	 in	 PWS.131	 It	 is	 uncertain	 to	what	 extent	 the	
levels of plasma hypocretin accurately reflect the central presence 
of	this	neuropeptide.	Collectively,	those	data	indicate	increased	ac-
tivity of this neuronal population. Hypocretin receptors are densely 
expressed	 throughout	 the	CNS	and	peripheral	 tissues98,132	Orexin	
receptors	are	also	found	in	the	human	adipose	tissue,133 and a study 
has	 shown	 that	 hypocretin	 signals	 promote	 adipose	 tissue	 expan-
sion	(through	the	promotion	of	adipogenesis)	and	fat	deposition	in	
mature	adipocytes	(through	inhibition	of	lipolysis).134	Thus,	elevated	
levels	of	plasma	hypocretin	in	PWS	might	contribute	to	the	hyper-
trophy	of	adipose	tissue	in	PWS,	and	consequently,	promote	weight	
gain.	 Interestingly,	 hypocretin	 has	 a	 role	 in	 sleep	 regulation,135,136 
which	is	also	markedly	disturbed	in	PWS.137	Therefore,	the	involve-
ment	 of	 the	 hypocretin	 system	 in	 PWS	 is	 beyond	 the	 regulation	
of	 energy	metabolism	 and	may	 play	 a	more	 complex	 role	 in	 PWS	
pathophysiology.

An	overview	of	 the	main	 findings	 regarding	 the	neuropeptides	
explored	so	far	is	summarized	in	Table	1.

4.2 | Hypothalamic anorexigenic neuropeptides 
in PWS

Surprisingly,	although	impaired	satiety	is	a	hallmark	in	PWS,5,58 the 
well-	known	 anorexigenic	 POMC	 has	 been	 poorly	 explored	 in	 the	
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disorder.	Transcriptomic	analysis	revealed	that,	 in	line	with	the	de-
fective	 satiety,	 POMC-	associated	 genes	 are	 downregulated	 in	 the	
hypothalamus	of	PWS	patients.121	Animal	models	have	shown	that	
impaired	POMC	function	is	central	to	the	development	of	features	
of	 PWS.42	 This	 is	 translated	 into	 defective	 anorexigenic	 neurocir-
cuitry and impaired leptin sensitivity in this neuronal population.42 
As	PC1/2	expression	is	diminished	in	PWS	neurons,	it	is	plausible	to	
hypothesize that lower levels of α-	MSH	can	be	found	in	the	hypo-
thalami	of	PWS	patients.	Therefore,	a	marked	reduction	of	expres-
sion of α-	MSH	and	cell	number	is	expected	in	PWS.

Diminished	anorexigenic	oxytocin	expressing	neurons	were	also	
observed	in	the	PVN	of	PWS.102	A	clearly	abnormal	neuroanatomy	
and	decreased	abundance	of	oxytocin-	expressing	neurons	was	re-
ported	 in	 the	 PVN	 of	 PWS	 patients	which	was	 consistently	 reca-
pitulated	 in	 animal	models	 of	 PWS.43,44	 Diminished	 expression	 of	
oxytocin	in	PWS	was	confirmed	on	the	RNA	level,121 corroborating 
the	 findings	based	on	 immnunostained	neuronal	counts.	Postnatal	
central	 administration	 of	 this	 neuropeptide	 in	 PWS	 animal	 mod-
els has been shown to successfully restore metabolic outcomes 
of the syndrome and promoted positive effects on behavior.44 To 
this	date,	 five	clinical	 trials	employed	oxytocin	 in	the	treatment	of	
PWS.138-	142	 In	short,	the	administration	of	oxytocin	has	effects	on	
a behavioural level but is not yet proven to be an effective treat-
ment	 of	 all	 PWS	 symptoms,	 and	much	more	 evidence	 is	 required	
before it can be used as a therapeutic tool. In contrast with the hy-
pothalamic	pattern,	plasma	oxytocin	is	reported	to	be	increased	in	
PWS	 individuals.143	Moreover,	 in	concordance	with	 this,	 increased	
plasma	levels	of	oxytocin	have	been	reported	in	PWS	children	when	
compared to unaffected siblings.143 The discrepancy between the 
increase	 in	plasma	oxytocin	 levels	and	the	reduction	in	cell	counts	
and	expression	at	central	level	exemplify	our	limited	knowledge	on	
the	hypothalamic	pathophysiology	of	PWS.	Oxytocin	has	 an	 inac-
tive	 and	 an	 active	 form,	which	 is	 not	 dissociated	 in	 the	 screening	
of plasma samples.144	PWS	patients	have	been	reported	to	have	di-
minished	oxytocin	 receptor	expression,145 which adds to the level 
of	 complexity.	 Bochukova	 et al121 demonstrated a clear reduction 
of	hypothalamic	brain-	derived	neurotrophic	factor	(BDNF)	in	PWS.	
The authors propose that the element of neurodegeneration in the 
pathogenesis	 of	 PWS	might	 be	 associated	with	 this	 phenomenon.	
BDNF	 and	 its	 receptor	 TrKB	 (encoded	 by	 ntrk2)	 expression	were	

found	 to	 be	 decreased	 in	 the	 ventromedial	 nucleus	 (VMH)	 of	 the	
hypothalamus.121	 Furthermore,	 plasma	 levels	 of	 BDNF	 in	 fasting	
conditions	are	decreased	 in	PWS	compared	to	healthy	controls.146 
Notably,	beyond	its	trophic	role,	BDNF	and	its	receptor	have	been	
implicated in suppression of feeding behavior.147 Diminished levels 
of this peptide seem to be consistent with the phenotype observed 
in	PWS,	reported	to	have	an	unhealthy	microenvironment	for	neuro-
nal populations and satiety deficiencies.148,149

An	overview	of	 the	 alterations	 in	neuropeptides	 can	be	 found	
in Table 1.

5  | HYPOTHAL AMUS- REGUL ATORY 
METABOLIC HORMONES IN PWS

As	 discussed	 so	 far,	 the	 hypothalamic	 neuronal	 populations	 en-
gaged	 with	 energy	 homeostasis	 are	 severely	 affected	 in	 PWS.	
Hypothalamic neuronal malfunction might be directly induced by 
the	genetic	defects	of	PWS	but	can	also	be	indirectly	caused	by	the	
neuroendocrine dysregulation which occurs in conjunction with the 
primary	PWS	phenotype.	Circulating	metabolic	hormones	(i.e.	ghre-
lin,	 leptin,	insulin	and	adiponectin)	inform	the	hypothalamic	neuro-
circuits about the nutritional status of the organism.150 Here we will 
discuss the current understanding of the role of endocrine factors in 
the	aetiology	of	PWS.

5.1 | Ghrelin

Ghrelin	 is	 an	 orexigenic	 hormone	 produced	 by	 enteroendocrine	
cells.151,152 Central or peripheral administration of ghrelin induces 
eating and promotes adiposity.153,154	 In	 fasted	 conditions,	 ghrelin	
levels	are	elevated	and	by	contrast,	 re-	feeding	or	oral	glucose	ad-
ministration reduces the total plasma concentrations of this hor-
mone.	 Ghrelin	 acts	 in	 the	 hypothalamus	 via	NPY/AgRP	 neuron154 
signalling	 while	 POMC-	expressing	 neurons	 do	 not	 express	 func-
tional receptors for this hormone.155	Genetic	ablation	of	ghrelin	or	
its receptor leads to resistance to diet- induced obesity in murine 
models.156	Furthermore,	hypothalamic	 resistance	to	ghrelin	signal-
ling is observed upon obesogenic cues.157	Intriguingly,	ghrelin	levels	

TA B L E  1  Summary	of	hypothalamic	anorexigenic	and	orexigenic	neuropeptides	in	Prader-	Willi	Syndrome

Neuropeptide CNS Hypoactivity/Hyperactivity Plasma concentrations Reference (##)

NPY Decreased	expression	and	cell	count Hypoactivity –	 103

AgRP Decreased	expression	and	unchanged	cell	
count

Hypoactivity –	 103,121

Hypocretin Unchanged cell count Unaltered/	Hyperactivity	(?) Increased 130,131

POMC Decreased	expression Hypoactivity –	 121

OXT Decreased	expression	and	cell	count Hypoactivity Increased 102,142

BDNF Decreased	expression Hypoactivity Decreased 121,146

Abbreviations:	AgRP,	agouti	related	protein;	BDNF,	brain	derived	neurotrophic	factor;	NPY,	Neuropeptide	Y;	OXT,	oxytocin;	POMC,	
proopiomelanocortin.
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are reduced in human non- genetic obesity.158 Whether humans also 
have hypothalamic resistance to ghrelin is yet to be determined.

Differently	from	non-	genetic	obesity,	ghrelin	is	found	to	be	up-
regulated	in	PWS,	and	has	been	implicated	as	an	underlying	cause	
of	hyperphagia	 in	PWS.159-	162	DelParigi	et al160	reported	a	2.5-	fold	
increase	in	PWS	plasma	levels	of	ghrelin	compared	to	lean	controls;	
and	a	4.5-	fold	increase	compared	to	obese	subjects.	The	difference	
remained significant even after adjustment for percent of body 
fat.160	Ghrelin	levels	remained	elevated	in	PWS	patients	in	compar-
ison to matched controls even after the consumption of satiating 
dose liquid meals.160 This finding matches with the persistent urge 
to	 eat	 found	 in	PWS.	Moreover,	 plasma	ghrelin	 levels	 and	 subjec-
tive	rating	of	hunger	have	a	positive	correlation	in	PWS.160 It would 
be	interesting	to	study	the	ghrelin	levels	in	PWS	infants	before	the	
onset	of	hyperphagia.	However,	no	differences	were	found	between	
non-	obese	PWS	infants	(under	the	age	of	5)	and	matched	controls	
regarding their ghrelin levels.163	 In	 a	 different	 study,	 PWS	 obese	
children	(average	age	9.5	years)	had	elevated	plasma	ghrelin.164 It is 
still possible that hyperghrelinemia occurs prior to the onset of obe-
sity.163	Nevertheless,	Feigerlova	et al161 also concluded that ghrelin 
levels	are	consistently	increased	in	all	analysed	ages	(0-	17	years	old).

Currently,	no	animal	model	is	available	that	can	fully	mimic	the	
phenotype	of	PWS	in	humans,	possibly	due	to	the	complex	genetic	
components of the syndrome which complicate the development of 
reliable animal models.165	Yet,	 there	are	numerous	studies	 that	 in-
vestigate	the	role	of	specific	genes	present	in	the	PWS	critical	dele-
tion	region.	Such	PWS	mice	models	are	e.g.	employed	to	investigate	
hyperphagic	related	features	of	the	syndrome,	as	in	the	Snord116del	
mice.57,166	In	ad	libitum	conditions,	these	mice	show	increased	lev-
els	of	ghrelin	(approximately	2-	fold	increase	when	compared	to	wild	
type).57	This	is	the	same	magnitude	of	increase	expected	in	wild	type	
mice	 upon	 24	 hours	 fasting.	 Another	 study	 showed	 Snord116del	
mice in a ghrelin- deficient background did not impact the mortal-
ity	 or	maturation	of	 sexual	 traits	 evoked	by	 the	 Snord116	 loss.167 
However,	the	ghrelin-	deficient	background	promoted	leanness	and	
reduction of body fat observed in the single mutant.167	 Although	
with	divergent	phenotypical	traits	of	the	PWS	pathophysiology	(i.e.	
leanness),	this	model	seems	to	be	particularly	interesting	to	compre-
hend,	at	least	partially,	the	hyperphagic	state	of	the	syndrome.168 It is 
interesting	to	note	that	Snordel116	mice	have	reduced	PC1	expres-
sion.126	This	protein	acts	in	ghrelin	posttranslational	maturation,127 
as	in	POMC.169	Although	ghrelin	levels	are	elevated	in	Snord116del	
mice,	 there	 is	 an	 increased	 ratio	 between	 the	pro-	ghrelin	 and	 the	
mature	hormone,	due	to	diminished	expression	of	PC1.126	Therefore,	
concomitantly	 to	 the	hyperghrelinemia,	Snord116del	mice	are	 less	
efficient	 in	ghrelin’s	post	translational	processing.	The	exact	 impli-
cations	of	those	findings	in	PWS	patients	are	yet	to	be	determined.

It	is	worth	to	notice	that	extra	hypothalamic	actions	of	ghrelin	can	
promote	hunger/eating	behaviour.	The	ghrelin	receptor	is	expressed	
in	dopaminergic	neurons	in	the	ventral	tegmental	area	(VTA),170 and 
local	injection	of	the	peptide	in	the	VTA	evokes	feeding	in	a	dose	de-
pendent manner.171	Ghrelin	administration	increases	dopamine	turn-
over	in	the	mesolimbic	system	upon	food	consumption,	suggesting	

a	role	of	it	in	the	hedonic	component	of	eating,172,173 at least in ro-
dents.	Yet,	it	is	clear	that	the	impact	of	ghrelin	in	extra-	hypothalamic	
areas remains to be clarified both in rodents and humans.

In	 summary,	 there	 is	 no	 solid	 evidence	 for	 a	 relation	 between	
hyperghrelinemia	 and	hypothalamic	 dysfunction	 in	 PWS.	 The	 lack	
of	 experimental	models	 and	 limited	 human-	derived	 samples	 limits	
our knowledge of ghrelin`s role in the induction of hyperphagia in 
PWS.	In	addition,	if	hyperghrelinemia	is	the	major	cause	of	the	dras-
tic	hyperphagic	state	in	PWS	it	is	undetermined	until	now	what	the	
main neuronal population behind this orchestration is. This pheno-
type	might	be	due	to	ghrelin`s	actions	on	hypothalamic	orexigenic	
neurons,	mesolimbic	neurons	that	have	direct	inputs	into	the	hypo-
thalamus or a synergic effect among them.

5.2 | Leptin

Leptin	is	an	adipokine	that	regulates	energy	homeostasis	by	signal-
ling hypothalamic centers.115	 Leptin	 is	 a	 potent	 anorexigenic	 hor-
mone,	and	it	 is	well	recognized	for	activation	of	POMC-	expression	
neurons	while	 suppressing	 the	NPY	and	AgRP	neuronal	activity.85 
Leptin	also	exerts	its	functions	through	glial	cells.89,174 Recently the 
importance of leptin receptors in both astrocytes174 and microglia89 
has been demonstrated. It is well- known that lack of leptin leads to 
a severe obese phenotype and deletion of its receptor also leads to 
obesity and diabetic traits.175	Moreover,	 central	 resistance	 to	 lep-
tin signalling is a hallmark of obesity in animal models and human 
subjects.176,177

The	participation	of	leptin	in	the	clinical	features	of	PWS	is	less	
clear	than	what	is	known	for	ghrelin.	Lindgren	et al178 demonstrated 
that	leptin	expression	is	increased	in	the	adipose	tissue	of	PWS	chil-
dren.	This	is	paralleled	by	increased	plasma	levels	of	leptin	in	PWS	
infants.178	In	agreement	with	these	findings,	Butler	et al179 reported 
that obese individuals have higher leptin levels compared to their 
lean	 counterparts.	However,	 in	 the	 lean	 group,	women	 presented	
with	higher	plasma	levels	of	leptin,	which	was	not	observed	within	
the	PWS	population.	No	sex	differences	were	observed	among	non-	
obese	PWS	 individuals.	 Furthermore,	 the	only	difference	 in	 leptin	
plasma	levels	found	between	control	and	PWS	subjects	is	between	
lean	males	and	non-	obese	PWS	males.	The	authors	proposed	that	
this	difference	might	be	related	to	hypogonadism,	characteristic	of	
PWS	males.179	Of	note,	leptin	is	a	major	regulator	of	reproduction.180 
Goldstone	et al181 also did not find differences in plasma leptin be-
tween	lean	and	PWS	adult	women.	These	differences	on	plasma	lev-
els	of	leptin	cannot	be	explained	by	defective	secretion	or	defects	in	
functionality of the receptor.181

Snord116del	mice	have	unaltered	leptin	levels.168 Hypothalamic 
genes associated with leptin signalling genes also remain unchanged 
in these mutants compared to their wild type littermates.168 
Interestingly,	 adenovirus-	mediated	 deletion	 of	 Snord116	 in	 the	
hypothalamus	 leads	 to	 increased	 expression	 of	 the	 suppressor	 of	
cytokine	signalling	3	 (SOCS3)	 in	obese	animals.168 This gene is re-
sponsible for the suppression of leptin signaling.182	 However,	 the	
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cited work cannot dissociate the contribution of the obese pheno-
type	versus	the	deletion	itself	in	the	elevated	SOCS3	expression.168 
Another	animal	model	that	is	often	employed	in	PWS	research	is	the	
MAGEL2	null	mouse.183	This	knockout	is	insensitive	to	the	anorexi-
genic	effects	of	leptin,184	hence	POMC	neurons	fail	to	be	activated	
upon	leptin	exposure.	However,	whether	this	is	a	congenital	defect	
is	still	up	for	debate.	Moreover,	POMC	neuron	fibers	that	project	to	
the	PVN	are	reduced	in	the	MAGEL2	mutant	mice.42

5.3 | Insulin

Insulin is a hormone secreted by β- cells of the pancreatic islets. 
Molecular	resistance	to	insulin	or	plasma	insufficiency	leads	to	the	
development	of	type	2	diabetes	mellitus	 (T2DM).185 Hypothalamic 
insulin	 action	 takes	 place	 in	 synergism	 with	 leptin	 signalling,	 and	
therefore	 has	 also	 a	 potent	 anorexigenic	 effect.186 The morbid 
obesity	 in	PWS	is	believed	to	be	the	main	cause	of	T2DM	in	PWS	
population.	Indeed,	the	prevalence	of	T2DM	is	much	higher	in	PWS	
as	compared	to	the	general	population.	A	report	from	Vanderpump	
shows	a	prevalence	of	approximately	3	to	6	percent	of	T2DM	in	an	
English cohort.187	By	contrast,	concomitant	studies	reported	that	ap-
proximately	25%	of	PWS	individuals	are	diabetic	in	other	European	
cohorts,188,189	and	even	a	higher	percentage	is	suggested	in	an	Asian	
population,	with	approximately	30%	of	T2DM	incidence	in	PWS.190 
Despite	the	clear	incidence	of	T2DM	within	PWS	population,	there	
are discrepant reports in the literature on the role of defective 
glucose-	regulation	in	the	pathophysiology	of	PWS.	Furthermore,	in-
creased plasma concentrations of additional metabolism- controlling 
hormones	(i.e.	ghrelin	and	adiponectin)191 are thought to have great 
influence	in	glycaemic	control	in	PWS	pathophysiology.

Butler	et al192 determined that fasting glucose and insulin levels 
were	comparable	between	PWS	and	non-	syndromic	obese	individ-
uals.	PWS	patients	were	reported	to	have	significantly	higher	con-
centrations of glucose and insulin compared to lean individuals.192 
Moreover,	PWS	patients	were	reported	to	have	hyperinsulinemia	re-
sponse	to	an	oral	glucose	tolerance	test	(OGTT)	when	compared	to	
normal	weight	controls,193	while	obese	non-	PWS	controls	displayed	
comparable	OGTT	readout	to	PWS	individuals	in	this	study.193 In an-
other	study,	an	intravenous	glucose	tolerance	test	(IGVTT)	showed	
comparable	glucose	assimilation	coefficient	between	PWS	and	non-	
syndromic obese population.194 These data on glucose assimilation 
and insulin concentration upon oral glucose challenge indicate that 
the	insulin	sensitivity	among	non-	syndromic	obese	and	PWS	should	
also	 be	 comparable.	 Interestingly,	 after	 a	 protein	 meal	 ingestion,	
PWS	patients	showed	a	similar	insulin	peak	to	healthy	weighted	con-
trols,	whereas	obese	non-	PWS	controls	had	a	clear	insulin	peak	upon	
the meal consumption.195

Schuster et al196	demonstrated	that	PWS	infants	have	lower	insu-
lin	response	to	oral	glucose	test	compared	to	BMI	and	age	matched	
individuals.	In	the	same	study,	no	differences	were	found	in	glucose	
or	 insulin	 levels	 on	 PWS	 adults	when	 compared	 to	 lean	 or	 obese	
controls.	The	authors	discuss	that	the	PWS	limited	group	size	might	

influence	 the	 interpretation	 of	 this	 data.	 Interestingly,	 on	 OGTT,	
PWS	presented	delayed	peak	of	glucose	and	insulin	when	compared	
to	obese	controls.	It	was	proposed	that	this	difference	might	be	ex-
plained by reduced pancreatic β- cell responsiveness to glucose fluc-
tuations	 in	 PWS	population.	Consistently	with	 previous	 literature,	
the authors found no differences in glucose assimilation assessed 
by	IVGTT.194	However,	insulin	and	peptide	C	plasma	levels	were	re-
duced	in	PWS.196 This led to reduced insulin to glucose ratios during 
IGVTT	in	PWS	compared	to	obese	control	group.	Furthermore,	the	
authors	were	the	first	to	demonstrate	increased	hepatic	insulin	ex-
traction	and	insulin	clearance	in	PWS	compared	to	obese	controls.

A	recent	study	described	a	heightened	fasting	insulin	levels	and	
sensitivity	in	PWS	infants	compared	to	BMI	and	age-	matched	con-
trols.197	However,	this	study	lacks	the	comparison	between	PWS	and	
lean	subjects.	Therefore,	it	is	impossible	to	determine	if	in	this	cohort,	
whether	PWS	are	normoinsulinemic	during	fasting.	In	concordance	
with	the	insulin	sensitivity	data,	a	more	recent	report	described	that	
PWS	individuals	have	lower	fasting	insulin	levels	when	compared	to	
obese	controls.	Not	only	insulin	concentrations	were	lessened,	but	
also	PWS	individuals	were	also	proven	to	have	greater	insulin	sensi-
tivity,	which	were	compared	to	lean	controls.191	Thus,	although	the	
prevalence	of	T2DM	is	greater	 in	PWS,	an	unexpected	 increase	 in	
insulin sensitivity is found within this population as well. The link be-
tween	insulin	resistance	and	T2DM	is	long	recognized.198	In	addition,	
molecular resistance to insulin signalling is one of the most accurate 
predictors	of	development	of	T2DM	and	the	main	therapeutic	target	
for this disorder.199,200 There are potential mechanisms that are used 
to	explain	this	paradoxical	clinical	feature	of	PWS.	Firstly,	although	
PWS	patients	display	abnormal	fat	deposition,	that	occurs	preferen-
tially in subcutaneous depots rather in visceral ones.191,201-	203 The 
visceral	 fat	deposition,	which	 is	observed	 in	obese	 controls,	 has	 a	
positive correlation with lowered sensitivity to insulin signalling.204 
Moreover,	it	is	known	that	PWS	patients	are	deficient	in	growth	hor-
mone.6,205	This	hormone	has	glucoregulatory	roles	and,	it	is	partic-
ularly interesting to pinpoint that there is a transient induction of 
insulin resistance in puberal development due to elevated secretion 
of growth hormone.206	Lastly,	 increased	 insulin	 sensitivity	 in	PWS	
population	can	eventually	be	explained	by	 increased	 levels	of	adi-
ponectin.202 This is an adipose tissue- derived hormone and targets 
insulin- producing cells in the pancreas.207	Adiponectin	is	associated	
with increased insulin sensitivity and has anti- inflammatory prop-
erties.208	Compared	 to	non-	syndromic	obese	population,	 PWS	 in-
dividuals have higher plasma concentrations of this hormone. This 
is	 further	correlated	with	 insulin	 sensitivity	 in	a	PWS	cohort.202 It 
is	proposed	that	increased	overall	fatty	acid	oxidation	promoted	by	
adiponectin signalling in skeletal muscle leads to increased insulin 
sensitivity,	as	previously	stated.209	However,	whether	this	is	true	for	
the	pathophysiology	of	PWS	remains	unknown.

Our current understanding of the endocrine imbalance on the 
hypothalamic	malfunction	is	still	extremely	poor.	One	of	the	biggest	
gaps to be filled in that sense is the “chicken- or- egg question” be-
tween the endocrine imbalance and the defective neuronal func-
tioning. Is disrupted hypothalamic function the primordial cause 
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of	the	obese	phenotype,	which	is	accompanied	by	endocrine	alter-
ations?	Or	 is	 the	defective	endocrine	production	and/or	 secretion	
the	main	cause	of	the	hypothalamic	function?

6  | HYPOTHAL AMIC GLIAL CELL S AND 
INFL AMMATORY PATHWAYS IN PWS

The consumption of an obesogenic diet leads to structural and func-
tional damage of the neuronal populations engaged with energy 
homeostasis regulation.82,87,210 The malfunction of those neurons is 
closely related to the activation of microglia cells.83,211	Microglia	are	
the	resident	immune	cells	of	the	CNS.	The	homeostatic	functions	of	
microglia	are	responsible	for	microenvironmental	cleansing,	mostly	
though phagocytosis of cellular debris and unwanted particles.212 
This promotes a healthy microenvironment for optimal neuronal 
function	throughout	the	CNS.213	Beyond	the	homeostatic	functions	
of	immunosurveillance,	microglia	play	a	central	role	in	CNS	patholo-
gies,	such	as	Alzheimer’s	disease,214	Parkinson’s	disease,215 multiple 
sclerosis216	and	disorders	 in	the	CNS	circuitry	 in	control	of	energy	
homeostasis.82,83,89,217,218

Hypothalamic microglial activation towards a proinflamma-
tory state is triggered by dietary composition and peripheral 
hormones.218	 In	 the	obese	hypothalamus,	 activated	microglia	 ac-
cumulate	and	produce	neurotoxic	and	proinflammatory	mediators,	
such	 as	 cytokines	 (mainly	 tumor	 necrosis	 factor;	 interleukin-	6;	
interleukin-	1	beta)	 and	nitric	oxide.219	 Thus,	 the	malfunction	and	
numerical	loss	of	INF	neurons	might	be	directly	driven	by	microg-
lial	 activation.	Moreover,	 by	 looking	 into	 the	 post-	mortem	hypo-
thalamic	 tissues	 of	 type	 2	 diabetic	 patients,	 we	 have	 recently	
demonstrated that anti- diabetic treatment is associated with a re-
duction	 of	microglia	 cell	 number	within	 the	 INF.84 This suggests 
that changes in microglial biology might also be implicated in the 
reversion of metabolic syndrome features. The obese phenotype is 
associated with a global inflammatory process that affects not only 
the hypothalamus.220 Resident and infiltrating immune cells trig-
ger	 an	 inflammatory	 response	 in	metabolic	 relevant	organs,	 such	
as	 the	 liver,	 pancreas,	 and	 adipose	 tissue.220	 Furthermore,	 both	
animal studies and preliminary evidence on human brain material 
demonstrate that inflammatory changes are first observed in the 
hypothalamus.107 Those alterations are also known to precede the 
peripheral metabolic disorders.

Currently,	 the	 role	 of	 inflammatory	mediators	 in	 the	 patho-
physiology	of	PWS	is	poorly	explored	and	understood.	Questions,	
such	as	whether	the	PWS	patients	have	similar	inflammatory	out-
comes	as	the	non-	syndromic	obese	subjects,	and	whether	there	
is any biological system that is differentially affected in either 
condition	 (i.e.	 is	 inflammation	 in	 the	 hypothalamus	 differently	
regulated	in	PWS	and	non-	genetic	obesity?)	still	remain.	Although	
plasma	levels	of	cytokines	are	comparable	among	PWS	and	obese	
controls.191 The transcriptional signature of the hypothalami of 
PWS	patients	revealed	a	marked	inflammatory	process,	concom-
itant with dampening of neuronal- associated transcripts.121 The 

same study demonstrated reduced cell counts of astrocytes in 
PWS	hypothalami.	Astrocytes	accumulate	within	the	hypothala-
mus	 in	 conditions	 like	obesity	 and	T2DM221 and can contribute 
to the maintenance of an inflammatory process.222 This might 
suggest that the hypothalamic inflammatory- associated changes 
found	in	PWS	are	more	closely	related	to	microglia	than	to	other	
cell	 types,	 quite	 different	 from	non-	genetic	 conditions.	 Beyond	
that,	further	studies	are	needed	to	find	out	whether	the	inflam-
matory changes in microglia are triggered by endocrine or dietary 
components,	and	whether	the	genes	present	in	the	PWS	critical	
deletion region participate in the homeostatic or inflammatory 
changes of microglia.

Of	importance,	neuropeptides	are	known	regulators	of	microg-
lia function.223-	225 The participation of neurotransmitters and neu-
ropeptides as instructors of microglial function has gained crescent 
interest of the scientific community.226	However,	the	contribution	
of hypothalamic neuropeptides as immunomodulators is still poorly 
understood. It is also interesting that microglia cells comprehend a 
very	heterogenous	population	 in	 situ,	 and	 therefore	 it	 is	 difficult	
to translate the relevance of the in vitro findings into physiolog-
ical terms.227	 Therefore,	 the	 magnitude	 of	 the	 neuropeptidergic	
damping	found	in	PWS	hypothalami	on	the	microglia	biology	is	far	
to be fully understood. The two major antagonist neuropeptides 
expressed	 on	 the	 infundibular	 nucleus	 explored	 here	 (NPY	 and	
POMC)	are	known	immunomodulators,	especially	 in	murine	mod-
els.	The	NPY	effects	on	microglia	is	broader	explored	in	the	retina,	
rather than in the hypothalamus.228	In	brief,	NPY	is	capable	to	in-
hibit	LPS-	induced	proinflammatory	mediators	(such	as	nitric	oxide	
production	and	cytokines/interleukins)	and	has	a	suppressor	effect	
on phagocytic capacity of microglia.229,230	 Likewise,	 the	 anorexi-
genic neuropeptides here mentioned have been broadly implicated 
in	promoting	an	anti-	inflammatory	phenotype.	POMC-	derived	pep-
tides	 suppress	 LPS-	induced	 cytokine	 expression/secretion.231,232 
A	similar	 pattern	was	 found	 in	other	myeloid	populations,	 as	pe-
ripheral macrophages and neutrophils.225,233,234	 Further	 research	
is necessary for the comprehension of the melanocortinergic 
system	on	non-	neuronal	cells.	Interestingly,	among	the	neuropep-
tides	addressed	 in	 this	 review,	oxytocin	 is	 the	one	 that	has	been	
further	explored	in	microglial	immunity.	In	primary	microglia,	oxy-
tocin	 treatment	 leads	 to	 diminished	 production	 of	 LPS-	induced	
neurotoxic	 factors.235,236	 In	 concordance,	 intranasal	 oxytocin	 ad-
ministration in adult mice limits microglial inflammatory response 
upon	 intraperitoneal	 LPS	 injection.236 It has been proposed that 
this phenotype is achieved through inhibition of signalling path-
ways	classically	associated	with	a	proinflammatory	response,	such	
as	 the	Nuclear	 Factor	Kappa	Beta	 and	 the	mechanistic	 Target	 of	
Rapamycin.237,238	 Finally,	 the	 endocrine	mediators	 explored	 here	
(leptin,	 ghrelin,	 and	 insulin)	 are	 also	 known	 regulators	 of	microg-
lia	cells.	In	brief,	it	is	broadly	recognized	that	these	hormones	can	
modulate microglia cytokine production239- 241 and phagocytic ca-
pacity.89,152,242	 Therefore,	 the	 microglial	 biology	 might	 be	 a	 fun-
damental link between the molecular disruption of hypothalamic 
dysfunction	and	the	clinical	aspects	of	PWS.
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7  | CONCLUSION AND FUTURE 
PROSPEC TIVE

Hypothalamic	 dysfunction	 is	 a	 hallmark	 of	 PWS.	Defective	 hypo-
thalamic	neurocircuitry	 leads	to	the	hyperphagic	state,	and	conse-
quently	morbid	obesity.	This	is	translated	into	diminished	expression	
of hypothalamic neuropeptides engaged in energy homeostasis 
regulation.	Ultimately,	there	is	a	marked	numerical	loss	of	the	neu-
rons	 that	 compose	 both	 orexigenic	 (NPY-	expressing	 neurons)	 and	
anorexigenic	 populations	 (oxytocin-	expressing	 and	 presumably	
POMC-	expressing	 neurons).	 Furthermore,	 the	 neurocircuitry	 en-
gaged in food intake and motivation are abnormally activated in 
PWS.	Whether	the	disruption	of	the	homeostatic	control	of	eating	
behaviour	is	due	to	defective	neuronal	biology,	an	unhealthy	micro-
environment leading to neuronal dysfunction or primarily due to en-
docrine	imbalance,	is	yet	to	be	determined.

So	 far,	 symptomatic	 management	 of	 the	 disease	 is	 the	 only	
therapeutic option. The most successful approach in that sense is 
growth	hormone	therapy,	which	has	been	largely	implicated	in	the	
attenuation	of	PWS	related	features	(i.e.	stature,	body	composition	
and	motor	and	cognitive	development).	Despite	the	improvement	
of those symptoms growth hormone therapy fails to completely 
resolve the hyperphagia and obesity. It is also relevant to address 
that	 it	 is	unknown	to	what	extend	 improvement	of	hypothalamic	
dysfunction by growth hormone therapy is a consequence of its 
local	 signalling	 or	 overall	 amelioration	 of	 symptoms.	 Therefore,	
therapeutic approaches designed to specifically attenuate the hy-
perphagic	 state	 and	obesity	 itself	 in	PWS	are	 necessary.	Among	
the most promising agents in this respect are the glucagon- like 
1	 receptor	 (GLP-	1R)	 agonists	 that	 have	been	extensively	 studied	
in	obesity	and	T2DM	and	 induce	both	weight	 loss	and	 improved	
glycaemic control.243	 Additional	 research	 is	 necessary	 to	 adopt	
GLP-	1R	based	therapies	for	PWS,	but	preliminary	data	show	posi-
tive results. Salehi and collaborators reported that short- term use 
of	 exenatide	 (a	GLP-	1R	 agonist)	 promoted	 anorectic	 effects	 in	 a	
small	 PWS	 cohort	 (13-	25	 years	 old).244	 Importantly,	 the	 authors	
did	 not	 observe	 BMI	 changes	 during	 the	 short	 term	 administra-
tion and suggested further studies with long- term administration 
as	follow	up,	as	well	a	combination	of	exenatide	with	behavioural	
modifications.244	Further,	a	more	recent	case	report	from	Kim	and	
colleagues	demonstrated	rapid	and	marked	weight	 loss	 in	a	PWS	
adolescent	(female,	18	years	old)	upon	liraglutide	(another	GLP-	1R	
agonist)	administration.245	Remarkably,	the	effects	of	GLP-	1R	ac-
tivation modulate hypothalamic neuronal populations engaged in 
energy homeostasis.246

Even	though	the	therapeutic	approach	 in	PWS	 is	still	evolving,	
it is clear by now that hypothalamic dysfunction needs to be a key 
component in this equation regardless of the question whether it 
has	 a	 causal	 role.	Overall,	 the	 effects	 of	 the	 temporal	 and	 spatial	
changes of hypothalamic neuronal and glial populations are not fully 
understood. Challenges such as the implications of the deletion at its 
full length rather than the role of each individual gene is one of the 
main	obstacles	 in	PWS	field.	Accumulating	evidence	 indicates	that	

neuroinflammation may be a major causative event on hypothalamic 
neuronal	malfunctioning;	and	thus,	it	might	be	decisive	in	the	design	
of	 new	 symptomatology	management	 strategies.	 Further	 research	
is	still	necessary	to	comprehend	the	participation	of	glial	cells,	es-
pecially	microglia,	in	the	pathophysiology	of	PWS.	Whether	glial	or	
neuronal cells are the first to be affected remains an open question 
at this moment.
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