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Abstract

Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1) are frequently stratified into
phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such
subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant
forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the
subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic
method for automatically subtyping an HIV-1 (or other viral or bacterial) sequence, mapping the location of breakpoints and
assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our
Subtype Classification Using Evolutionary ALgorithms (SCUEAL) procedure is shown to perform very well in a variety of
simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the
performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol)
sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database.
Comparing with subtypes which had previously been assigned revealed that a minor but substantial (<5%) fraction of pure
subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a
module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate
automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less
accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of
subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance of accurate, robust and
extensible subtyping procedures is clear.
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Introduction

Many RNA viruses have evolutionary rates that hover near the

mutational speed limit [1] permitting them to generate incredible

sequence variability among circulating strains in a relatively short

time [2]. Bottleneck events, such as viral introduction to new

populations or species of hosts, followed by diversification in the

new environments, create easily discernible substructures within

individual viral species. For HIV-1, this substructure consists of 3

groups (M, N and O), 9 ‘‘pure’’ subtypes (A–D, F, G, H, J and K)

of group M, and sub-subtypes (e.g. A1, A2, F1 and F2), defined

entirely on the basis of phylogenetic clustering and monophyly of

sequences from a given subtype in relation to all other subtypes [3].

The geographic distribution of HIV-1 subtypes is decidedly non-

random [4]; for example w98% of HIV-1 circulating in North

America is classified as subtype B, whereas the same subtype

accounts for only 0:2% of infections in Southern Africa. This

observation immediately suggests that reliable determination of viral

subtypes is highly informative for epidemiological surveillance.

HIV-1 diversity is sufficiently high to permit further stratification

of subtypes by the geographic region of origin, yielding further clues

to epidemiological history of modern epidemics [5]. However,

because several established subtypes often circulate concurrently in

one host population [6], and because HIV has exceptionally high
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recombination rates [7], novel recombinant forms are frequently

generated. If at least three epidemiologically unrelated viral isolates

show an identical novel recombination structure in terms of the pure

subtype reference strains, a new circulating recombinant form

(CRF) is added to the compendium maintained by the Los Alamos

National Laboratory (http://www.hiv.lanl.gov/content/sequence/

HIV/CRFs/CRFs.html). There are currently 43 described CRFs,

differing widely in their prevalence, range and the complexity of the

recombinant structure. However, the relationship between CRFs

and their parental strains is not always clear cut; for example

CRF02, originally thought to have been the product of recombi-

nation between subtype A and subtype G strains could in fact be

ancestral to subtype G strains [8].

A number of computational approaches have been proposed to

classify viral strains into subtypes or to describe recombinant

strains as mosaics of subtypes. Unlike with methods geared

towards a more general problem of detecting recombination from

sequence alignments [9,10], there are no comprehensive compar-

ative benchmarking studies for subtyping methods in the literature.

The methods can be conceptually categorized by whether or not

they explicitly use a phylogeny to assign subtypes, whether or not

they require a multiple sequence alignment and by the degree of

automation that they afford: full, partial or none. The de facto

standard for accurately describing novel recombinant forms has

changed little since its introduction in [11]. It consists of an initial

sliding-window phylogenetic bootstrap (bootscanning) analysis of

the query sequence aligned against the set reference strain used to

generate the set of apparent breakpoints which are then confirmed

by detailed phylogenetic analysis of putative non-recombinant

fragments. This is a powerful and intuitively attractive, but

laborious method–the entire process frequently lacks automation

(e.g. [12,13], but see [14]), has many user-adjustable parameters,

such as the alignment procedure, reference sequences, sliding

window size and stride, precise location of breakpoints, phyloge-

netic bootstrap values that are selected subjectively, and can lead

to ambiguous or not fully resolved results (e.g. [15] vs [16], [17]).

Perhaps the single greatest criticism of the bootscan/phylogeny

approach may be that two alternative characterizations of the

same query sequence are not assigned a statistically meaningful

goodness-of-fit score, and hence cannot be objectively compared.

On the other end of the spectrum are fully automated techniques,

including a sophisticated phylogeny and alignment based REGA

v2.0 tool [18], henceforth referred to as REGA, and several

phylogeny and/or alignment free tools: a classification method

based on subtype-specific distributions of short nucleotide strings

[19]; a sliding window analysis based on BLAST scores of the query

and each of the subtype reference sequences [20]; a phylogeny free

position/subtype specific amino-acid subtype analyzer (STAR)

which assigns each residue in a multiple sequence alignment a

subtype discriminating score [21]; and a probabilistic jumping

alignment approach jpHMM [22] that uses a hidden Markov model

to align the query to the locally most similar reference sequence.

Alignment and/or phylogeny free techniques are fundamentally

approximate in nature, because the definition of a subtype is rooted

in the concept of a clade and hence is intrinsically phylogenetic in

nature. Approximate approaches have been developed to address

the very practical issues of automation, speed and the fact that a

phylogenetic definition of a subtype becomes complicated when

reference strains are permitted to have recombined themselves.

On the other hand, these methods often produce conflicting or

indeterminate results, may be unable to classify novel or rare

mosaics, and frequently disagree with manually performed

phylogenetic analyses, causing considerable consternation among

practitioners and clinicians (e.g. [23–25]). A recent comparative

study of three automated subtyping tools on 10537 partial

polymerase sequences from the UK [26] found that methods

agreed poorly (v50%) for subtypes other than B,C and H, failed

to classify 5{10% of sequences and returned discordant results in

&12% cases of divergent sequences, which were revealed to be

unusual recombinant forms by a laborious follow-up analysis.

Hence, we are convinced that it is necessary to adopt a

phylogeny-based method for accurate subtyping. Statistical evi-

dence of phylogenetic incongruence, i.e. instances when different

regions of an alignment support discordant phylogenies, is a

hallmark of recombination [27]. A statistically robust phylogenetic

approach to detecting phylogenetic incongruence in a multiple

sequence alignment has been proposed in the Bayesian framework

by [28] and in the information theory framework by [29]. These

methods are powerful but too slow to be practical for large reference

phylogenies needed to describe extant HIV diversity–for example

our HIV-1 polymerase reference alignment contains nearly 300

sequences. Because subtyping is a particular case of more general

recombination analyses, we devised an algorithm whose run time is

effectively constant in the size of the reference alignment.

Importantly, this is achieved without collapsing the alignment into

a collection of attributes, such as substring frequencies or position-

specific alignment scoring matrices, as is frequently done by

phylogeny-free methods.

Our design objectives for SCUEAL included: (i) a completely

automatic method, which returns a predicted subtype, existing

CRF or a recombinant form mapped in terms of the former; (ii)

every estimated quantity including the recombinant structure, the

location of each breakpoint and the assignment of a parental/sister

lineage should be estimated with statistical confidence/support

values to allow an objective evaluation of how robust the estimates

are; (iii) the algorithm runs sufficiently quickly (2–3 CPU minutes

to screen a simple sequence, and up to a CPU hour for highly

complex mosaics) to permit the screening of thousands of

sequences on a computer cluster. We implemented an easy-to-

use web interface to SCUEAL running on the datamonkey.org

[30] platform); (iv) accepts large reference sequence alignments

Author Summary

There are nine different subtypes of the main group of
HIV-1, each originating as a distinct subepidemic of HIV-1.
The distribution of subtypes is often unique to a given
geographic region of the world and constitutes a useful
epidemiological and surveillance resource. The effects of
viral subtype on disease progression, treatment outcome
and vaccine design are being actively researched, and the
importance of accurate subtyping procedures is clear. In
HIV-1, subtype assignment is complicated by frequent
recombination among co-circulating strains, creating new
genetic mosaics or recombinant forms: 43 have been
characterized to date, and many more likely exist. We
present an automated phylogenetic method (SCUEAL) to
accurately characterize both simple and complex HIV-1
mosaics. Using computer simulations and biological data
we demonstrate that SCUEAL performs very well under
various conditions, especially when some of the existing
classification procedures fail. Furthermore, we show that a
small, but noticeable proportion of subtype characteriza-
tion stored in public databases may be incomplete or
incorrect. The computational technique introduced here
should provide a much more accurate characterization of
HIV-1 strains, especially novel recombinants, and lead to
new insights into molecular history, epidemiology and
geographical distribution of the virus.

Evolutionary Algorithm for HIV Subtype Prediction
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which can be easily updated when new references (e.g. CRF)

become available. SCUEAL is conceptually based on the more

general method (GARD) for detecting recombination in multiple

sequence alignments presented in [29], but is an entirely new

algorithm and software implementation. Whereas GARD is

primarily concerned with detecting the number and location of

breakpoints in an alignment, and not in identifying recombinant

lineages and clades (which is critically important for subtyping),

SCUEAL explicitly searches for both using a significantly modified

and improved genetic algorithm. Also, by screening a single

sequence against a fixed reference alignment, SCUEAL gains

significant power and an order of magnitude speed-up over

GARD, which assumes that any sequence can be a recombinant.

We assessed various performance metrics of SCUEAL using an

extensive set of simulations and biological data; to our knowledge

no other method has been subjected to a comparably exhaustive

benchmarking study.

Methods

Consider an alignment of N reference sequences on L bases,

each labeled with its subtype. We require that none of the

reference sequences have undergone detectable recombination,

hence their evolutionary history can be accurately described with a

single phylogenetic tree, T ; note that this framework can be used

to handle recombinant reference sequences represented as

multiple partial sequences (see below). In this manuscript, the

evolution of extant sequences from their most recent common

ancestor along the phylogenetic tree is described by the general

time reversible model of nucleotide substitution [31] and site-to-

site rate variation is accommodated via a 3-bin general discrete

distribution (e.g. [32]). Substitution models for codon and protein

evolution can be easily accommodated by the testing framework;

however because they incur considerable additional computational

expense they are not considered here.

Phylogenetic mosaics
The objective of our methodology is to enable automatic

identification of the number (B) and location of any recombina-

tion breakpoints in a query sequence, that is assumed to be

homologous and alignable to the reference sequences, together

with the identities of sister lineages in each non-recombinant

fragment. An example of such an assignment can be found in

Figure 0: the query sequence (labeled Q) has two recombination

breakpoints, at nucleotide positions 750 and 1250. Over the first

750 nucleotides, the query sequence shares a common ancestor

with reference sequence 1, over the next 500 nucleotides - with

reference sequence 7, and over the last 750 nucleotides - with

sequence 1 again. Such an arrangement might arise if the query is

the result of a recombination event between the ancestors of

sequences 1 and 7.

The term ‘mosaic’ has come to encompass the combination of

breakpoint placements and lineage assignments in HIV-1

subtyping literature. The number of possible mosaics with B
breakpoints is proportional to NLð ÞB, hence it is not practical to

undertake an exhaustive search of all possible mosaics, unless B is

small (i.e. B = 1 or B = 2).

Model fitting and fitness evaluation
In order to select credible mosaics from the set of all possible

models we must be able to compute a goodness-of-fit value for

each proposed mosaic.

We begin by computing the maximum likelihood based score

for each model. First, we fit the reference tree to the reference

alignment using standard phylogenetic maximum likelihood.

Assuming unrooted bifurcating trees, 2N{5 branch length

estimates and K substitution model estimates, such as relative

nucleotide substitution rates, base frequencies and site-to-site rate

variation parameters will be obtained. These baseline parameters

are estimated once for a reference alignment, and can be reused if

multiple query sequences are run against the same reference.

For computational efficiency we fix all substitution model

parameters at their baseline values instead of re-estimating them

for each mosaic. If the reference alignment is sufficiently large, the

effect of one additional sequence on substitution model parameters

will be insignificant. Furthermore, we posit that grafting the query

sequence onto a branch in the reference tree will only affect three

branch lengths for each non-recombinant fragment. For instance,

for the mosaic shown in Figure 1 the algorithm will estimate three

branch lengths for the first segment (those leading to 1 and Q as

well as the branch leading to their MRCA), three branch lengths

of the second segment (Q,7 and the MRCA of Q and 7) and three

branch lengths for the third segment (1,Q and the MRCA of 1

and Q). All other branch lengths are maintained at the values

derived from the reference tree. Similar approximations are

routinely made in phylogenetic inference (e.g. [33,34]). The fitness

of mosaic i is evaluated using Schwartz’s Bayesian Information

Criterion (BIC, [35]), with the number of model parameters for a

mosaic with B breakpoints given by p~Kz2N{5z3B:

f ið Þ~{2 log l ĥh
� �

zp log Lð Þ, ð1Þ

where l ĥh
� �

is the likelihood of the data under the mosaic model

maximized over p parameters and L is the number of sites in the

alignment, used to approximate the number of independent

observations. A lower BIC score indicates a better fit to the data.

BIC was selected because it had the best power/accuracy

performance in our initial simulation studies, comparing AIC

[36], AIC-c [37] and BIC (results not shown).

The immediate benefit of allowing only three branch lengths to

vary per segment is that the computational cost for fitting

individual mosaics no longer depends on the size of the reference

alignment, at least when time-reversible models of substitutions are

used. This observation has been exploited in many phylogenetic

applications and is discussed in detail for example in [38]. Briefly,

as a part of standard phylogenetic likelihood evaluation [39], each

node n (both tips and internal nodes) of the phylogenetic tree is

populated with a vector of partial probabilities Ln cð Þ that containts

the probability of observing the subtree rooted at n if the character

(i.e. a nucleotide in our case) at n is c. To evaluate the likelihood of

the entire tree (for a single site), the following expression is

computed at the root:

X
c[ A,C,G,Tf g

p cð ÞP
n

X
d[ A,C,G,Tf g

Tn c?dð ÞLn dð Þ,

where n iterates over the children of the root node, p cð Þ gives the

stationary frequency of nucleotide c (estimated by counts from the

data) and Tn c?dð Þ denotes the probability of substituting

nucleotide c with nucleotide d along the branch that ends in n.

The critical observation to be made here is that if nothing but the

lengths of branch emanating from the root node change during

optimization (i.e. only Tn changes), then Ln dð Þ do not have to be

recomputed, reducing the complexity optimization problem to

that on a star tree with N( = 3 for standard phylogenetic

applications) tips.

Evolutionary Algorithm for HIV Subtype Prediction
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For time-reversible models, the root can be arbitrarily placed on

any branch of the phylogenetic tree. Hence, we can reroot the tree

at the point where the query sequence is grafted and reduce the

computational complexity as explained above. To do this, in

addition to Ln cð Þ, we also precompute (for every node except the

root and only once per analysis) the collection of vectors Mn cð Þ,
that contain conditional probabilities of the parent node of n, when

n is considered as the root node. For every non-root node n the

likelihood of the bifurcating reference tree can be equivalently

expressed as:

X
c[ A,C,G,Tf g

p cð ÞLn cð Þ
X

d[ A,C,G,Tf g
Tn c?dð ÞMn dð Þ:

The last expression is simply the likelihood of the tree rerooted

exactly at node n. Grafting the query sequence q onto the branch

leading to node n will create three branches: the branch leading to

q, the branch leading to n and the branch leading from the

ancestor of n and q (nq) to the parent of p nð Þ For the first partition

in Figure 1, for example, the single branch of the reference tree

leading to tip 1, was transformed into three branches by grafting

Q–the branch leading to tip 1, the branch leading to query Q and

the branch leading to the parent of 1 and Q. Consequently, the

likelihood of the tree with the query sequence q grafted onto the

branch leading to n can be computed as:

P
a[ A,C,G,Tf g

p að Þ
P

b[ A,C,G,Tf g
Tn a?bð ÞLn bð Þ

" #

P
c[ A,C,G,Tf g

Tq a?cð ÞLq cð Þ
" # P

d[ A,C,G,Tf g
Tp nð Þ a?dð ÞMn dð Þ

" #
:

This expression is the likelihood of a three-taxon star tree with the

root at node nq (sum over a) and three children: n (sum over b), q
(sum over c) and the parent of n, p nð Þ (sum over d). Note that

because q is always a tip, the conditional probabilities in Lq nð Þ are

trivial to compute, and it follows that the cost of evaluating the

likelihood of the reference tree with a grafted tip (given

precomputed quantities, M and L–done only once for the

reference alignment, independent of the query sequence) is

equivalent to the three-taxon case.

Mosaic selection using a genetic algorithm
We use an aggressive genetic algorithm (GA) with elitist

selection that is based on the CHC procedure [40] to rapidly

search a combinatorially large space of possible mosaics for a fixed

number of breakpoints. The algorithm operates on a population of

I binary strings (individuals), each representing an encoded mosaic

with B breakpoints. 2Bz1 fragments (‘genes’) are needed to

encode the mosaic - B for the location of breakpoints, and Bz1
for lineage assignments on each non-recombinant fragment (see

Figure 1). We restrict breakpoints to only occur at variable

alignment sites as was done previously in our GARD method [29].

In addition, the breakpoints must be a minimum distance (denoted

as a tunable parameter w) away from each other or from the ends

of the sequence; this simply reflects the fact that a minimum

number of sites is necessary to resolve the phylogenetic placement

of a sequence.

The placement of the query sequence in the reference tree is

represented by the binary-encoded position of the branch in post-

order traversal (cf. Figure 1). Breakpoint positions are represented

using Gray binary coding, to ensure any two consecutive locations

differ by a single bit, and hence can be reached by a single

mutation [41]. For example, to change the position of a breakpoint

from 7 (traditional binary 0111, Gray code 0100) to 8 (1000; 1100)

it would be necessary to mutate all four bits in the traditional

binary code, but only one bit in the Gray code. Breakpoints are

always maintained in left-to-right ordering and any operations that

disrupt this order are followed by resorting of breakpoints left to

right (equivalent to gene order rearrangement).

Starting with the initial population of I mosaics, the algorithm

proceeds as follows (refer to Figures 2 and 3 for a graphical

description of the procedure). First, fitness of each mosaic f ið Þ
(Eq. 1) is computed and the mosiac is assigned a mating

probability inversely proportional to its fitness rank ri. The most

fit mosaic reproduces becomes a parent for an offspring with

p1~C{1, while the least fit mosaic–with probability pI~ CIð Þ{1
,

Figure 1. An example to illustrate the concepts of a mosaic and
its binary encoding upon which the genetic algorithm
operates. Panel A: a phylogenetic breakpoint/lineage model which
‘‘threads’’ a query sequence (labeled ‘Q’) onto the reference tree with 7
sequences. Panel B: the example individual model (mosaic) 1750712501 is
encoded by a 36-bit binary vector on 5 fragments (genes)–2 for placing
the breakpoints (Gray-binary encoded) and 3 for identifying sister
lineages, binary encoded using the post-order traversal scheme shown
in the reference tree of Panel A.
doi:10.1371/journal.pcbi.1000581.g001

Evolutionary Algorithm for HIV Subtype Prediction
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Figure 2. Algorithmic flowchart of SCUEAL. Algorithmic logic underlying SCUEAL; see Figure 3 for a description of the genetic algorithm itself.
Refer to the text for more detailed descriptions of individual procedures and parameter definitions.
doi:10.1371/journal.pcbi.1000581.g002
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Figure 3. Algorithmic flowchart of the genetic algorithm in SCUEAL. A flowchart description of the genetic algorithm applied to a given
starting population and controlled by input parameter values. Refer to the text and Figure 2 for further description of individual steps and parameter
definitions.
doi:10.1371/journal.pcbi.1000581.g003

Evolutionary Algorithm for HIV Subtype Prediction

PLoS Computational Biology | www.ploscompbiol.org 6 November 2009 | Volume 5 | Issue 11 | e1000581



where C~
PN

k~1 k{1. The algorithm maintains a global lookup

table (implemented as an AVL tree keyed on the bit string of the

mosaic) to ensure that the maximum likelihood fitting of any given

mosaic is carried out only once. Second, I pairs of parents are

selected based on their mating probabilities to generate I offspring.

The mating operator uses free recombination, where every bit of

the child has a 50% probability of coming from either parent; this

ensures rapid mixing of mosaic features. With probability r the

algorithm also induces genomic rearrangement in the offspring

mosaic, by swapping adjacent fragments around a randomly

selected breakpoint. Third, the existing population is augmented

with the offspring, resulting in 2I mosaics, ranked according to

BIC and filtered to include I top-scoring mosaics in the next

generation; this induces a strong selective pressure to remove

mosaics with low fitness scores.

Mutational processes are available to re-introduce genetic

variability into inbred populations. First, hypermutation is triggered

if the diversity of the population, measured as the relative difference

between in BIC between the best and worst fitting mosaic (i.e.

max BIC=min BIC{1), drops below a fixed threshold, l. All

mosaics in the population, except the best fitting one, have their bits

toggled with fixed probability m. Second, if no generation-to-

generation BIC improvement was observed for d consecutive

generations, local mutation is carried out. The bottom two thirds of

the population are replaced by mutated versions of the best fitting

mosaic, generated by selecting a fragment to mutate at random and

providing local coverage for that fragment. Local coverage is

introduced by first drawing a random branch if the gene encodes a

lineage, or a random position within 0:05{0:35½ �L bp of the

current position for a breakpoint location gene, and then generating

2=3I consecutive values for the gene. For example, if the new

random position for the breakpoint is drawn as 690, then mosaics

with the breakpoint at 690,691, . . . 690z2=3I{1 will be placed in

the population.

The algorithm terminates if no BIC improvement has been

obtained for t consecutive generations. The number of breakpoints

is increased from 1 until no BIC improvement has been found for

two consecutive values of B. The case of B~0 is solved exhaustively;

the initial population for B~1 is generated randomly; the initial

population for Bw1 is seeded by the best mosaic from the B{1
run, with a randomly placed additional breakpoint and lineage

assignment. For B§2, we also add a step down procedure to

confirm that the improvement in score obtained by incrementing B
was due to a genuine additional breakpoint and not due to

premature termination at the previous step (B{1); to do so, we

generate I mosaics by randomly removing a breakpoint from the

best-fitting mosaic with B breakpoints (randomly assigning the

query sequence to one of the two parental lineages, and introducing

mutations at rate m=10) and run an iteration of the GA with B{1
points using the I mosaics as a starting population. If the follow-up

GA with B{1 breakpoints matches or improves upon the score

with B breakpoints, then the next phase of the GA is run on B
breakpoints, otherwise, the next phase operates on Bz1 break-

points. To further enhance algorithm robustness, we evolve three

independent populations (from completely random starting mosaics)

to convergence, compose the mixed population by taking the top-

scoring third of each population and evolve the combined

population until convergence.

While it is possible to use the GA to also search for B directly

(e.g. by duplicating or removing fragments), we found that the

incremental search for B with the step-down verification stage has

better convergence properties and runs considerably faster.

Algorithm parameter values selected for the analyses in this

paper are as follows: I~56z8B, t~45z5B, d~0:45t, m~0:20,

l~0:0025, r~0:05, w~100. parameter values were selected

based on our previous experience with GARD [29], and further

adjusted based on how well the algorithm performed on simulated

data and run time.

Result processing
After a GA run, BIC scores and mosaics from a large (typically

2000{30000) number (M) of fitted mosaics is available for

processing. Instead of basing inference on the single best fitting

mosaic, we adopt a multi-model inference procedure, whereby the

contribution of each fitted mosaic is weighted based on its

goodness-of-fit. Given the BIC score (fitness) of the best mosaic

from the run, w0, for every mosaic Mi, we compute its Akaike

weight, wi defined in terms of its BIC score wi as

wi~
exp w0{wið Þ=2½ �

C
:

The constant C is chosen so that
P

i wi~1. wi can be interpreted

as the probability that the i-th mosaic provides the best fit to the

data [42].

We report the following quantities for each GA mosaic screen

1. The structure of the best fitting mosaic, represented as the

location of inferred breakpoints and lineage assignments, e.g.

A200B400A.

2. The model averaged support for the mosaic structure of the

best model. This is defined as the sum of Akaike weights of all

those models which agree with the best fitting model in

everything except the coordinates of the breakpoints. E.g.

A190B405A is consistent with A200B400A, but A200C400A is not.

High values (e.g. w0:9) of the model averaged support indicate

that there are no other discordant mosaic structures that

explain the evolutionary history of the query sequence.

3. Model-averaged support for the locations of the breakpoints,

that is computed by tabulating the model-averaged probability

of observing a breakpoint at a given site over all sites in the

alignment, based on the normalized Akaike weights of the

models whose mosaics are consistent with the best fitting

model. For instance the model A188B398A will contribute its

Akaike weight to sites 188 and 398. To determine 95%
confidence intervals for each breakpoint from the best fitting

model, we build symmetric intervals around each breakpoint

that contain at least 0:95 the support. Note that confidence

intervals are not uniquely defined in this setting (for example,

we could extend the interval in the direction where the site

immediately outside the current interval has greater model

averaged support of a breakpoint), and we adopt symmetric

intervals for simplicity.

Automated sequence alignment
The genetic algorithm requires the alignment of reference

sequences with the query sequence as input that can be generated

by any of the multiple sequence alignment programs. However

because the reference alignment does not depend on the query

sequence, it does not need to be re-aligned every time a new

sequence is queried against it and the following simple heuristic

can be employed. We preprocess the reference alignment by fitting

an evolutionary model (nucleotide or codon for coding alignments)

using the reference tree and inferring the root sequence for the

reference tree using the joint maximum likelihood of [43]. Gaps in

the alignment are treated as missing data from the purposes of root

sequence reconstruction. In particular, the root sequence will not
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contain any gaps when reconstructed under standard nucleotide

evolutionary models, because no sites in the reference alignment

consist solely of gaps. This inferred root sequence can then be

directly aligned with the query sequence using the Needleman-

Wunsch dynamic programming algorithm [44], with affine gap

costs and zero prefix and suffix gap costs on nucleotide or

translated amino-acid data, and then up-converted into a multiple

sequence alignment with all reference sequences consistent with

the reference alignment. When aligning HIV or other viral

sequences, organism specific scoring matrices [45] can be used to

improve alignment quality. In addition to being very fast, this

alignment heuristic is unlikely to introduce difficult-to-quantify

biases common in progressive alignment approaches (e.g. [46]).

Reference alignment generation
We adopted a step-wise procedure of HIV-1 reference alignment

construction. Beginning with a seed alignment of three sequences (e.g.

one each from A, B and C for HIV-1), screened by GARD to ensure

that the seed sequences are not recombinant, we augment the seed

alignment from a collection of potential subtype reference sequences

downloaded from the LANL HIV database. If a database sequence is

labelled as pure subtype in LANL, is at least 6% distant (Tamura-Nei

93 [47] genetic distance) from every sequence in the seed alignment,

and is reported as being non-recombinant by SCUEAL, then it is

added to the reference alignment. The process repeats until the

collection of potential reference sequences has been exhausted.

Reference sequences for circulating recombinant forms (CRFs)

are processed in a similar way, except that if the CRF sequence

has N breakpoints in the region for which the reference alignment

is being built (e.g. the pol gene), then it is represented by up to

Nz1 sequences in the final alignment. For instance, a 1000 bp

sequence with the mosaic structure A200B700A, will be represented

by a sequence that clusters with the A clade and contains bases

from 1–199 and 700–1000 and gaps between positions 200 and

699, and a complementary sequence (bases between 200 and 699,

gaps elsewhere) that clusters with clade B. This is necessary to

correctly place a recombinant sequence on the single reference

tree. The GA disallows mosaic structures in which a query

sequence would cluster with artificially introduced gaps in CRF

component sequences. SCUEAL will correctly interpret clustering

with the constituent sequences as clustering with the single CRF

for the purposes of subsequent inference.

The resulting full length HIV-1 reference polymerase alignment

comprised 167 sequences encompassing the ‘‘pure’’ subtypes

(including AE, N and O clades), SIVcpz and a reference strain

from each of the CRFs (except CRF26,CRF38 and CRF41–43)

for which no full length pol reference sequences were present

in the database) listed in the Los Alamos HIV CRF compendi-

um (http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.

html accessed December 17th, 2008). We note that this procedure is

not guaranteed to avoid mislabeling recombinant sequences as pure

subtypes. Indeed if the recombinant strain is added to the reference

before the parental strains, the latter will be incorrectly described as

recombinants. For example, the original classification of subtype G

sequences as a ‘‘pure’’ subtype is likely an artifact of the order in

which A,G and CRF02 sequences were added to public databases

[8]. Nonetheless, our procedure is undoubtedly an improvement

over simply taking a collection of database sequences as a reference

and assuming that they can be adequately described by a single tree;

this practice should be avoided.

Simulated data
Each of the simulation scenarios summarized in Table 1

comprised 100 parametrically generated alignments, using the

general time reversible model of nucleotide substitution [31],

equilibrium base frequencies of pA~0:4, pC~0:2, pG~0:1 and

pT~0:3, substitution rate parameters of hAC~2:0, hAG~4:0,
hAT~0:8, hGC~0:9, hCT~5:0, hGT~1:0, and site-to-site rate

heterogeneity modeled a G+I distribution with 20% of invariant

sites and the shape parameter of a~0:8; all these parameters were

selected to resemble values found in biological alignments of

HIV-1. Recombination was introduced by generating alignments

of fixed lengths along different tree topologies and then

concatenating them; the spacing between breakpoints, tree

topologies used and recombinant lineages are shown in the

middle pane of each each figure; simulated data are available at

http://www.hyphy.org/pubs/SCUEAL/. The trees were con-

strained to conform to the assumptions of the model–only one

sequence (the query) was permitted to migrate from lineage to

lineage. The correct tree and reference sequences were used for

screening. The evolutionary scenarios used for simulation were

designed to cover a range of recombination patterns with respect

to the distribution of breakpoints, the level of sequence divergence

and how far in the tree the recombinant sequence moved (close,

medium or divergent). A subset of scenarios dealt with ‘ancient’

recombination events, i.e. lineage assignments to internal tree

branches (for HIV-1 this would be equivalent to the recombina-

tion event predating the proliferation of the subtype). Several

examples were specifically selected to mimic different divergence

levels of HIV-1. An example of one recombination scenario is

given in Figure 4 and the number and location of breakpoints can

be found in Table 1. The collection of analogous figures for every

simulation scenario can be found in Protocol S1.

Because mosaic analyses are frequently used in HIV-1

research, we also generated 10000 sequences by concatenating

fragments from 863 sequences of partial HIV-1 polymerase

genes, spanning all of protease up to 1320 nucleotides of reverse

transcriptase obtained from the Los Alamos HIV sequence

database (http://hiv.lanl.gov). Each sequence was pre-screened

using SCUEAL to ensure that only pure subtypes formed the

base of this simulation. The number of fragments for each simu-

lated sequence was drawn from a +1-shifted Poisson distribution

with the mean of 1:5 breakpoints/alignment; this guaranteed at

least one breakpoint per alignment. The length of each fragment

as a proportion of the total alignment length of 1617bp was

determined using the stick-breaking process with beta distribution

parameters p~q~3. A 0,1½ � value was drawn from the beta

distribution and the longest remaining fragment was split in that

proportion to introduce each consecutive breakpoint into a

sequence; if the shorter of the two resulting fragments was not at

least 100bp long, the proportion was rejected and the process was

repeated with a new beta-distributed proportion. Simulated

sequences were screened against an alignment of 167 pure

subtype reference sequences culled from our pol reference set (no

CRFs were included in the reference). Note that because

reference sequences were not identical to those used to generate

the mosaics, this scenario simulated both recombination and

mutational divergence found in HIV-1.

A Surveillance Study
A bread-and-butter application of HIV subtyping algorithms is

to characterize the subtype distribution in a cohort of patients or a

geographic region and make inferences about the history and

dynamics of HIV infection. We selected one of such recently

published studies [48] that subtyped 81 partial pol sequences from

Bulgaria using REGA and found a diverse composition of

subtypes, including three unassigned sequences.
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Table 1. SCUEAL performance on simulated data.

Scenario Seq., sites Type/Distance Inferred Mosaics Breakpoints

Type

Count

(ƒBIC0)
Simulated Location,
Parents

Inferred. #/Median Location
Std.Dev. (95% Range)

1. No recombination 8,2000 N/A Correct 100 (100) None

2. An evident breakpoint 8,2000 Close (42%) Correct 100 (88) 1000 bp 1:3 100/990,18.99 (931,1015)

Divergent (102%) Correct 100 (75) 1000 bp 1:7 100/1000, 5.04 (987,1007)

Ancient (69%) Correct 92 (86) 1000 bp 1/2:5/6 96/992,16.62 (947,1017)

Superset 7 (6)

M/M 1 (1)

3. Two evident breakpoints 8,2000 Close (42%) Correct 98 (96) 750 bp 1:3 99/749,10.23 (720,769)

42% Superset 1 (1) 1250 bp 7:1 99/1251,15.26 (1201,1273)

M/M 1 (1)

102%ð Þ Divergent Correct 95 (89) 750 bp 1:7 98/751, 5.61 (735,762)

102% Superset 5 (5) 1250 bp 7:1 100/1251, 5.92 (1237,1265)

Ancient (69%) Correct 91 (90) 750 bp 1/2:5/6 96/749,22.37 (697,824)

69% Superset 5 (4) 1250 bp 5/6:1/2 96/1250,20.09 (1192,1283)

M/M 4 (4)

4. Two close breakpoints 8, 2000 Close (42%) Correct 22 (21) 950 bp 1:3 22/948,15.35 (888,960)

42% Subset 77 (76) 1050 bp 3:1 22/1050, 7.77 (1031,1066)

M/M 1 (1)

Divergent (102%) Correct 73 (69) 950 bp 1:7 73/951, 6.40 (932,960)

102% Subset 11 (0) 1050 bp 7:1 73/1051, 5.79 (1038,1068)

M/M 16 (15)

5. Four breakpoints 8, 2000 Close (42%) Correct 96 (96) 400 bp 1:3 98/399,16.86 (342,428)

42% Superset 3 (2) 800 bp 3:1 97/803, 9.63 (784,837)

42% M/M 1 (1) 1200 bp 1:3 98/1200,11.34 (1161,1220)

42% 1600 bp 3:1 99/1602,12.24 (1570,1634)

Divergent (102%) Correct 96 (96) 400 bp 1:7 98/401, 5.08 (389,413)

102% Superset 2 (2) 800 bp 7:1 99/802, 5.00 (785,809)

102% M/M 2 (2) 1200 bp 1:7 99/1201, 5.73 (1188,1211)

102% 1600 bp 7:1 99/1602, 4.19 (1594,1613)

Ancient (69%) Correct 54 (54) 400 bp 1/2:5/6 65/402,14.88 (357,434)

69% Subset 22 (3) 800 bp 5/6:1/2 67/802,15.74 (745,826)

69% M/M 20 (19) 1200 bp 1/2:5/6 69/1201,19.67 (1169,1270)

69% Superset 4 (4) 1600 bp 5/6:1/2 69/1602,18.04 (1550,1627)

6. Nine breakpoints 8,2000 Close (42%) Correct 30 (30) 200 bp 1:3 68/201,11.72 (176,235)

42% Subset 13 (2) 400 bp 3:1 62/403, 8.18 (391,420))

42% Superset 9 (7) 600 bp 1:3 68/601,14.69 (561,634)

42% 48 (25) 800 bp 3:1 71/803,10.72 (783,838)

42% 1000 bp 1:3 71/1001,10.95 (974,1021)

42% 1200 bp 3:1 72/1203,13.14 (1177,1253)

42% 1400 bp 1:3 75/1401,11.45 (1364,1414)

42% 1600 bp 3:1 73/1602, 8.52 (1582,1626)

42% 1800 bp 1:3 77/1801,13.40 (1746,1816)

Divergent (102%) Correct 64 (64) 200 bp 1:7 96/202, 4.87 (188,212)

102% Superset 9(7) 400 bp 7:1 94/402, 7.98 (386,415)

102% M/M 27 (25) 600 bp 1:7 93/601, 5.95 (591,625)

102% 800 bp 7:1 93/802, 5.37 (790,815)

102% 1000 bp 1:7 92/1002, 5.35 (985,1015)

102% 1200 bp 7:1 93/1202, 6.17 (1191,1228)
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Scenario Seq., sites Type/Distance Inferred Mosaics Breakpoints

Type

Count

(ƒBIC0)
Simulated Location,
Parents

Inferred. #/Median Location
Std.Dev. (95% Range)

102% 1400 bp 1:7 93/1402, 4.52 (1391,1411)

102% 1600 bp 7:1 93/1602, 4.05 (1594,1612)

102% 1800 bp 1:7 89/1802, 3.80 (1794,1814)

7. Complex mosaic 8, 2000 42% Correct 88 (86) 400 bp 1:2 94/400,11.89 (375,440)

12% Subset 3 (1) 800 bp 3:4 89/793,28.29 (737,853)

108% Superset 5 (4) 1200 bp 4:7 98/1202, 4.02 (1192,1211)

48% M/M 4(4) 1600 bp 7:5 98/1601.5,11.08 (1586,1640)

8. HIV within-patient 13, 2000 Close (0.4%) Subset 96 (96) 750 bp 1:2

0.4% M/M 4 (4) 1250 bp 2:1

Divergent (2.3%) Correct 38 (36) 750 bp 1:9 38/741.5,34.62 (666,790)

2.3% Subset 4 (2) 1250 bp 9:1 39/1256,36.11 (1156,1326)

Superset 1 (1)

M/M 57 (55)

9. HIV within-patient 13, 2000 Close (0.4%) Subset 97 (97) 400 bp 1:2

0.4% M/M 3 (3) 800 bp 2:1

0.4% 1200 bp 1:2

0.4% 1650 bp 2:1

Divergent (2.9%) Correct 7 (7) 400 bp 1:9 16/391.5,32.00 (349,475)

2.9% Subset 2 (1) 800 bp 9:1 21/808,39.70 (730,868)

2.9% Superset 1 (0) 1200 bp 1:9 22/1202.5,42.90 (1118,1284)

2.9% M/M 90 (70) 1600 bp 9:1 20/1610.5,32.87 (1551,1676)

10. HIV within-subtype 5, 2000 4% Correct 16 (16) 400 bp 1:2 30/402,31.53 (317,460)

4% Subset 80 (77) 800 bp 2:1 21/802,35.56 (716,885)

4% M/M 4 (4) 1200 bp 1:2 20/1209,30.18 (1151,1266)

4% 1600 bp 2:1 35/1589,38.80 (1506,1689)

11. HIV mosaic 12, 10000 Close (12%) Correct 95 (95) 2000 bp 1:2 94/2002.5,30.11 (1925,2092)

12% Subset 1 (0) 4000 bp 2:1 93/4000,29.62 (3928,4085)

12% Superset 2(2) 6000 bp 1:2 94/6002.5,26.99 (5941,6067)

12% M/M 2(2) 8000 bp 2:1 92/7996,33.39 (7929,8078)

Intermediate (12%) Correct 100 (100) 2000 bp 1:6 100/2000,17.40 (1959,2042)

12% 4000 bp 6:1 99/4003,21.62 (3964,4053)

12% 6000 bp 1:6 100/6001,18.61 (5952,6040))

12% 8000 bp 6:1 99/8004,16.88 (7968,8046)

Divergent (11.5%) Correct 99 (97) 2000 bp 1:9 99/2002,20.92 (1956,2043)

11.5% Superset 1 (1) 4000 bp 9:1 100/4002.5,19.85 (3945,4056)

11.5% 6000 bp 1:9 98/6000,21.89 (5937,6042)

11.5% 8000 bp 9:1 99/7999,22.49 (7953,8070)

Complex 12% Correct 94 (93) 2000 bp 1:2 96/2003,27.61 (1940,2070)

14% Superset 5 (4) 4000 bp 2:6 99/4000,18.14 (3969,4053)

12% M/M 1 (1) 6000 bp 6:1 100/6003,20.35 (5959,6068)

11.5% 8000 bp 1:9 97/8000,21.34 (7947,8062)

Scenario provides a brief description a given simulation scenario. Seq., sites lists the number and length of simulated sequences. Type/distance classifies
the simulation scenario by type and mean divergence between parental strains, measured as the total branch length (expected number of substitutions/site 100%)
between the strains. Inferred Mosaics tabulates the number of cases (and the number of those that matched or bested the BIC score of the correct model) that fell
into each of the classification categories (see main text for further detail). Correct: the simulated mosaic was recovered; superset: the simulated mosaic and superfluous
breakpoints were inferred; subset: a partial correct mosaic was recapitulated (some breakpoints missing); and M/M - the inferred mosaic was a mismatch with the
generating one. Breakpoints enumerates the location of each simulated breakpoint and its parental lineages, the number of times the breakpoint was recovered by
SCUEAL, and the median (2.5%–97.5% range) of the distribution of distances between the simulated and inferred breakpoints.
doi:10.1371/journal.pcbi.1000581.t001

Table 1. Cont.
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Database sequences
We downloaded all 24734 available reverse transcriptase

sequences from the Stanford HIV drug resistance database, an

ad hoc global sequence collection, that were (http://hivdb.

stanford.edu/) annotated with one of the nine pure subtypes (or

sub-subtypes e.g. A1), CRF01 (AE), CRF02 (AG) and applied

SCUEAL to estimate what proportion of sequences may be

unclassified inter-subtype recombinants, and the frequency of

within-subtype recombination. The algorithm that currently

performs database sequences annotation uses a neighbor joining

phylogeny of the query sequence aligned to 100 reference

sequences (spanning all group M subtypes and CRF01-CRF19)

to assign the query sequence the subtype of the enclosing or

nearest clade (R. Shafer, personal communication; also see [49]).

A total of 34451 partial polymerase sequences from HIV

infected individuals in the UK were available through the UK

HIV Drug Resistance Database (www.hivrdb.org). This database

is a central repository for HIV sequence data obtained in the

course of routine clinical care and was established as a colla-

boration of 14 clinical centers and virology laboratories and 3

academic departments. The database acts as a resource for

clinical, virological and epidemiological studies for the collaborat-

ing centres. The sequences released for analysis with SCUEAL

had been fully anonymized and delinked and previously processed

using REGA and Stanford [49] subtyping algorithms (Hughes GJ,

Fearnhill E, Dunn D, et al. Molecular phylodynamics of the

heterosexual HIV epidemic in the United Kingdom. PLoS Pathog.

in process). We sought to compare the performance of SCUEAL

to the other tools on a real-world task of automatic subtype

classification of this complex sequence dataset assembled for

population surveillance of a national HIV epidemic of significant

subtype complexity.

Implementation
The algorithms presented in this paper have been implemented

as a collection of HyPhy [50] batch language scripts and can

be dowloaded from http://www.hyphy.org/pubs/SCUEAL/. A

README file explaining code usage and providing examples is

included with the download. Simulated, biological and reference

alignments and SCUEAL results can be downloaded from the

same URL. An easy to use implementation of SCUEAL to screen

up to 500 (this limit will be increased over time) sequences using a

computer cluster maintained by the authors is available as a part of

the Datamonkey http://www.datamonkey.org/ web server. Run

times of SCUEAL on HIV-1 pol sequences depend on the

complexity of the inferred mosaic type and take anywhere from

1–2 minutes for a pure subtype to up to an hour for a complex

mosaic subtype on a desktop computer. Multiple query sequences

can be screened in parallel if an MPI distributed environment is

available. The screen of 34452 partial pol sequences from the

UK drug resistance database took approximately 18 hours using

200 processors of an MPI cluster, translating to an average of

6 CPU/minutes per sequence.

Results

Simulation results
Parametric simulations. Parametric simulations tend to

generate copious amounts of raw data (e.g. see Protocol S1) that

are difficult to interpret directly, hence we generated a compact

representation of simulation scenarios and results in Table 1 using

a several descriptive metrics.

First and foremost one is interested how often is the correct

mosaic (the order and identity of lineage assignments, e.g. 1-3-1-3-

1 for the scenario in Figure 4) is recovered; this metric does not

evaluate the accuracy of breakpoint placement. When an incorrect

mosaic is reported, three types of classification errors are possible.

N A subset of the correct mosaic is recovered, i.e. some of the

breakpoints are missed. For instance 1-3-1 would be a subset of

the 1-3-1-3-1 mosaic. The method behaves conservatively in

this case.

N A superset of the correct mosaic is recovered, i.e. in addition

to all of the correct breakpoints spurious ones are inferred. For

instance 1-3-1-3-1-1 would be a superset of the 1-3-1-3-1

mosaic. The method is overly liberal in this case.

N When the recovered mosaic is neither the subset nor the

superset of the correct one, a mismatch has occurred. For

example, 1-4-1-3-1 would be mismatched with 1-3-1-3-1. The

method is inconsistent in this situation.

Figure 4. A simulation scenario example. One of the simulation
scenarios used to asses our detection method with the results over 100
replicates (scenario 5/close in Table 2). The query sequence (2) was
simulated to move from reference lineage 1 to reference lineage 3
every 400 bp as shown in the tree panel. The clustering chart depicts
model and replicate averaged support for assigning the query
sequence to a particular reference lineage, as estimated by the genetic
algorithm over 100 simulated data replicates, whereas black impulse
plots indicate the inferred placements of breakpoints. The y-axis does
not reach 100% because each replicate contributes the model averaged
support for the best inferred mosaic type–a value that is v1; the upper
limit on the y-axis is, therefore, the mean (over replicates) model-
averaged support for the best-fitting mosaic (0.92 in this case).
doi:10.1371/journal.pcbi.1000581.g004
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When a classification error occurs, it can either be because the

GA failed to find the optimal solution, or because there is

insufficient signal (due to small fragment length, low divergence

etc) to infer the correct mosaic using the BIC criterion. The error

due to the GA is an undesirable outcome, and we categorize each

of the misclassified replicates into those which had worse fitness

than the correct model (GA error) and those which had better

fitness that the correct models (insufficient signal).

Second, we tabulated how often each of the correct breakpoints

was recovered, and collected descriptive statistics about where the

inferred locations were placed. A breakpoint was inferred

‘recovered’ if SCUEAL inferred at least one breakpoint, and the

nearest inferred breakpoint to the simulated position involved

correct parental lineages. For instance, a simulated A to B

breakpoint at nucleotide 1000 would be counted as recovered in

the inferred mosaic A900B1200C1400A, but not in A800B1100C1500A.

The method has a very low rate of false positives correctly

classifying 100/100 cases in Scenario 1 (no recombination).

SCUEAL shows excellent operating characteristics when sequence

divergence between parental strains and/or non-recombinant

fragment length is sufficiently high; these two parameters

approximate information content in the sequence. In scenarios

2,3,5 (except ancient recombination), 7 and notably, 11 (designed

to simulate a typical HIV-1 CRF situation), SCUEAL assigned

88% or more of replicates to the correct mosaic type; each of the

breakpoints was also mapped very accurately with the standard

deviation on the order of 10 bp. A very short non-recombinant

fragment in scenario 4 (100 bp) made it difficult to detect

recombination reliably; increasing the distance between parental

strains dramatically increased the power, however from 22% for

close parents to 73% for distant parents.

Ancestral recombination involving interior branches in the tree

(e.g. see Protocol S1) also complicated mosaic classification

because of weaker phylogenetic signal. In all three scenarios with

the ancient option (2,3 and 5), the proportion of correctly

identified mosaics was lower than for extant parental lineage

situation, but in most missed (42=63) cases the assigned mosaic had

a better BIC score - suggesting lack of phylogenetic signal as the

main source of error. Overall, the ability of SCUEAL to accurately

describe over 50% of mosaics due to ancient recombination is

encouraging as many HIV-1 CRFs appear to be the result of

ancient recombination, i.e. they fail to unambiguously cluster with

any of the reference ‘‘pure’’ subtypes.

The complex pattern in scenario 6, where 10 non-recombinant

fragments of length 200 bp each, made concurrent detection of all 9

breakpoints difficult (30% for close parents and 64% for divergent

strains). However, this was mostly due to one or two missed

breakpoints–the average accuracy of mapping each individual

breakpoint was high (&70%=close, &90%=divergent), with no

single breakpoint (e.g. in the middle of the alignment vs close to one

of the ends) missed at an abnormally high frequency. Scenario

6/close, is the only scenario (many short fragments with relatively

close parental strains) where the majority 36=70 of classification

errors were due to premature GA termination; this could be

improved by adjusting GA parameters at the expense of longer run

times.

SCUEAL could not detect recombination in sequences with

very low (0:4%) parental strain divergence (scenarios 8/close and

9/close), and had low (&20%) power in breakpoint detection for

2{4% divergent strains in scenarios 8/divergent, 9/divergent and

10, overwhelmingly due to lack of phylogenetic signal and not to

premature GA convergence.

Each individual detected breakpoint was on average very close

(standard deviations in the range of 5–20 bp) to a true breakpoint,

confirming that SCUEAL produces a high-resolution breakpoint

map.

HIV pol simulations. Using the classification defined in the

previous section, SCUEAL performance on 10000 simulated data

sets can be summarized thus: 46:57% correct sequence mosaics (i.e.

each breakpoint and correct lineage) were recovered, 27:99%
recovered mosaics were supersets (extra breakpoints) of the correct

type, 22:22% - subsets (missed breakpoints) of the correct type, and

3:19% - mismatched. Overall, 86:24% of the replicates were

correctly identified as recombinant strains. Of 15042 simulated

breakpoints, 11912 79:2%ð Þ were recovered correctly, with a median

distance between the simulated and the inferred breakpoint of 9 bp
(0{242 bp for the 2:5%{97:5% range). Median level of model

averaged support for the inferred mosaic was estimated at 0:92.

However, these numbers alone do not present the complete

picture of how the method performed - the power to detect

recombination is significantly dependant upon the length of

recombinant strains (e.g. a 500 bp fragment is easier to detect than

a 100 bp one on average), and the relative level of divergence

between parental strains (e.g. inter-subtype recombination is easier

to detect than within-subtype). To capture these dependancies, we

binned all breakpoints in simulated strains by the length of the

shorter of the flanking fragments and the pairwise genetic distances

between parental strains over that fragment. For example the

breakpoint in a mosaic of type A–B with the 500 bp coming from

subtype A and 200 bp coming from subtype B, would contribute

to the bin with 200 bp length and the genetic distance between

strain A and strain B over the last 200 bp of the sequences. We

next plotted detection power, i.e. the proportion of times a correct-

type breakpoint (e.g. A–B for the previous example) was inferred

within 100 bp of the simulated breakpoint (see Fig. 5). The power

of the method to detect a breakpoint grows with the length of the

flanking recombinant fragments and the genetic distance of the

two parental strains. For example, 88:3% of all breakpoints

generated from sequences more than 5% divergent and involving

fragments of at least 200 bp on either side were correctly

identified. The fraction increased to 95:7% for 7% or greater

divergence and at least 400 bp-long fragments–values encountered

with commonly annotated inter-subtype recombinant mosaics

in HIV.

Surveillance study
The results of SCUEAL and REGA screening of 81 partial

polymerase sequences isolated from patients in Bulgaria [48] were

quite similar, yet revealingly different in some cases. The methods

concurred on 58=81 71:6%ð Þ sequences, reporting 18 subtype A

sequences, 1–subtype B, 3–CRF01 (AE), 2 each of C and G, and

one of subtype G and H. Figure 6 depicts a query sequence on

which the methods agreed well. Both the neighbor joining tree and

the bootscan plot based on the automatic alignment produced by

REGA indicate strong clustering with the B clade and lack of

evidence for recombination, yielding an assignment confidence of

99%. Concordantly, SCUEAL reports a 99:99% model averaged

support for clustering with a clade B sequence, although there

is a bit of uncertainty which exact lineage the query should be

grafted on.

There are several kinds of disagreement between REGA and

SCUEAL classification results.

Unassigned sequences. REGA did not assign a subtype to

six sequences in the sample. This happens either when there is

insufficient phylogenetic bootstrap support for clustering with a

pure subtype or CRF reference, or when bootscan detects a

recombinant form that is not well explained by an existing CRF.

Because SCUEAL uses a much larger reference alignment than
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REGA (e.g. there are 59 sequences in the greater B clade, including

a number of CRF fragments that cover parts of the pol gene, vs 2 in

the default REGA) alignment, it was able to assign 4 of the 6
sequences to subtype B with high (w80%) confidence. Interestingly,

these sequences were grafted onto interior branches of the B

clade, highlighting the intrinsic power of SCUEAL of being able

to make full use of the fixed reference topology. The remaining

two sequences were classified as novel recombinant forms, in

congruence with the bootscan profile. For example, in Figure 7, a

novel A–J recombinant is reported by both methods, but REGA’s

conservative assignment scheme would still report this case as

unassigned. SCUEAL proposes several A–J type recombinant

forms, with A-A1-J-A2 being the best supported one; overall there

is 100% model-averaged support for presence of recombination in

this sequence. Due to a much larger set of subtype A reference

sequences, our approach is capable of a more precise character-

ization of the mosaic, whose breakpoints are mapped very

accurately (to +1 base pair). The sliding window nature of

phylogenetic bootscanning (REGA uses a 400 bp window with a

50 bp stride by default) does not naturally permit precise breakpoint

mapping. Splitting the sequence along the A–J boundary and

building traditional neighbor joining trees using the REGA

reference alignment, confirms the structure predicted by SCUEAL.

Within-subtype recombination. Seven of the discordant

results occurred when a sequence classified as pure subtype by

REGA was identified as within-subtype recombinant by SCUEAL.

An example of this is shown in Figure 8, where the putative parental

strains are approximately 3:5% divergent on the tree.

Missed recombinants. The remaining 10 mismatches arose

when a pure subtype sequence (according to REGA) was instead

reported as an inter-subtype recombinants with very strong (w95%)

model-averaged support for recombination. The obvious expla-

nation for why REGA may be missing these recombinants is that

the size of the sliding window used for bootscanning (400 bp) limits

how short individual mosaic fragments can be. This limitation

becomes relevant for single gene recombination analysis, when the

total length of the sequence is on the order of 500–1000 bp. The

A-B-A mosaic example in Figure 9 was classified as subtype A by

REGA. However, adjusting the sliding window parameters from to

use window size of 200 bp instead of 400 bp and stride 25 bp

instead of 50 bp revealed that subtype B sequences from the REGA

reference alignment were genetically closer to the query than

subtype A sequences over the segment predicted by SCUEAL to

cluster with subtype B. Furthermore, a maximum likelihood tree

(exhaustive search) on that segment supports the same clustering.

Stanford database sequences
SCUEAL analyses indicate that while a majority of sequences

annotated as pure subtype in the Stanford drug resistance data-

base are assigned to a correct subtype, a substantial propor-

tion (0{13:7% depending on subtype) are better explained as

circulating or unique recombinant forms (CRF/URF) and a

similar proportion appear to be within-subtype recombinants

(Table 2). Importantly, there are only a few cases when SCUEAL

infers a pure subtype sequence which is annotated with a different

pure subtype in the database. For instance, out of 16116 subtype B

sequences there were 5 subtype D sequences, two–subtype J and

two–subtype A, hence the vast majority of potentially misclassified

subtypes in the database are due to recently characterized CRFs

and URFs which are partially derived from the database subtype.

When SCUEAL infers recombination, model averaged support for

at least one breakpoint is very strong (median 99:99%, mean

93:39%, 53:58%{100% for the 2:5{97:5%½ � range), but the

inference of the exact mosaic type is less certain on average

(median 72:77%, mean 71:33%, 36:65%{98:73% for the

2:5{97:5%½ � range), which is not surprising given that many of

the sequences are quite short.

Agreement for subtypes H and K is unusually poor, however

there are only a few sequences assigned to this subtype, and a small

number of existing reference samples to base inference upon. In

particular, many sequences annotated as subtype K appear to

have been partly derived from CRF30 and CRF32 strains. Over

10% of sequences annotated as subtype F are classed as B,F (or

partial CRFs) recombinants by SCUEAL, but this can be expected

as there are at least seven known CRFs (17, 28, 29, 38–40, 42) that

are comprised of B and F mosaics with one or more breakpoints in

the pol gene. For CRF02-annotated samples, 43% 285ð Þ of the

sequences that were classified differently by SCUEAL as A,G

recombinants appear to support breakpoints that are different

from those included in the reference CRF02 strains. This could

indicate that a larger sample of CRF02-like reference strains may

be necessary to accurately capture the diversity of these viral

strains.

HIV evolution in the era of Highly Active Antiretroviral

Therapy (HAART), especially in the developed world, is

significantly influenced by selective forces that favor viral strains

with mutations that confer drug resistance in the presence of a

corresponding drug. This is especially true of subtype B viruses,

circulating in North America and Western Europe, where

HAART has been exerting well-characterized selective pressure

on the virus for over a decade [51], leading to increasing

prevalence of HIV strains that harbor drug resistant associated

mutations (DRAM, e.g. [52,53]). Convergent evolution to acquire

DRAM can have a confounding effect on phylogenetic subtyping

Figure 5. Power and accuracy in the sequence shuffling
simulation. Power of SCUEAL to detect breakpoints in the HIV-1 pol
sequence shuffling scenario as a function of recombinant fragment
length (x-axis) and divergence between parental strains (y-axis). Grid
cells are colored according to the proportion of correctly detected
breakpoints (different cells may summarize different numbers of
simulations). White squares are plotted when there were no simulated
breakpoints within a corresponding length-divergence range of values.
doi:10.1371/journal.pcbi.1000581.g005
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methods, by making regions rich in DRAM appear closely related

in evolutionarily distant strains and potentially leading to a false

signal of within- (or inter-) subtype recombination. To assess this

effect, we identified subtype B RT sequences (as annotated in the

database) that harbored at least one known DRAM [51]

(N~8599) and reran SCUEAL on these sequences after replacing

all DRAM with missing data (3 in-frame gaps for each DRAM

codon, e.g. any codon at position 215 in reverse transcriptase that

encodes an F or a Y ). Between 1 and 20 positions (median 5) per

sequence were masked by this procedure. DRAM masking

Figure 6. An example of a good agreement between SCUEAL and REGA in classifying a partial pol subtype B sequence. The SCUEAL
clustering plots present in this figure and Figures 7, 8 and 9 are conceptually analogous to bootscan plots, i.e. which reference sequence is the most
likely sister lineage of the query sequence for a given site, but is based on model averaged support values instead of phylogenetic bootstrap. A partial
reference tree with placed query is shown; color coding is consistent between the similarity plot and the tree. A phylogenetic tree with bootstrap
support values and bootscan plot using the REGA alignment generated for the query sequence are shown.
doi:10.1371/journal.pcbi.1000581.g006
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substantially reduced the number of sequences that were classified

as within-subtype recombinants, taking the number down from

1331 15:48%ð Þ to 517 6:01%ð Þ. For other subtypes, where the

frequency is of DRAMs is lower than in subtype B sequences, the

effect of masking DRAMs on the proportion of inferred intra-

subtype recombinants (and other recombinant forms) is much

more muted (Table 2). Consequently, convergent evolution to

acquire drug resistant mutations appears to be a significant factor

contributing to the within-subtype recombination signal, although

the reduction in phylogenetic signal due to fewer informative sites

in masked sequences is also a possible cause of this effect.

Large scale subtype classification in a surveillance and
epidemiological linkage study

The comparison between SCUEAL and REGA on this data set

(see Table 3), is similar to what was observed for the Stanford

dataset. For well sampled subtypes (A,B,C,D,F,G,AE) the agree-

ment between the methods was good to excellent (84:82{99:05%),

with a noticeable proportion (0:47{12:01%) of within-subtype

recombinants. Note that the proportion of within-subtype recom-

binants was not as significantly affected by masking out DRAMs as

discussed in the previous section; for example the proportion was

reduced from 12:01% to 9:95% for subtype B sequences, and

Figure 7. An instance when a sequence unclassified by REGA is inferred to be a novel recombinant form by SCUEAL; the A–J mosaic
structure is also confirmed by trees and bootscan plots based on the REGA reference alignment.
doi:10.1371/journal.pcbi.1000581.g007
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Figure 8. An example of within-subtype (B) recombination detected by SCUEAL, but not by REGA. A partial reference tree with
placed query is shown; color coding is consistent between the similarity plot and the tree.
doi:10.1371/journal.pcbi.1000581.g008
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actually increased for subtype C sequences. This could be because

the UK sequences are longer than (both protease and reverse

transcriptase) than the Stanford sample (reverse transcriptase only).

Also, because SCUEAL is a stochastic algorithm, some variation

(0:5{1% in our simulation experiments, results not shown) between

runs due to the indeterministic nature of the algorithm, especially

between ‘‘borderline’’ sequences (those sequences that have a weak

support for a the inferred mosaic), is to be expected. Small

Figure 9. An instance when a sequence assigned to subtype A by REGA is deduced to be an A-B-A mosaic by SCUEAL. Similarity plots
based on the reduced REGA alignments (only A and B subtype reference sequences) confirm that the same mosaic structure is supported using if a
small enough window is selected for a sliding window analysis.
doi:10.1371/journal.pcbi.1000581.g009
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proportions of inter-subtype recombinants called by SCUEAL were

not not identified by REGA. For CRF02 and CRF06, the agreement

was quite poor, however the discord is easy to explain. For CRF02

SCUEAL identified many A,G recombinants but with breakpoints

differing from those mapped for CRF02 (note that it is likely that G is

the recombinant strain, but we refer to CRF02 as the recombinant to

maintain compatibility with the current nomenclature); other CRF

strains that include CRF02 - like fragments in pol (CRF30, CRF36)

account for most of the other discrepancies. For sequences typed as

CRF06 by REGA, the majority of SCUEAL classification involve

CRFs derived from CRF06 (e.g. CRF30, CRF32).

Of 34452 sequences, a non-trivial proportion 1934 5:61%ð Þ were

not classified by REGA, with 87 of those also not classified by the

HIVdb subtyping algorithm. According to SCUEAL 1238 64%ð Þ
were URFs, and the remainder–pure subtypes of CRFs. Among

34452 sequences, SCUEAL identified 934 complex recombinant

forms (more than 3 constituent sub- or subsubtypes) and 10 URFs

with at least 50 sequences each, including:

1. 357 G,A and 136 G,CRF02 recombinants. Given the degree of

uncertainty about mapping the breakpoints in CRF02 (the

nomenclature here is confusing, because recent evidence

suggests that G was derived as a recombinant of A and

CRF02 sequences) reference sequences, these sequences can be

thought of as a A,G, CRF02 recombinants sequences. The

finding also indicates that the diversity of this clade is quite

Table 2. SCUEAL screening results on partial HIV-1 reverse transcriptase sequences from the Stanford Drug Resistance database.

Subtype Sequences Agree within-subtype Diff. pure subtype Diff. recombinant Top 3 CRFs and URFs

A 1740 84:83% 7:82% 5:57%ð Þ 0:00% 7:36% 7:59%ð Þ CRF33/34 (31); A1,D (14); AE, B (7)

B 16116 83:64% 13:71% 6:94%ð Þ 0:06% 2:59% 1:63%ð Þ CRF28/29 (273); CRF42 (54); CRF20/23/24 (30)

C 3133 95:13% 9:48% 7:53%ð Þ 0:00% 5:39% 5:01%ð Þ B,C,CRF31 (56); B,C (36); C/CRF07 (8)

D 624 91:03% 1:12% 1:12%ð Þ 0:64% 7:21% 7:21%ð Þ A1,D (16); B, CRF19 (4); B, D (3)

F 464 86:42% 0:43% 0:43%ð Þ 0:43% 12:72% 10:78%ð Þ B,F1 (27); CRF29, F1 (5); B, CRF40, F1 (4)

G 757 91:28% 1:85% 0:66%ð Þ 0:26% 6:61% 6:74%ð Þ B, CRF14 (4); B, G(3); G,J (3)

H 28 64:29% 0% 0%ð Þ 0% 35:71% 35:71%ð Þ G,H (2); A, H (1); A, B, K (1)

J 22 95:45% 0% 0%ð Þ 0% 4:55% 4:55%ð Þ C,J (1)

K 166 12:05% 7:83% 7:83%ð Þ 1:20% 78:92% 72:83%ð Þ CRF32, G (22); CRF30, CRF32 (7); C, CRF32 (5)

CRF01 (AE) 1552 96:78% 0:32% 0:52%ð Þ 1:16% 1:74% 1:48%ð Þ CRF22 (5), AE,B (4); B, CRF33 (4)

CRF02 (AG) 1352 49:78% 0:00% 0:00%ð Þ 1:26% 48:96% 46:75%ð Þ A,G (285), A,CRF36,G (41), A,CRF02,G (34)

Subtype lists the sequence subtype as annotated in the database. Sequences provides the number of sequences downloaded from the database. Agree gives the
percentage of sequences for which SCUEAL returned the same subtype as that stored in the database. within-subtype–SCUEAL inferred within-subtype
recombination within the same subtype as the one stored in the database; figures in parentheses show the proportion of within-subtype recombinants identified when
DRAM positions were masked. Diff. pure subtype–the proportion of cases where SCUEAL inferred a pure subtype different from the annotated one. Diff.
recombinant–the proportion of cases where SCUEAL inferred a recombinant mosaic with at least one fragment different from the annotated subtype; figures in
parentheses show the proportion of within-subtype recombinants identified when DRAM positions were masked. Top 3 CRFs and URFs–three most frequent mosaics
inferred by SCUEAL.
doi:10.1371/journal.pcbi.1000581.t002

Table 3. SCUEAL screening results on partial HIV-1 polymerase sequences from the UK.

Subtype Sequences Agree within-subtype Diff. pure subtype Diff. recombinant Top 3 CRFs and URFs

A 2119 84:62% 9:86% 10:2%ð Þ 1:23% 4:29% 4:38%ð Þ CRF22 (24); A1, D (12); A1, C (4)

B 19871 85:96% 12:01% 9:95%ð Þ 0:02% 2:01% 1:86%ð Þ B, D (120); B, CRF03 (40); B, F1 (38)

C 7381 87:51% 10:99% 12:77%ð Þ 0:08% 1:42% 1:40%ð Þ B, C (11); C, D (11); C, J (10)

D 614 96:25% 1:63% 1:80%ð Þ 0:00% 2:12% 1:47%ð Þ B, D (3); D, K (2); A, D (2)

F 110 93:64% 2:73% 6:36%ð Þ 0:00% 3:64% 5:45%ð Þ B,F (2); F, G (1); F, H (1)

G 673 85:44% 2:67% 2:99%ð Þ 0:00% 11:89% 6:13%ð Þ F1, G (25); CRF30, G (10); A, G (10)

H 35 100:00% 0:00% 0:00%ð Þ 0:00% 0:00% 0:00%ð Þ
J 35 71:43% 0:00% 0:00%ð Þ 0:00% 28:57% 25:71%ð Þ B, J (3); CRF09, J (3); G, J (2)

CRF01 (AE) 419 99:05% 0:47% 0:71%ð Þ 0:00% 0:47% 0:95%ð Þ AE, B (2)

CRF02 (AG) 1014 26:82% 13:71% 12:19%ð Þ 0:00% 59:47% 61:25%ð Þ A, G (278); A, CRF30, G (72); A, CRF30, CRF36 (56)

CRF06 147 0:00% 0:00% 0:00%ð Þ 1:36% 98:64% 97:96%ð Þ CRF32, K (34); CRF32, G (23); CRF30, CRF32 (14)

Subtype lists the sequence subtype as annotated in the database. Sequences provides the number of sequences downloaded from the database. Agree gives the
percentage of sequences for which SCUEAL returned the same subtype as the one inferred by REGA. within-subtype–SCUEAL inferred within-subtype recombination
within the same subtype as the one inferred by REGA; figures in parentheses show the proportion of within-subtype recombinants identified when DRAM positions
were masked. Diff. pure subtype–the proportion of cases where SCUEAL inferred a pure subtype different from the REGA assignment. Diff. recombinant–the
proportion of cases where SCUEAL inferred a recombinant mosaic with at least one fragment different from the annotated subtype; figures in parentheses show the
proportion of within-subtype recombinants identified when DRAM positions were masked. Top 3 CRFs and URFs–three most frequent mosaics inferred by SCUEAL.
doi:10.1371/journal.pcbi.1000581.t003
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significant, and reference data sets may need to be enriched for

A, G and CRF02 sequences to enable more accurate subtype

assignment. REGA assigned 406 82:76%ð Þ of these sequences to

subtype CRF02, 3 to subtype A(A1), 4 to G, one to subtype B
and did not classify 77 sequences.

2. 180 A1,D recombinants. 166 92:22%ð Þ of those were not

definitively classified by REGA, with the remainder assigned

to A1 (12), D (1) and CRF10_CD (1). There are several

precedents for this type of mosaic structure, including CRF16,

CRF19 and CRF35 which all have a mosaic AD structure

in pol.

3. 161 B,CRF39 recombinants. Because most of pol sequence in

CRF39, which is found circulating in Brazil, is mapped to

subtype B [54], this form can be reported as a B intra-subtype

recombinant. This finding also illustrates the capacity of

SCUEAL to map within-subtype diversity with high resolution.

Almost all (158 98:14%ð Þ) of those are identified as subtype B

sequences by REGA, which is correct if within-subtype

recombination is discounted.

4. 128 B,D recombinants, 120 93:75%ð Þ of which were classified

as subtype B by REGA. Because B and D subtypes are closely

related (compared to other between-subtypes comparisons),

this mosaic type is difficult to detect.

Discussion

We present a new phylogenetic method (SCUEAL) to

automatically determine a subtype and map the recombinant

structure in HIV-1 sequences. Our method uses a statistically

robust maximum likelihood multi-model inference approach to

examine tens of thousands of potential mosaic structures in a single

run guided by an evolutionary algorithm, identify those well

supported by the data and quantify the reliability of all estimated

quantities. SCUEAL is designed to handle the inclusion of

recombinant strains in reference alignments, operate on large

reference alignments with minimal loss of speed and permit easy

expansion of existing reference alignments as new subtypes or

circulating recombinant forms.

Using an extensive collection of simulated sequence alignments,

covering a wide range of evolutionary parameters and including

biological HIV-1 sequences, we determined that the method was

capable of accurate detection of the number and location of

recombination breakpoints as well as appropriate parental

lineages, given sufficient sequence divergence. For non-paramet-

rically generated HIV-1 pol mosaics, the recovery rate of

breakpoints was 88:3% for 5% or greater divergence between

parental strains and 200 bp or longer sequence fragments. On

average, individual breakpoints were inferred within 10 bp of the

simulated locations. SCUEAL had a v1% rate of false positives

on parametrically simulated data.

A comparison with a popular phylogeny based rapid subtyping

tool REGA [18] on an HIV-1 pol surveillance dataset [48]

illustrated that SCUEAL was able to automatically detect

recombinant sequences with short mosaic fragments, classify and

map unknown mosaic types and resolve cases that confounded

REGA. A large scale screen of 23050 database sequences revealed

that approximately 5% of pure subtype reverse transcriptase

sequences show evidence of within-subtype recombination and a

further 5% are likely novel or known circulating recombinant

forms, highlighting the need for more precise determination of

subtype information for public databases. Because up to 10% of

HIV-1 infections occur with Unique Recombination Forms

(URFs) when superinfection with divergent strains is relatively

common (e.g. [55,56]), the ability of SCUEAL to automatically

annotate such forms is of critical importance. Furthermore, many

evolutionary analyses, such as dating and selection screens, can be

biased by the inclusion of recombinant sequences without

necessary corrections [57,58]. Studies that seek to identify clinical

and evolutionary differences between different HIV subtypes (e.g.

[59,60]) also rely on the accurate classification of subtypes for all

input sequences. To our knowledge, none of the existing subtype

classifiers are designed to detect within-subtype recombination,

which is in all likelihood much more frequent than inter-subtype

recombination because sufficiently divergent strains of the same

subtype routinely co-circulate in host populations (e.g. [61]) and

within-host sequences often present phylogenetic evidence of

extensive recombination [62]. We note that convergent evolution

to acquire drug resistance associated mutations appears to have a

strong confounding effect on detecting within-subtype recombi-

nation and should be accounted for if the focus of the analysis is to

identify within-subtype recombination in regions of HIV that

include many such mutations.

SCUEAL provides an automatically determined mosaic struc-

ture for any input sequence, including the cases when existing

methods fail to derive such a structure. While this feature is a

qualitative advance over existing approaches, it may also invite

over-interpretation of computational results, and we emphasize

that this should be avoided. Consider for example, the strain

presented in Figure 7. SCUEAL results allow us to deduce that the

strain is an inter-subtype recombinant with a high degree of

confidence (&100%). The analysis also strongly implies that A and

J strains or their ancestors contributed segments of the pol gene to

the query sequencer, but also reports several credible mosaic forms

that could be assigned to the strain, counter-indicating a definitive

(e.g. A-A1-J-A2) mosaic determination. We would like to stress

that SCUEAL determination of a novel recombinant form should

not lead the users to automatically declare the sequence as such,

but rather as an invitation to perform further examination of the

data, perhaps with a specialized reference alignment, enriched for

the subtypes detected by SCUEAL. Continuing with the example,

the combination of A and J subtypes in one sequence is not

uncommon (e.g. CRF06, CRF11, CRF13, CRF27) and extensive

mosaicism in the pol gene has also been reported previously [63].

Moreover, the ‘‘J’’ clade in the SCUEAL reference alignment also

contains J-like segments from several CRFs that circulate more

widely that pure subtype J strains confined primarily to Central

and West Africa [4]. Whether or not the segment assigned to clade

J may instead belong to an unsampled clade of HIV-1 cannot

ultimately be determined with the currently available estimate of

HIV-1 diversity. Subtype classification is extensively used as a tool

in molecular epidemiology and in surveillance studies of HIV

because of their association with different populations. Multiple

subtypes were detected in the UK in 1995 [64] and by 2007, non-

B subtypes comprised the majority of new diagnoses in the UK

[65,66]. In addition, subtype classification is important for clinical

reasons in HIV because of biological differences that have been

observed with respect to rate of progression to disease [67], and

patterns of drug resistance mutations [68,69]. For that reason,

sequences in the UK HIV Drug Resistance Database are routinely

subtyped before analysis. The rapid increase in scale of the task

(the current database release contains over 50,000 sequences) and

the range of diversity of the subtypes and recombinants now

present in the UK epidemic highlights an urgent need for an

automated, informative, reliable and rapid method for classifica-

tion on the sequence data collected that will scale to hundreds of

thousands of sequences on commodity distributed computing

platforms.

Evolutionary Algorithm for HIV Subtype Prediction

PLoS Computational Biology | www.ploscompbiol.org 19 November 2009 | Volume 5 | Issue 11 | e1000581



Empirical datasets in this study were limited to the partial

polymerase gene of HIV, partly because this genetic region

routinely sequenced for surveillance and diagnostic purposes, has

few easily aligned indels–thus avoiding potential biases due to

unreliable automatic multiple sequence alignment (e.g. [46]), and

contains many of the breakpoints mapped for known CRFs.

However, SCUEAL can use any reference alignment, including

full length HIV-1, Hepatitis C virus, Influenza A virus genomes

and non-viral sequences, and we plan to implement this

functionality in future versions of SCUEAL.

Finally, we would be remiss to overlook some of the limitations

of our approach. SCUEAL is a fairly computationally demanding

method, and consequently is considerably slower that some other

screening tools. Parallel execution on a computer cluster can

mitigate this issue and permit one to process thousands of

sequences per hour. As any method that is based on a reference

alignment, SCUEAL is susceptible to biased inference if the

reference alignment is inaccurate or if reference sequences are

themselves misclassified. We took a number of precautions to

ensure that the reference alignment was accurate by focusing on

an easily alignable genomic region, a conservative automatic

alignment procedure for the query sequence and an incremental

algorithm for adding and accurately labeling reference sequences.

SCUEAL uses a nucleotide evolutionary model to fit phylogenetic

likelihood models for the sake of computational efficiency and this

could lead to difficult to quantify biases in mosaic structure

mapping; more realistic models (e.g. codon models) can be

‘‘plugged-in’’ without any alteration to the methodological

framework if desired.

Supporting Information

Protocol S1 Settings and results for each of the parametric

simulation scenarios

Found at: doi:10.1371/journal.pcbi.1000581.s001 (4.08 MB PDF)
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