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ABSTRACT: A biosynthesis composite using the green synthesis of titled metal
nanoparticles (nickel oxide nanoparticles, NiO NPs, and carbon dots, C-dots) was
produced, characterized, and then applied for antimicrobial activities. NiO NPs were
produced using the Croton macrostachyus (Bakkannisa) plant leaf extract and nickel
nitrate (III) hexahydrate [Ni(NO;),-2H,0] as precursors, while C-dots were produced
using citric acid and o-phenylenediamine (0-OPD). The distribution of the average
particle size of the NiO NPs and NiO NPs@C-dots was 25.34 + 0.12 and 24.95 + 0.22
nm, respectively. The antimicrobial effects of the prepared materials were tested against
the selected bacterial and fungal strains. Based on the outcomes of the bioassay, it was
realized that both the bare and composite materials were effective against all bacterial
strains. The composite’s high surface area with strong inhibitive effective antimicrobial
effects against bacterial and fungal strains were observed. Therefore, strong inhibitive 20 30 40 s
effects of 21—24 and 22—26 mm were observed with NiO NPs and NiO NPs@C-dots, reveenanom
respectively.
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1. INTRODUCTION

Due to the size of the synthesized nanoparticle between 1 and
100 nm, at least in one dimension, nanotechnology is a rapidly
developing field of science. It is an emerging technology in
many areas of study, including drug treatments, cosmetics,
agriculture, optics, cancer, catalysis, memory storage devices,
and sensors.' Nanotechnology is an important study area in
the medicine field. In medicine fields, nanoparticles can be
used for cancer treatments, drug delivery, and magnetic
resonance imaging.”> Metal oxide nanoparticles have currently
attracted many researchers. Especially, in the application of
antimicrobial and antimalarial activities, other medicines, and
cancer treatments, nanosized materials have special properties
such as optical, magnetic, catalytic, and electrical properties as
compared with bulk size materials. If the size of the
compounds decreased to that of nanoparticle, it increases the
surface area-to-volume ratio of the materials that can alter the
physicochemical properties of nanoparticles.””

Metal oxide is one of the important transition-metal oxide
nanomaterial that attracted many researchers due to its
numerous applications.” " NiO NPs are applicable in various
areas of research including antibacterial activities, battery
electrodes, photograph-electron devices, ion storage substan-
ces, gasoline sensors, magnetic substances, thermoelectric
materials, gasoline cells, dye-sensitized photocathodes, electro-
chromic films, and cytotoxic pastime.'"'” Various synthetic
methods were used for the preparation of metal oxide
nanoparticles including coprecipitation, sol—gel reaction,
microemulsion, hydrothermal reaction, electrospray synthesis,

© 2023 The Authors. Published by
American Chemical Society

7 ACS Publications

and laser ablation. However, these methods can take part
in environmental pollution because of some chemicals they
may release.'® Nanoparticles synthesized by chemical and
physical methods can produce nonbiodegradable materials and
toxic chemicals that contribute to environmental toxicity.'” To
solve these problems, researchers have developed green and
ecofriendly synthetic approaches.””™** Value-effective, renew-
able, and green organic assets may be used to prepare metal
oxide nanoparticle. Synthesis of nanoparticles using plant
extracts is common in the green synthesis method. These plant
extracts are rich in phytochemical compounds which are
effective stabilizing, capping, and reducing agents and could
control the NP size and form biogenic nanoparticles.”* >

In this work, Croton macrostachyus leaf extract was used for
the preparation of the titled metal oxide nanoparticle. Croton
macrostachyus is called rush foil in English, Bakkaniisa in Afan
Oromo, and Bisana in Ambharic. Literature reported that the
genus croton is rich in terpenoids, alkaloids, flavonoids,
lignoids, proanthocyanidins, saponins, cardiac glycosides, and
tannin compounds.26_30 The fruits, leaves, and roots of Croton
macrostachyus are used as medicine in various human and
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Figure 1. TEM photos of (a) NiO NPs, (b) NiO NPs@C-dots, and (c) C-dots. (d) NiO NPs@C-dots photo from the FE-SEM (e) spectra from
EDS and (f) NiO NP and NiO NPs@C-dot absorption spectra in the UV—visible range.

animal diseases. Traditionally, this plant is used for the remedy
of diverse sickness such as malaria, gonorrhea, rabies, diarrhea,
abdominal pain, typhoid, pneumonia, and gastrointestinal
disorders.” ™

The chemical materials of carbon compounds having the
size smaller than 10 nm are known as carbon dots (C-
dots).* "% These materials have special properties including
chemiluminescence, photoluminescence, photoinduced elec-
tron transfer, and electrochemical luminescence.>**” C-dots
find potential applications in bioimaging,”**’ biosensing,***!
chemical sensing,42 and biomedicine.”> C-dots are the
nanomaterials considered as potential candidates in the
application of bioimaging, both in vitro and in vivo, and for
diagnosis purposes, due to their unique fluorescent nature and
having excellent biocompatibility, less cytotoxicity, and better
solubility in water."*~** In this work, C-dots were synthesized
from citric acid (CA) and o-phenylenediamine (0-OPD). The
synthesized C-dots and presynthesized nickel oxide nano-
particles were used as precursors for the synthesis of nickel
oxide composites of C-dot nanomaterials. The addition of C-
dots on this metal oxide nanoparticle increased the
antimicrobial activities.

2. EXPERIMENTAL SECTION

2.1. Reagents. Fresh and healthy leaves of Croton
macrostachyus were collected from Jimma University. Nickel
nitrate(IIT) hexahydrate [Ni(NO,),-2H,0, 98.7%], o-phenyl-
enediamine (0-OPD,99%), citric acid (CA, 99.5%), and
ethanol (99.5%) were purchased from the market.

2.2. Synthesis of Materials. The Croton macrostachyus
leaf extract was prepared by using the earlier reported method.
To cast off undesirable ions or impurities, freshly collected
plant leaves were cleaned with double distilled water and cut
into fine pieces to dry easily in the open air. Using a pestle and
mortar, the dried leaves were milled into fine pieces. To collect
the extract compounds, 10 g of finely chopped plant leaves was
weighed and dissolved in 100 mL of double distilled water.
Then, the resultant solution was boiled by using a magnetic
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stirrer at 60 °C for 50 min. Finally, the obtained extract was
cooled, filtered using a filter paper, and used for further
experiments.

To synthesize nickel oxide nanoparticles, 5 g of nickel nitrate
hexahydrate metal salt [Ni(NO,),-6H,0] was dissolved in 40
mL of double distilled water and heated using a magnetic
stirrer for 10 min. Then, in the resultant solution, 30 mL of
selected leaf extract was added and constantly stirred for 4 h
under ambient conditions. Following this procedure, to collect
the pure compounds, the hot stirred mixture was cooled and
centrifuged at 4000 rpm with ethanol, and using a furnace, it
was calcined for 4 h at 450° °C. Finally, for the synthesis of the
nanocomposite and characterizations, the synthesized nano-
particles were carefully placed in the sample holder. In this
work, C-dots were prepared from o-phenylenediamine (o-
OPD) and citric acid, according to the reported method and
procedure.”” The nanocomposites of the titled compounds
were also synthesized according to the existing method and
procedure.>”

2.3. Antimicrobial Test. 2.3.1. Antibacterial Activities.
To evaluate the antibacterial activity, the method named as
agar well diffusion was used against selected bacterial strains,
namely, Escherichia coli and Pseudomonas aeruginosa (Gram-
negative) and Bacillus subtilis and Staphylococcus aureus (Gram-
positive). The method named as the McFarland standard was
used to culture the bacterial strains. Following this method,
bacterial cultures were activated in nutrient media and placed
in an incubator at 37 °C for 24 h. Then, the bacterial strains
were distributed on media plates using appropriate materials.
The discs, 6 mm in diameter, were sterilized and placed into
the solution of synthesized nanoparticles, nanocomposites,
plant extracts, and controls. Further, the discs that contain
compounds were placed onto the medium plates that had been
spread with selected bacterial strains. After loading the
synthesized compounds and controls on media plates, the
media plates were put in an incubator at 37 °C/24 h, and the
diameters of the growth inhibition zones were recorded in
millimeters.””>"
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Figure 2. (a) XRD pattern of NiO NPs and NiO NPs@C-dots. (b) Transient photocurrent responses of NiO NPs and NiO NPs@C-dots. (c)
Nyquist plots of EIS of NiO NPs and NiO NPs@C-dots. (d) Bode phase plots of EIS of NiO NPs and NiO NPs@C-dots.

2.3.2. Antifungul Activity. To study the antifungal activity
of the synthesized materials, a method known as disc diffusion
method (DDM) was used against one selected fungus, namely
fuzariam. Like bacterial strains, fungul strains were also
cultured and put in a shaking incubator (37 °C/24 h). To
achieve antifungus activity, the media were well facilitated.
Further, the cultured fungus was spread on a Petri plate, and
filter paper discs of 6 mm diameter were loaded in the
synthesized materials and kept on media plates. To evaluate
the antifungus potential of the synthesized materials,
clotrimazole and dimethyl sulfoxide were used as positive
and negative controls, respectively. Finally, the media plates
were placed in an incubator for 24 h/37 °C, and the zones of
inhibition were recorded in millimeters.

3. RESULTS AND DISCUSSION

3.1. Material Characterization. TEM was used to
evaluate the sizes and shapes of NiO NPs that were
synthesized biologically (green synthesis). The rectangular
NiO NP crystals (Figure 1) were found to be exactly the same
as the previously reported structure. In both the TEM pictures
of NiO NPs and NiO NPs/C-dots seen in Figure la,b,
although NiO NPs and NiO NPs@C-dots have a similar shape
and size (25.34 £ 0.12 and 24.9S + 0.22 nm, respectively), C-
dots cannot be visible clearly on the NiO NPs as well as in the
specimens because C-dots have a lower X-ray density than
NiO NPs, Thus, these findings suggest the unproven presence
of C-dots in the TEM image.”>** However, particle size of C-
dots of 2.6 nm has been found using HR-TEM of C-dots,
which is a very small size (Figure 2c). FE-SEM morphology of
NiO NPs@C-dots indicated a high surface area that is
convenient for the antimicrobial activity. Carbon (C):nitrogen
(N), C:N, ratio in the NiO NPs@C-dot composite is 1:4 at a
1.5:1 ratio of 0-OPD:CA (see in Figure 1d.

As a result, with an 0-OPD:CA mole ratio of C-dots, it was
revealed that when the 0-OPD content with the 0-OPD:CA
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mixture increased (seen in Figure le), the concentration of
oxygen lowered. Alternatively, as the 0-OPD content inside the
0-OPD:CA mixture increased, carbon would still have
enhanced as well; however, oxygen remained constant. The
UV—vis absorption spectra of NiO NPs and NiO NPs@C-dots
in aqueous dispersions are shown in Figure 1f. The electronic
transition from the valence band to the conductive band is
responsible for the appearance of the NiO NP absorption
bands at 230 and 300 nm. It is well known that the C-dot
absorption bands that emerge at wavelengths of 250 and 360
nm correspond to the electron transition modes of 7—z* and
n—7*, respectively.’” The absorption bands of the NiO NPs@
C-dots were identified at 345 and 230 nm; however, the 345
nm band was somewhat from the n—z* band of the C-dots.

The XRD peaks and peak positions, which can be seen in
Figure 2a, are comparatively in good agreement with the earlier
published cubic crystalline phase of NiO NPs. All index peaks
appeared as (222), (311), (220), (200), and (111), from broad
to sharp peaks with the lattice constants a = 4.163 and ¢ =
2.924, which are the same with the reported constant of =
4.175.°° Furthermore, the XRD peaks of NiO NPs@C-dots
were very good with those of NiO NPs, and new peaks did not
appear since the addition of C-dots had no effect on the crystal
structure/crystallography of NiO NPs.

Figure 2b depicts the photocurrent response measurement
of two substrates. To begin, the NiO NP and NiO NPs@C-dot
film photocurrent responses were investigated to provide
additional evidence on its response mechanism/behavior. The
NiO NPs@C-dot film demonstrated a higher behavior of
semiconductor than the NiO NP film, demonstrating the
semiconductor's good photoconductive behavior. This implied
that the carboxyl functional group of C-dots influenced the
surface and electronic properties of NiO NPs, increasing their
electrical and optical properties. The Nyquist plot of NiO NPs,
on the other hand, revealed a larger semicircular arc, indicating
a higher charge transfer resistance, R, as seen in Figure 2c.
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The resistance of this electrode was determined to be R, = 2.5
and R, = 35 before the NiO Np treatment by C-dots.
However, R, = 2.5 and R, = 21.3 after the NiO Np treatment
by C-dots. As a result, the lower R, value contributed to the
material's good electrical conductivity as well as the semi-
conductor’s increased photocurrent transient behavior. As
shown in Figure 2d, relaxation time (z,) was calculated as a
peak in the Bode phase plot. From this plot, NiO NPs revealed
a relaxation time of 3.11 ms, while NiO NPs@C-dots show
5.21 ms. The higher numerical values of the relaxation time is
assigned as effective/efficient for antimicrobial activity with a
1.5:1 0-OPD:CA molar ratio.

Because the PL intensities of NiO NPs are poor, the PL
measurement is available to confirm the effects of the
fluorescent material (C-dots) on the nanocomposites of
metal oxides (NiO NPs@C-dots).

The PL spectra characteristics of C-dots (12 wt %) on NiO
NPs at 1:1.5 (CA/0-OPD) mole ratios are exhibited in
comparison to those of C-dots in Figure 3. The strongest blue
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Figure 3. PL excitation (blue) and emission (red) spectra of C-dots
and NiO NPs@C-dots.

emission band was seen in C-dots at 451 nm, which underwent
excitation at 252 and 351 nm to provide the maximum
emission intensity. It should be noted that the NiO NPs@C-
dot nanocomposite materials that produced the maximum
performance of antibacterial activities experienced the most
quenching. The outcome suggests that NiO NPs@C-dots may
have used the photon energy obtained by C-dots to increase
the antimicrobial activity value.

Figure 5 shows the N2 adsorption desorption isotherms of
NiO@C-dots at 12.5% C-dot contents (at a 1:1.5 CA/EDA
molar ratio); the specific surface area was calculated,
employing the Brunauer—Emmett—Teller (BET) technique,
and the pore diameter and volume were calculated using the
Barrett—Joyner—Halenda (BJH) technique.

Table 1 shows the numerical values, which can be seen in
Figure 4. The isotherms were discovered to be of type IV for
NiO NPs@C-dots and type III for NiO NPs. The specific
surface area was the greatest at the NiO NPs@C-dots. Despite
these conditions, the pore size and volume were reduced,
which is similar to the situation of the maximal PCE. The

Table 1. BET Analysis of Adsorption Isotherms of NiO NPs
and NiO NPs@C-Dots

specific surface area  pore size pore volume
materials type (m* g™) (nm) (em® gt)
NiO NPs III 22.4 17.0 0.057
NiO NPs@C- IV 58.1 21.22 0.088
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Figure 4. Nitrogen adsorption—desorption isotherms at 77 K and the
analyzed parameters of NiO NPs and NiO NPs@C-dots.

enhanced surface roughness caused by the binding of C-dots is
most likely what leads the composite to have more surface area
when C-dots and NiO NPs coexist.

3.2. Antimicrobial Evaluation. 3.2.1. Antibacterial Eval-
uation. In our study, using the method named as the agar well
diffusion method, the antibacterial application of NiO NPs, its
composite of carbon dots, and plant leaf extract was
investigated upon Escherichia coli, Bacillus cereus, Salmonella
typhi, and Staphylococcus aureus (Figure S). In this procedure,
the inhibition zone was measured in millimeters, and
gentamycin and dimethyl sulfoxide were used as positive
control and negative control, respectively.

The result indicates that the composite carbon dots with
nickel oxide nanoparticle exhibit a significant inhibition zone
(22—26 mm) compared with individual NiO NPs because the
properties and the chemical composition of the bare
compounds were altered. The addition of carbon dots on
this metal oxide nanoparticle increased the antimicrobial
activities. The effectiveness of the composites of metal oxide C-
dots in killing bacteria is related to the generation of reactive
oxygen species (ROS). ROS can be produced by photoexcited
C-dots that can kill microorganisms (Figure 6). The inhibitory
mechanism of the nanocomposites of C-dots against different
bacteria and fungi includes the reaction with cellular
components through various pathways including ROS
generation, damage of cell wall and DNA, formation of pores
in cell membranes, and cell cycle arrest, ultimately inhibiting
the growth of cells. The destruction of biomolecules in cells
and cell death is due to the formation of hydroxyl free radicals
(OH®) and singlet oxygen ('O,) when C-dots react with the
bacterial cell.

The most resistant bacteria toward NiO NPs@C-dots was E.
coli (22 mm), but the most susceptible microorganism was S.
typhi (26 mm). Nickel oxide nanoparticles showed the highest
inhibition zone against S. typhi (24 mm) and smaller inhibition
zone against E. coli (21 mm). E. coli may resist both bare and
composite compounds in the following ways: it encodes f-
lactamase, changes the target protein in cell wall, reduces the
permeability of the outer membrane, and increases the
expression of the drug efflux pump. The positive control
gentamycin appeared to display an inhibition effect of 21—22
mm. The obtained inhibition data are not identical, and the
result indicates the effectiveness of the compounds against the
selected bacterial strain. The differences may be due to the
impermeability of the bacterial cells or the variation in
ribosomes that appeared in the bacterial cells. Also, the
effectiveness of the synthesized compounds may be dependent

https://doi.org/10.1021/acsomega.3c05204
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Figure 5. In vitro antibacterial activity of Croton macrostachyus leaf extract, NiO NPs, NiO NPs/C-dots, gentamycin, and DMSO against (A) S.

aureus, (B) B. cereus, (C) S. typhi, and (D) E. coli.

MO@C-dots nanocomposite

v \\H

Figure 6. General bactericidal mechanisms of action of MO@C-dots.
(A) Interaction of MO@C-dots with the bacterial cell wall. (B) MO@
C-dot internalization, intercalation in the bacterial membrane, and
irreversible disruption with a leak of cytoplasmic material. (C) MO@
C-dots promoted bacterial photodynamic inactivation with ROS
production and DNA damage.

on the interaction between the synthesized compounds and
receptor molecules. The surface of the synthesized nano-
particles and nanocomposites carries a positive charge, while
the microbial cell wall has an opposite charge. Consequently,
the reaction between these charges results in the damage of the
bacterial wall as well as cytoplasm. Also, the metal oxide
nanoparticle can give ROS that leads to protein oxidation and
DNA destruction, which damage the bacteria. Generally, the
Croton macrostachyus leaf aqueous extract-treated synthesized
nanocomposite exhibited more antibacterial activity compared
to the other reported compounds against the selected bacterial
strain.”>>* In contrast to gentamycin, all bacterial strains were
of 21-26 mm for S. typhi (Table 2) against the hindrance
zone. This outcome, the effect of these materials on selected
bacterial strains, was not uniform. Such an alternative can
occur due to the stiffness of the structures’ containers or
differences in ribosomes that arose in the microbial containers.
This discipline may also be applied to the strong reaction
between compounds and receptor fragments. Furthermore,
while the present work was compared with the literature, the
inhibition zone of microbial activities was better than that
reported in the literature. When we compared our work with
the findings in recent reported papers (see Table 2), our
present work showed inhibition zones. Additionally, compared
to just individual NiO NPs, the presence of C-dots raised the
size of the inhibition zone, which is assigned to the influence of
C-dots.

3.2.2. Antifungal Evaluation. Antifungal applications of the
synthesized NiO NPs, NiO NPs@C-dots, and plant leaf extract
were studied against the Candida albicans fungus strain (Figure
7). Clotrimazole was used as a positive control. Our results

Table 2. Antimicrobial Activity of the Reported and Present
Material Compositions

synthesis bacteria in inhibition
materials method strain zone (mm) ref.
NiO NPs biosynthesis  E. coli 18, 22 48
S. aureus 15, 19
B. cereus 14
S. typhi 20
NiO NPs@C- biosynthesis  E. coli 23 48
dots S. aureus 17
B. cereus 20
S. typhi 21
ZnO NPs biosynthesis  E. coli 18, 25.30 33787
S. aureus 25.30
B. cereus -
S. typhi -
a-Fe,0; NPs E. coli 10 58
S. aureus -
B. cereus -
S. typhi -
C. cassia (plant E. coli 15 59
extract) S. aureus 22
B. cereus -
S. typhi 8
NiO NPs biosynthesis  E. coli 21 present
S. aureus 23 work
B. cereus 23
S. typhi 24
NiO NPs@C- biosynthesis  E. coli 22 present
dots S. aureus 25 work
B. cereus 23
S. typhi 26

concluded that the prepared NiO NPs@C-dots showed a
higher inhibition zone (24 mm) compared with NiO NPs (22
mm). The standard drug clotrimazole showed a lower
inhibition zone (16 mm), and the Croton macrostachyus leaf
aqueous extract was not active against the selected fungus
strain.

4. CONCLUSIONS

In summary, a composite made of hydrothermally green-
synthesized NiO nanostructures with C-dots and the prepared
compounds has been tested for its antimicrobial properties in
the current research. The reactive functional group of C-dots
caused the composite to have increased antimicrobial activities
in accordance with this. Due to the reaction between the
receptor compounds (amino acid molecules) and the func-
tional groups of C-dots, the antimicrobial (antibacterial and
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Figure 7. In vitro fungal evaluation of the Croton macrostachyus leaf
extract, NiO NPs, NiO NPs/C-dots, gentamycin, and dimethyl
sulfoxide against the Candida albicans fungus strain.

antifungal) activities of the synthesized nanocomposite was
increased. C-dots are therefore regarded as having a less
harmful effect due to their clearness and cost-effectiveness. As a
result, we have seen that NiO NPs@C-dot composites are
much more effective against a particular bacterial strain than
their metal oxide nanoparticle counterparts.
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