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ABSTRACT 
Background: Drug repositioning is a key component of COVID-19 pandemic response, through 
identification of existing drugs that can effectively disrupt COVID-19 disease processes, 
contributing valuable insights into disease pathways. Traditional non in silico drug repositioning 
approaches take substantial time and cost to discover effect and, crucially, to validate 
repositioned effects. 
 
Methods: Using a novel in-silico quasi-quantum molecular simulation platform that analyzes 
energies and electron densities of both target proteins and candidate interruption compounds on 
High Performance Computing (HPC), we identified a list of FDA-approved compounds with 
potential to interrupt specific SARS-CoV-2 proteins. Subsequently we used 1.5M patient records 
from the National COVID Cohort Collaborative to create matched cohorts to refine our in-silico 
hits to those candidates that show statistically significant clinical effect. 
 
Results: We identified four drugs, Metformin, Triamcinolone, Amoxicillin and 
Hydrochlorothiazide, that were associated with reduced mortality by 27%, 26%, 26%, and 23%, 
respectively, in COVID-19 patients.  
 
Conclusions: Together, these findings provide support to our hypothesis that in-silico simulation 
of active compounds against SARS-CoV-2 proteins followed by statistical analysis of electronic 
health data results in effective therapeutics identification. 
 
INTRODUCTION 
There have been 529,301 US deaths as of March 12, 2021 due to COVID-19.I1 The Food and 
Drug Administration (FDA) has so far approved three COVID-19 vaccines.I2 However, a 
substantial time lag is expected between the start of vaccinations and effective herd immunity.3,4 
Furthermore, vaccine hesitancy is high in the US with 51% to 72% of the population intending to 
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be vaccinated.5,6,7 Additionally, a global race for vaccine acquisition continues.8 As 70% of the 
population must become immune to interrupt this pandemic9, COVID-19-related deaths will 
continue in the coming months.4 Therefore, drug repurposing is urgently needed to reduce 
COVID-19 mortality 5 while providing insight into disease pathways.10 
 
In this study, we tested the hypothesis that in-silico quasi-quantum simulation of FDA-approved 
compounds against SARS-CoV-2 proteins followed by statistical analysis of 1.5M electronic 
health data can efficiently identify effective drug repositioning candidates. 
 
METHODS 
 

In-silico Quasi Quantum Simulation 
We used ARIScience’s previously developed quasi-quantum (QQ) molecular simulation platform 
to disassemble and analyze the energy distribution of 11 SARS-CoV-2 proteins (Table 1) 
against 1,513 known FDA-approved active ingredients. This proprietary method uses electron 
density approximations, high probability conformations determinations, and multi-dimensional 
energy searches to determine intermolecular affinities. Using Java framework for highly parallel 
processing within a supercomputing node, and SLURM to spread load across nodes these 
proteins were simulated at neutral pH. Top candidates for each targeted protein were loaded 
into Jupyter11 for consolidated candidate interaction energy ranking. The resulting top 
candidates were chosen for pharmacological prevalence assessment. Next, top candidates 
were selected for statistically significant clinical effect validation using the National COVID 
Cohort Collaborative (N3C) repository.12 The goal of in-silico simulation was to identify small 
molecule drugs with strong affinity to SARS-CoV-2 proteins and potential to interrupt or delay 
viral activity. Control test for the QQ simulation framework used the human nicotine receptor 
(alpha 4 beta 2) with nicotine as positive control ligand and albuterol as negative control ligand. 
The resultant interaction energy from the QQ simulation for nicotine (-0.0026) was substantially 
lower than that of albuterol (energy: -0.0012) in line with the expectation that nicotine interacts 
substantially with the nicotine receptor, but albuterol does not. The energy units are in 0.0188 
Hartrees. 
 

Use of De-identified Patient Records 
The N3C securely harmonizes Electronic Health Record (EHR) data from 36 medical centers 
dating from 01-01-2018. The data were securely transferred to a data enclave and harmonized 
into a single common model.13 As of 12-07-2020, N3C contained 26M total patients, 372k 
COVID+ patients, 1.1B lab results, 401M drug exposures, and 179M procedures. We used 
date-shifted data; all dates except for age were shifted +/-180 days. Drug exposure timing was 
calculated from the Earliest RNA-based SARS-CoV-2 Diagnosis (ERSD) for each patient. N3C 
data were crucial in assessing clinical significance of in-silico findings using actual clinical EHR 
data. The reason is interaction of a compound to a protein may result in one of (a) no-effect (b) 
increase or (c) decrease in protein activity. Item (c) is the desired effect.14,15 
 
Death Endpoint Definition 
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We compiled OHDSI death concepts to define our endpoint.16 Deaths within 12 weeks after 
ERSD (excluding deaths via accidents, falls and burns) were classified as COVID-19 
associated. 
 
Statistical Validation of Effect against Death Endpoint 
We performed cohort matching to account for the potential confounder bias in the compared 
cohorts.17,18  The 18 pre-COVID-19 diagnosis predictors we used to construct a propensity 
score model for cohort matching were: gender, age, race, geographical region, Charlson 
Comorbidity Index (CCI) categories (0, 1, 2-3, 4-5, 6+), prior medical disposition (smoker, 
diabetic, chronic respiratory disorder, hypertensive), prior access to medical care (through prior 
monthly outpatient, inpatient and ER visits, medication, procedure rates), BMI, data provider 
and COVID-19-related dexamethasone use.  We used Bayesian logistic model19 to have 
numerically stable estimates. The propensity scores were used for nearest neighbor matching 
with replacement (Figure 1).17 To assess the treatment effect on the treated for the treatment of 
interest, we fit Bayesian logistic regression model with weighting to account for repeated 
sampling of control patients due to matching with replacement at 95% credible interval. We 
developed Java/Python/R routines to prepare and analyze N3C data respectively. With a 
sample size of 2,318 patients in each matched cohort, we can detect a difference of 1% 
increase in death between the two groups with 80% power. 
  
Epidemiological Exclusions and Missing Data Handling 
To minimize misclassification due to missing data, data-providers were excluded from the 
analysis if their data was deemed incomplete for key patient information.20 Of the 36 data-
providers, four were excluded after assessing (a) usage frequency of common medications 
(Azithromycin, Metformin, Montelukast) (b) medicated patient percentage. This excluded 
161,682 patients. We excluded two data-providers whose data quality was not assessed by us 
affecting 290,578 patients. We excluded six data-providers due to missing death data, excluding 
632,614 patients. The final cohort included 1.52M patients. 
 
RESULTS 
   
 

Drug repositioning candidates by in-silico quasi-quantum simulation 

The eleven SARS-CoV-2 proteins we chose for computational analyses are: nsp1, nsp9, nsp15, 
S, N, E, ORF3a, ORF7a, ORF8, and ORF9b (Table 1). While nsp1, nsp9, and nsp15 are 
essential components of viral replication, S, N, and E are the structural proteins needed for 
production of mature virions. ORF3a, ORF7a, ORF8, and ORF9b are virulence factors that 
enable the virus to create a favorable replication environment.21,22,23,24 After a pharmacological 
prevalence assessment of the top in-silico candidates and their affinity energies, 18 candidate 
compounds (Table 2) were selected for statistical validation using 1.5M patients. 
 
Clinical effect validation using 1.5M patients’ records 

The primary measured endpoint (EP) was death within 84 days of ERSD among 30-to-85 years 
old (yo) patients. This age range was chosen based upon mortality frequency by age of 
COVID+ patients in literature (Figure 1).25 Candidate drugs identified using our in-silico 
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simulation were used to create multi-predictor-based matched cohorts to measure COVID-19 
mortality statistical significance. The patients were stratified into three sets with matched cohorts 
created for each set for each assessed drug. These were: (a) all 30-85yo patients regardless of 
CCI26, (b) all 30-85yo diabetic patients with CCI<=3, and (c) all 30-85yo non-diabetic patients 
with CCI<=3. The results for each group are as follows: 
 
All 30-85yo patients 

Metformin, Triamcinolone, Amoxicillin, and Hydrochlorothiazide showed a reduction in mortality 
odds by 27%, 26%, 26%, and 23%, respectively (Table 3). Exposure to these drugs was based 
on whether they are generally taken chronically (Metformin, Hydrochlorothiazide, non-topical 
Triamcinolone) or acutely (Amoxicillin). Chronic and acute exposure to a drug considered (a) 
exposure 365 days prior to ERSD to 2 weeks after ERSD and (b) exposure 4 weeks prior to 
ERSD to 2 weeks after ERSD, respectively. 
 
Our in-silico simulations showed Metformin’s affinity to N and ORF7a proteins with energies of -
0.0072 and -0.00309 respectively. Triamcinolone showed affinity to NSP1 (Figure 2) and S 
protein with energies of -0.001145 and -0.00162, respectively.  Amoxicillin showed affinity to 
viral proteins NSP1 and N with energies of -.0034 and -.0024, respectively. Hydrochlorothiazide 
showed affinity to Spike and NSP1 proteins  with energies of -0.0057 and -0.0053 (Table 2). 
The energy units are in 0.0188 Hartrees. 
 
Diabetic (30-85yo, CCI<=3) and separately non-diabetic patients (30-85yo, CCI <= 3) 

Results for ‘only diabetic patients’ showed Hydrochlorothiazide and Metformin had statistically 
significant reduction in mortality odds by 49% and 34%, respectively. Results for ‘only non-
diabetic patients’ showed Hydrochlorothiazide and Metformin had statistically significant 
reduction in mortality odds by 30% each (Table 3). 
 
DISCUSSION 
We identified four FDA-approved drugs as COVID-19 repositioning candidates using our novel 
in-silico quasi-quantum simulation methods followed by statistical analysis of 1.5M patients’ 
EHR data. We found that Metformin, Triamcinolone, Amoxicillin and Hydrochlorothiazide were 
associated with 27%, 26%, 26%, and 23% reduced mortality odds, respectively.  
 
We highlight that among 1,513 drugs used in our in-silico simulations against specified 11 
SARS-CoV-2 proteins, Metformin had the strongest in-silico signal (interaction energy -
0.007279) and also the highest reduction (by 27%) in COVID-19 mortality odds. It was followed 
by Hydrochlorothiazide’s signal (interaction energy of -0.005759) and 23% reduction in mortality 
odds. 
 
The identified drugs Metformin (anti-diabetic), Triamcinolone (anti-inflammatory), Amoxicillin 
(anti-bacterial) and Hydrochlorothiazide (anti-hypertensive) are not members of a single class of 
drugs. Rather, each of these drugs have unique known clinical effect mechanisms, which may 
have played crucial roles in addition to their in-silico predicted SARS-CoV-2 protein interaction 
effect - both contributing to improved COVID-19 outcomes. The precise mechanisms by which 
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these drugs exert their positive effects in COVID-19 will require further investigation and are 
beyond the scope of this study. For example, Metformin (a) inhibits gluconeogenesis thus 
reducing blood sugar27 and (b) helps activate pro-survival kinase AMPK which via mitochondria 
involved metabolic pathways results in cardiovascular health and lifespan improvement.28 
Triamcinolone, a synthetic glucocorticoid, is used to treat autoimmune diseases, asthma, 
rheumatoid and arthritic conditions.29,30,31 The beta-lactam antibiotic, Amoxicillin, inhibits 
transpeptidation required for bacterial cell membrane synthesis.32 The loop diuretic, 
Hydrochlorothiazide, inhibits distal convoluted tubule renal sodium chloride transporter resulting 
in the loss of sodium and potassium, and reduction in blood pressure.33 Other researchers have 
also hypothesized Metformin’s positive effect on COVID-19.34 

 
The identified drug candidates are usually well tolerated but caution must be followed for 
comorbid patients. Metformin, which has a 90% clearance via kidney tubular mechanism35, is 
contraindicated in patients with decreased creatinine clearance (CrCl) (< 45 ml/min) due to 
lactic acidosis risk.36 Amoxicillin is contraindicated for those with severe penicillin allergies. A 
CrCl based dose adjustment is necessary for ideal candidates with kidney disease. High risk 
patients with radiographically proven covid-19 pneumonia are selectively treated with antibiotics 
for possible superimposed bacterial infections with macrolides, cephalosporins or 
fluoroquinolones. A dose adjusted switch to amoxicillin for lower respiratory tract infection to 
treat community acquired pneumonia is feasible. Hydrochlorothiazide (HCTZ) is a diuretic used 
as a first line antihypertensive for essential hypertension patients. HCTZ can cause rare organ 
threatening complications like pancreatitis. Loop diuretics like Furosemide are being used in 
critically ill patients to maintain a negative fluid balance. Although not as potent as loop 
diuretics, adding HCTZ in select patients based on CrCl may prove to be beneficial to achieve 
diuresis37 and antiviral effect.  
 
Triamcinolone can be administered systemically, orally, or by nebulization for direct pulmonary 
delivery. Thus it may act through both (a) interaction with SARS-CoV-2 proteins, and (b) 
pulmonary anti-inflammatory effects by stabilizing mast cells, a major cytokine storm source in 
COVID-19.31 

 
Whether the doses and administration routes of these four drugs affect the primary outcome 
require further studies. Understanding the mechanisms by which these four drugs improve 
COVID-19 outcomes but not other drugs with similar functions (e.g. Fluticasone, or 
Clindamycin) will require further studies. 
 
Limitations 

The N3C dataset did not track whether a patient was involved in a COVID-19 vaccination trial 
which, while unlikely, may skew results as vaccinated individuals are less likely to die from 
COVID-19. Our statistical procedure’s uncertainty intervals did not take into account the 
selection procedure for the propensity model nor for the implicit multiple comparison post 
estimation. Given multiple treatments of interest, and varying sample sizes for each treatment, 
accounting for these factors is nontrivial and we are not aware of any currently available method 
to accurately account for them. This could potentially lead to optimistic uncertainty estimates 
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potentially inflating the type I error. Finally, a patient’s diabetic disposition was solely based on 
clinical diagnosis and did not take HbA1c levels into consideration to compare between 
controlled versus uncontrolled diabetes.  
 
Future work 

Depending on funding we may look at the effect of these compounds on hypertensive and 
hospitalized patient subsets in addition to in vitro and in vivo antiviral assays. The novel 
simulation platform and the methodology to assess clinical effects we used have implications 
much beyond SARS-CoV-2. 
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TABLES 
 

Protein Function Number of 
Simulations 

Performed 

E Involved in viral assembly and egress. Interacts with M, N, 3a, 
and 7a. 

931,518 

N Functions in helical ribonucleoprotein formation, viral RNA 
replication, virion assembly, and immune evasion. Interacts with 
M and nsp3. 

2,498,292 
 

NSP1 Inhibits translation of cellular mRNA. Assists viral gene 
expression and immune evasion. 

456,945 
 

NSP9 Binds with the viral genome and promotes viral RNA 
replication. 

717,612 

NSP15 Prevents immune detection by cleaving uridylates from the 
5’ ends of the negative-sense viral RNA. Loss of nsp15 
affects viral replication and pathogenesis. 

3,258,654 

NSP16 Assists in formation of the viral mRNA capping machinery. 1,066,011 

ORF3a Linked to virulence, ion channel formation, and virus release. 
Activates NF-kB and NLRP3 inflammasome 

531,948 

ORF7a Viral antagonist of the host restriction factor BST-2/Tetherin. 
Interacts with S, M, E, and ORF3a. 

152,922 

ORF8 Possesses a signal sequence for ER import. Disrupts IFN-I 
signaling when exogenously expressed in cells. Downregulates 
MHC-I. 

549,792 

ORF9b Localizes to mitochondria and suppresses IFN-I responses. 740,079 

Spike Essential for membrane fusion and host receptor binding. 1,938,609 

Table 1: Functions of 11 targeted SARS-CoV-2 proteins38 
 
Protein Candidate Drug Interaction Energy 
N Metformin -0.007279 
NSP16 Clindamycin Phosphate -0.006267 
NSP15 Cromolyn -0.006233 
S Hydrochlorothiazide -0.005759 
NSP1 Hydrochlorothiazide -0.005389 
NSP9 Olmesartan -0.004378 
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NSP16 Bictegravir -0.003759 

NSP1 Cetirizine -0.003568 
NSP1 Losartan -0.003554 
NSP1 Amoxicillin -0.003459 
ORF7a Metformin -0.003090 
N Amoxicillin -0.002472 
NSP15 Vitamin K -0.002361 
NSP16 Timolol -0.001635 
S Triamcinolone -0.001629 
NSP9 Propafenone -0.001498 
NSP16 Prednisone -0.001345 
NSP16 Vitamin E -0.001330 
N Triamcinolone -0.001145 
E Sildenafil -0.001008 
NSP15 Simvastatin -0.000958 
S Fluticasone Furoate -0.000528 
NSP16 Olmesartan Medoxomil -0.000324 
Table 2: Top candidates in ascending order of energy from in-silico simulations followed by 
pharmacological prevalence assessment. The energy units are in 0.0188 Hartrees. 
 

Analyzed 
Patient Set 

Drug Treated Cohort Untreated  
Matched Cohort 

Reduction in 
Odds of 
Mortality 

All patients 
30-85 yo 

Metformin N = 11,062 
76.7% diabetic 
5.4% smoker 
50.9% female 
Avg BMI: 0.51 
63.2% hypertensive 

N 11,062 
76.5% diabetic 
5.5% smoker 
51.1% female 
Avg BMI: 0.52 
62% hypertensive 

27% reduction, 
range 37% to 
16% 

All patients 
30-85 yo 

Triamcinolone N = 4,420 
32.6% diabetic 
6.1% smoker 
65.4% female 
Avg BMI: 0.489 
58% hypertensive 

N 4,420 
33.6% diabetic 
5.7% smoker 
66.3% female 
Avg BMI: 0.493 
60.50% 
hypertensive 

26% reduction, 
range 46% to 
5% 

All patients 
30-85 yo 

Amoxicillin N = 5,472 
22.70% diabetic 
5.52% smoker 
56.09% female 

N 5,472 
23.03% diabetic 
4.26% smoker 
57.60% female 

26% reduction, 
range 43% to 
6% 
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Avg BMI: 0.48 
39% hypertensive 

Avg BMI: 0.49 
38.3% hypertensive 

All patients 
30-85 yo 

HCLTZ N = 11,126 
36.1% diabetic 
5% smoker 
57.6% female 
Avg BMI: 0.5 
79.5% hypertensive 

N 11,126 
37% diabetic 
5.5% smoker 
55.7% female 
Avg BMI: 0.5 
80.3% hypertensive 

23% reduction, 
range 34% to 
11% 

Diabetic, CCI 
<=3 

HCLTZ N = 2,562 
100% diabetic 
3.8% smoker 
58.1% female 
Avg BMI: 0.53 
95.8%hypertensive 

N 2,562 
100% diabetic 
3.43% smoker 
55.89% female 
Avg BMI: 0.53 
95.7%hypertensive 

49%  
reduction,  
range 67% to 
22% 

Diabetic, CCI 
<=3 

Metformin N = 5,369 
100% diabetic 
4.4% smoker 
52.9% female 
Avg BMI: 0.51 
70.7%hypertensive 

N 5,369 
100% diabetic 
4.10% smoker 
53.14% female 
Avg BMI: 0.530 
71.2%hypertensive 

34% reduction, 
range 51% to 
10% 

Non-diabetic, 
CCI <=3 

HCLTZ N = 6,600 
0% diabetic 
3.6% smoker 
58.0% female 
Avg BMI: 0.5 
67.8% hypertensive 

N 6,600 
0% diabetic 
3.39% smoker 
55.24% female 
Avg BMI: 0.5 
68.6% hypertensive 

30% reduction, 
range 45% to 
13% 

Non-diabetic, 
CCI <=3 

Metformin N = 2,525 
0% diabetic 
0.7% smoker 
47.8% female 
Avg BMI:0.5 
11.8%hypertensive 

N 2,525 
0% diabetic 
1.1% smoker 
47.9% female 
Avg BMI:0.5 
11.3%hypertensive 

30% reduction, 
range 47% to 
5% 

Table 3: Effect of drug repositioning candidates on mortality odds. HCLTZ is 
hydrochlorothiazide. BMI scale was modified to be between 0 and 1. Losartan showed statistical 
significance for the diabetic group but not for the non-diabetic group, and therefore was not 
included in the above table. 
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FIGURES 
  
 

 

 
Figure 1: Gender, Smoker, Diabetes, Hypertension by age group (as fraction of age 
group) for treated (with Metformin) and matched control cohorts across all CCI used for 
statistical analysis. The darker shade of each colored pair is Control (untreated), while the 
lighter shade is Treated (with Metformin). For example, the dark purple (control) and light purple 
(treated) bars on each age group represent the fraction of patients in those age groups that are 
hypertensive. Top left box: death rate by age group for COVID+ patients in N3C. 
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Figure 2: Image of triamcinolone (red) interacting with SARS-CoV-2 NSP1 protein (blue) 
at neutral pH. Darker shades signify regions of positive partial charges and lighter shades 
signify regions of negative partial charges. 
 
Supplemental Appendix is available at: 
https://www.ariscience.org/p1_sc2_paper_01.html 
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