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potential prognostic factors. The distributional assumption 
on survival times appeared to affect the identification of 
risk factors but not the ability to describe the training data. 
The two survival modelling approaches performed simi-
larly in predicting the validation data.
Conclusions  A parametric model that incorporates 
model-derived tumour shrinkage metrics in addition to 
other baseline variables could predict reasonably well sur-
vival of patients with metastatic pancreatic cancer. How-
ever, the predictive performance was not significantly bet-
ter than a simple Cox model that incorporates only baseline 
characteristics.

Keywords  Metastatic pancreatic cancer · Gemcitabine · 
Tumour size time-series · Hierarchical modelling · Survival 
analysis

Introduction

Pancreatic cancer is a common cause of cancer-related 
death and is difficult to treat as diagnosis is often made late 
and patients present with metastatic disease [1]. Despite 
recent improvements in diagnostic techniques, the progno-
sis of patients with pancreatic cancer is poor, with a 5-year 
survival rate of 0.4–4  % [2]. The only potential curative 
treatment is surgical resection although only 15–20  % of 
patients are eligible for surgery [1]. Gemcitabine chemo-
therapy is the standard palliative care [3], with a median 
survival of 5.7 months and 20 % 1-year survival rate [4]. 
However, the prognosis of patients receiving palliative 
chemotherapies varies depending on their clinical charac-
teristics [5]. It is therefore important to identify subgroups 
of patients that would benefit from chemotherapies. Several 
prognostic factors for patients with metastatic pancreatic 
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cancer (MPC) have been previously identified: pancreatic 
cancer location [6], albumin level (ALB), carbohydrate 
antigen 19-9 level (CA19-9), alkaline phosphatase level 
(ALP), lactate dehydrogenase level, white blood cell count, 
aspartate aminotransferase level, blood urea nitrogen level 
[7], long-standing diabetes [8], Eastern Cooperative Oncol-
ogy Group (ECOG) performance status, C-reactive protein 
level [9], the status of unresectable disease, carcinoembry-
onic antigen level and neutrophil–lymphocyte ratio [10].

Identifying prognostic factors with predictive value for 
patient risk stratification is an important task in cancer 
research to monitor and assess clinical trials, and individu-
alise patient care. Multivariate statistical modelling meth-
ods are commonly used to investigate survival in relation to 
a factor of interest (e.g. treatment exposure) while adjust-
ing for others (e.g. genotype). The Cox proportional haz-
ards (CPH) model [11] is the most frequently used multi-
variate regression method, mainly because no assumption 
on the distribution of survival times is required (“semi-
parametric” method) although it relies on the key assump-
tion that the group-specific hazards are proportional over 
time. A useful alternative when the proportional hazards 
assumption does not hold is to use the accelerated failure 
time (AFT) model [12] which offers the advantage of an 
easier interpretation of the covariate effects (directly on the 
survival time) as compared to the CPH model (effects on 
the hazard rate). Since the AFT model is fully parametric, it 
is also more suitable for simulations that can be of value to 
extrapolate patient survival data and to optimise the design 
of oncology clinical trials. Nevertheless, the assumption on 
the survival time distribution might be deemed too strict as 
most of the time the distribution (or even a close approxi-
mation) is unknown.

In oncology drug development, decision-making and 
trial design are traditionally based on the Response Evalu-
ation Criteria In Solid Tumours (RECIST), an empirical 
categorical measure of antitumor activity [13, 14]. More 
recently, several studies have shown that model-derived 
tumour size (TS) metrics can also be used as predictors for 
survival of patients with solid tumours [15–18]. In drug 
development, a parametric survival model that includes 
early change in TS as predictor variables might be benefi-
cial for trial design and early assessment of drug efficacy. 
To our knowledge, this approach has not been evaluated in 
MPC.

The objective of this study is to apply a fully paramet-
ric drug development approach (referred to as the “PAR 
approach”) that utilises longitudinal TS data, to predict 
the mortality risk of patients with MPC. We used the con-
trol arm data from two Phase III MPC studies to build 
and validate the models as it would be done in the clinic. 
Early changes in TS were interpolated by hierarchical non-
linear modelling of the TS time-series and were tested as 

predictors for survival in an AFT model. We also compared 
the predictive performance between the PAR approach and 
a more conventional clinical approach that uses a CPH 
regression of empirical risk factors.

Materials and methods

Data

The models were built on the control arm data of a Phase 
III study in which 546 patients with MPC were randomly 
assigned to receive either gemcitabine (n = 275) or afliber-
cept (n  =  271) [19]. The predictive performance of the 
models was then evaluated using an independent (valida-
tion) data set from the control arm of a Phase III study of 
861 patients with MPC randomly assigned to nab-pacli-
taxel plus gemcitabine (n = 431) or gemcitabine (n = 430) 
[20]. Only gemcitabine data (control arms) were available 
for the present analysis. Although our work was done ret-
rospectively, the choice of the training and validation sets 
was based on the chronology of the clinical studies in order 
to mimic the time constraints of statistical analyses in clini-
cal research. Details of patient characteristics and the study 
designs can be found in the original study reports [19, 20]. 
The primary endpoint in both studies was overall survival, 
defined as the time from randomisation to the time of death 
from any cause. We instead used as model outcome the sur-
vival time defined as the time from randomisation to the 
time of death from the disease. Event times and baseline 
clinical characteristics were available for 271 patients in 
the training set and for 398 patients in the validation set. 
Censored times were extracted from the date of the last 
visit (for assessment of tumour response or laboratory 
variables). Among the patients who died in the training set 
(n = 147) and in the validation set (n = 370), only 13 and 
8 %, respectively, died from other causes than cancer pro-
gression. In both studies, antitumor activity was evaluated 
every 8  weeks according to RECIST version 1.0 criteria 
[14].

Statistical analysis

Firstly, potential risk factors were screened among pre-
viously reported prognostic factors and patient clinical 
characteristics from the training set. Secondly, TS reduc-
tion metrics were interpolated at relevant times for each 
patient of both the training and validation sets, by model-
ling separately the TS time-series from the two data sets. 
Subsequently, we developed a multivariate survival model 
using two different approaches: the PAR approach that 
aims at relating model-derived TS reduction metrics to 
survival time using the AFT model, and a more classic 
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clinical approach that aims at identifying empirical risk 
factors using a Cox regression model (referred to as the 
“COX approach”). Finally, the performance of these two 
approaches in predicting patient mortality risk was com-
pared using the validation set.

Screening risk factors

Thirty-one prognostic factors or baseline clinical character-
istics for all 271 patients of the training set (128 death from 
disease) were screened to identify potential survival pre-
dictors: gender, race, age, body surface area (BSA), body 
weight, body height, ECOG status, cancer location (CLOC, 
defined categorically as entire pancreas or pancreas head 
versus pancreas tail or pancreas body), stage of cancer 
(from I to IV), diabetes status (yes or no), smoking status 
(yes or no), baseline TS, ALB, ALP, alanine transaminase, 
aspartate aminotransferase, bilirubin level (BILI), calcium, 
CA19-9, creatinine, glucose, haemoglobin, potassium, 
magnesium, neutrophil count (NEUT), phosphorus, plate-
lets, total protein, white blood cell count and sodium levels. 
Details on the distribution of these variables can be found 
in the original study report. The ALP, CA19-9 and NEUT 
variables were log-transformed as their distributions in the 
studied patients are highly skewed. Twenty-one variables 
had <30 % of missing values which were multiply imputed 
using complete cases of all variables including the response 
variable (death status) [21].

Variable selection was done using a CPH regression 
with the least absolute shrinkage and selection operator 
(LASSO) penalty [22]. Using LASSO regularisation, the 
coefficients of the variables that are apparently not impor-
tant shrink to zero, thereby producing a sparse model. 
Since the number of death events was small (n = 128), the 
algorithm was forced to retain no more than 10 variables 
in the sparse model. All continuous variables were stand-
ardised prior to the regression as they were not in the same 
units. The optimal value of the penalty tuning parameter 
was determined by k-fold cross-validation using the model 
partial-likelihood deviance as loss function. Regardless 
of the results, factors deemed clinically relevant (e.g. bio-
marker or established risk factors) were evaluated in the 
subsequent survival analysis aiming at quantifying the pre-
dictive value of the selected factors and of early change in 
TS metrics.

Modelling tumour size time‑series

TS measures were derived as the sum of the longest diam-
eters of the target lesions based on the RECIST criteria. In 
order to further compare empirical and model-derived early 
changes in TS metrics as survival predictors, only patients 
who had a pre-treatment and at least one on-treatment TS 

assessment were included in the time-series analysis (152 
and 385 patients for the training and validation sets, respec-
tively). To account for random interpatient and residual 
variability in the data, a three-stage hierarchical model 
was developed. At the first stage, the model likelihood was 
assumed lognormally distributed. A mixed model with 
exponential-decay and linear-growth components was used 
to describe the time course of TS change, using the same 
nomenclature as Wang et al. [15] (Eq. 1).

In Eq.  1, TSi(t) is the TS at time t for the ith patient, 
BASEi is the baseline TS, SRi is the decay or tumour 
shrinkage rate constant, and PRi is the regrowth or tumour 
progression rate constant. At the second stage, we assumed 
that each parameter follows a lognormal distribution in 
the patient population. For example, the distribution of the 
baseline TS was defined as follows:

where θBASE is the population mean of the log-transformed 
parameter and ηBASE,i is the difference between the indi-
vidual and the population mean log-transformed values that 
is assumed normally distributed with mean 0 and standard 
deviation ωBASE. Finally at the third stage, we assigned 
uninformative prior distributions to the model parameters 
as well as to the residual standard deviation σ (see Stan 
code in “Appendix 1”).

Sampling from the posterior distribution of the param-
eters was done using the No-U-Turn variant of the Ham-
iltonian Monte Carlo algorithm [23], as implemented in 
the software Stan [24]. Convergence to approximate equi-
librium was monitored using the potential scale reduction 
statistics [25]. Since the purpose of the modelling was to 
interpolate TS for each patient, the main diagnostic crite-
rion for the model was its ability to capture observed indi-
vidual profiles. We then used the posterior mean of the indi-
vidual parameters to predict for each patient the percentage 
TS change from baseline (PTR) at early time points, i.e. 2, 
4, 6, 8 and 10 weeks, in order to further evaluate the predic-
tive value of these model-derived TS metrics for survival. 
Since the COX approach aims at investigating the predic-
tive value of empirical factors only, we also calculated from 
the observed individual TS data the best percentage change 
from baseline within 12 weeks (PTRmax), as a surrogate of 
antitumor response to gemcitabine.

Survival analysis

To be able to compare the PAR approach with the more 
empirical COX approach, only patients included in the 
TS model-based analysis of the training set and with com-
plete cases for the screened risk factors were retained for 

(1)TSi(t) = BASEi · e
−SRi·t + PRi · t

(2)BASEi = e
θBASE+ηBASE,i
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the multivariate survival analysis. For clarity, the resulting 
data set is referred to as the “reduced-training” set, which 
includes baseline risk factors, the model-derived PTR at 
week 2–10 and the empirical PTRmax metric for all patients.

Since the PAR approach aims at developing a quantita-
tive tool to further guide trial design, a parametric AFT 
model was used to relate baseline risk factors and model-
derived PTR metrics to survival times. The lognormal 
and Weibull distributions were evaluated for the distribu-
tion of survival times T. The model can be expressed as 
follows:

where µ (−∞ to +∞) and σ (0 to +∞) are the mean 
(location) and scale parameters, respectively, for the log-
normal distribution, and α (0 to +∞) and � (0 to +∞) 
are the shape and scale parameters, respectively, for the 
Weibull distribution. In order to parameterise the mod-
els as AFT models, the covariate effects were tested only 
on µ for the lognormal model and on � for the Weibull 
model. For instance, � was defined as follows:

where θ0 is the intercept (typical value) of the natural 
logarithm of � and θx the coefficient (effect) of the vari-
able x. This parameterisation ensures that the parameter 
does not take negative values for any patient or group. We 
chose to implement the model in the software Stan [24] as 
it provides an easy way to model censored data and offers 
flexibility on the input data format and model parameteri-
sation. Diffuse prior distributions were assigned to the 
model parameters (see example of Stan code in “Appen-
dix 2”). Posterior distributions were approximated using 
the No-U-Turn sampling algorithm. Selection of an 
appropriate survival distribution was based on approxi-
mate leave-one-out cross-validation (LOO) as com-
puted in the R package loo [26]. Once a base model was 
selected, covariates were included in a forward way based 
on LOO estimates and the 95 % credible intervals of the 
regression coefficients. The ability of the proposed model 
to describe the data in the reduced-training set (calibra-
tion ability) was evaluated by visual comparison of the 
observed and predicted survival curves. One thousand 
parameter sets were randomly sampled from the posterior 
distributions. For each parameter set, individual survival 
curves were simulated on the basis of patient covariates 
and were then averaged to derive a population survival 
curve. The median population survival curve and a 95 % 
credible interval were then calculated based on the 1000 
samples. The observed survival curves [median and 95 % 

(3)

T ∼ lognormal(µ, σ)

or

T ∼ Weibull(α, �)

(4)� = e
θ0+θx ·x

confidence interval (CI)] were derived using Kaplan–
Meier estimates [27].

A more frequently used approach to model survival 
data and identify risk factors is to perform a multivari-
ate CPH regression, as was done for the original training 
set to screen for potential risk factors. Note that to be 
able to do a head-to-head comparison of the PAR and 
COX approaches, we repeated the multivariate CPH 
regression on the reduced-training set to possibly relate 
baseline risk factors and the empirical PTRmax metric to 
the survival time. In addition, we also built a CPH model 
based only on the baseline clinical characteristics of the 
patients, i.e. excluding TS-related variables. Using a 
penalised regression like the LASSO method, appropri-
ate estimation of parameter uncertainties is not trivial. 
Therefore, variable reduction was instead done by back-
ward deletion using a significance level of 0.05. The 
proportional hazards assumption was evaluated for the 
remaining variables by incorporation of a time interac-
tion and by visual inspection of the scaled Schoenfeld 
residuals [28]. The discriminative ability of the model 
was assessed by computing the concordance probabil-
ity corrected for the bias due to model optimism [29]. 
Empirical 95  % CIs around the regression coefficient 
estimates were calculated from 1000 bootstrap resam-
ples. The analysis was carried out using the R package 
rms [30].

Validation

The performance of the PAR and COX approaches in pre-
dicting the survival time of new patients was evaluated by 
applying the models to the validation set and computing 
the area under a receiver operating characteristic (ROC) 
curve at different relevant time points. Only patients with 
complete cases for the proposed risk factors were retained 
in the validation set. Each ROC curve was derived using 
patient survival probabilities at a given time t as predictor 
and patient death status at time t as binary outcome. Sur-
vival probabilities were predicted on the basis of patient 
covariates in the validation set. For the AFT model, poste-
rior mean parameters were used to simulate survival prob-
abilities. The 95 % CI for the time-dependent area under a 
ROC curve (AUROC) was computed on the basis of boot-
strapping resampling method. In addition, the integrated 
AUROC values across all time points were calculated as a 
global predictive accuracy or discrimination measure, using 
the R package riskset ROC [31]. Finally, since the follow-
up period in the validation set was longer than in the train-
ing set, we also check the ability of the PAR approach to 
extrapolate survival data beyond the training follow-up 
period, by visual comparison of the observed and predicted 
survival curves.
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Results

Baseline risk factors

Among the 31 variables screened for the 271 patients of 
the training set, ECOG score (0 vs. 1 or 2), ALB, ALP 
(log-transformed), BSA, BILI, CA19-9 (log-transformed), 
NEUT (log-transformed) and baseline TS (TS0) were 
retained in the sparse model produced by the LASSO 
penalised CPH regression that is 8 variables in total. While 
an increase in most variables is associated with worse prog-
nosis, there is an inverse relationship between ALB and 
BSA and patient survival times. There is evidence in the 
literature that cancer of the body and tail of the pancreas 
are associated with poorer survival than head lesions [6]. In 
addition, it has been shown that diabetes might affect sur-
vival of patient with MPC [8]. Although CLOC and diabe-
tes status were not found to be important risk factors when 
analysing the training set, these variables were further reas-
sessed on the reduced-training set.

Tumour size time‑series model

The hierarchical nonlinear model provided a good descrip-
tion of the median trend and the variability in the TS time-
series of both the training and validation sets (Figure S1 
in the Online Resource). Of note, the TS model was fit-
ted to the validation data which were used to validate only 
the survival models. The predicted median trends in the 
TS time-series suggest that under gemcitabine treatment, 
tumours (target lesions) typically undergo slight shrinkage 
followed by smooth regrowth. Although this trend varies 
across the 152 patients of the training set and across the 
385 patients of the validation set (e.g. TS only increasing 
for some patients), the model was flexible enough to rea-
sonably capture individual profiles (Fig.  1). The posterior 
distributions of the model parameters are summarised in 
Table 1. Convergence was considered achieved for all mar-
ginal parameter distributions based on the potential scale 
reduction statistics (all <1.1). The uncertainty in all param-
eter values was reasonably small as indicated by the stand-
ard deviations.

Fig. 1   Observed (black open circles) and predicted (solid black lines) tumour size time course for six representative patients of the training set. 
The grey areas represent 95 % credible intervals for the individual predictions
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Survival analysis

Among the 152 patients for whom PTR at week 2–10 
could be interpolated and PTRmax could be calculated, 120 

patients had complete cases for ECOG score, ALB, ALP, 
BSA, BILI, CA19-9, CLOC, diabetes status, NEUT and 
TS0 (observed) and were therefore retained in the reduced-
training set. This data set was used to build a multivariate 
survival model by application of either the PAR or the COX 
approach. The distributions of the variables in the reduced-
training set are presented in the first column of Table  2. 
Fifty-eight patients (48  %) had died by the end of the 
study, with a median follow-up time of 19 weeks for the 62 
patients still alive. The median survival time estimate for the 
studied group is 33 weeks (95 % CI from 29 to 42 weeks).

The PAR approach

The AFT models using a lognormal distribution (AFTLN) 
or a Weibull distribution (AFTWB) for the distribution of 
survival times provided similar performance in describing 
the reduced-training set as indicated by the LOO estimates 
(−265.9 and −265.8 for the AFTLN and AFTWB models, 
respectively) and their standard errors (21.52 and 21.23 
for the AFTLN and AFTWB models, respectively). A visual 
evaluation of the descriptive performance of the models is 
depicted in Figure S2 in the Online Resource. Hence, both 

Table 1   Posterior quantities for the parameters of the tumour size 
time-series models for the training and validation sets

SD standard deviation

Symbols θ log-transformed population means, ω interpatient standard 
deviations, σ residual standard deviation

Posterior means and SDs calculated on 2000 samples obtained by 
pooling 4 chains of 500 samples after burn-in for each

Parameter Training Validation

Mean SD Mean SD

θBASE 4.58 0.0414 4.52 0.0367

θSR −6.78 0.166 −6.92 0.0702

θPR −3.17 0.301 −5.79 0.643

ωBASE 0.648 0.0307 0.682 0.0267

ωSR 1.32 0.135 1.27 0.0976

ωPR 0.835 0.226 2.45 0.368

Σ 0.150 0.0065 0.235 0.0071

Table 2   Baseline 
characteristics and tumour size 
reduction metrics for patients 
by the reduced-training set 
(complete cases from the 
original training set) and the 
validation set

NE not extracted, CLOC pancreatic cancer location, DIAB diabetes status, ECOG Eastern Cooperative 
Oncology Group status score, ALB albumin, ALP alkaline phosphatase, BSA body surface area, BILI biliru-
bin, CA19-9 carbohydrate antigen 19-9, NEUT neutrophil count, TS0 baseline tumour size, PTRwkx percent-
age tumour size change from baseline at week x, PTRmax best percentage tumour size change from baseline 
within 12 weeks
a  Model-derived

Variable Reduced-training set Validation set

(120 patients, 58 deaths) (235 patients, 204 deaths)

Categorical Category (%) Category (%)

 CLOC Entire pancreas or head (68) versus body or tail (32) NE

 DIAB Yes (32) versus no (68) NE

 ECOG 0 (37) versus 1 or 2 (63) NE

Continuous Median (range) Median (range)

ALB (G/l) 41 (26–62) 43 (28–53)

ALP (IU/l) 161 (5.04–1686) NE

BSA (m2) 1.78 (1.31–2.29) 1.84 (1.34–2.49)

BILI (µmol/l) 10.3 (1.71–34.4) NE

CA19-9 (IU/ml) 1426 (0.6–294,800) NE

NEUT (G/l) 5.75 (1.55–34.7) 5.40 (1.50–17.3)

TS0 (mm) 107 (19–378) 95 (10–358)

PTR (%)a

  wk2 1.00 (−5.20 to 25.8) 1.45 (−17.7 to 51.32)

  wk4 1.97 (−10.4 to 44.3) 2.87 (−35.4 to 75.7)

  wk6 2.89 (−15.7 to 57.4) 4.25 (−53.1 to 87.1)

  wk8 3.78 (−21.0 to 66.7) 5.61 (−70.9 to 92.2)

  wk10 4.66 (−26.3 to 73.1) 6.94 (−88.7 to 94.4)

 PTRmax (%) 9.59 (−71.4 to 78.9) 7.14 (−582 to 100)
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models were used for the multivariate analysis and were 
further validated. Using the AFTLN, TS0 (centred at the 
median), ALB (centred at the median) and PTR at week 2 
(PTRwk2) were found to be the best predictor of patient time 
to death. When analysing the survival data with the AFTWB 
model, only TS0 and BSA (centred at the median) were 
identified as predictors. It should be noted that the predic-
tive values of PTR at week 2, 4, 6, 8 and 10 were the same 
when using the AFTLN model. Nevertheless, we chose to 
carry on the analysis with the earliest TS reduction metric, 
i.e. PTR at week 2. In the AFTWB model, the coefficients 
of all PTR variables have credible intervals that include 
zero. An example of Stan code for the AFTWB model is pre-
sented in “Appendix 2”. Potential scale reduction statistics 
(all ˂1.1) indicated that all parameter distributions seemed 
to have converged to approximate equilibrium. The poste-
rior marginal distributions are summarised in Table 3.

The COX approach

After backward deletion of the 11 variables (including 
the TS0 and PTRmax variables) evaluated in the multivari-
ate CPH model, only TS0 (centred at the median), BSA 
(centred at the median) and PTRmax were found to be sig-
nificant risk factors (P values <0.0001, of 0. 0087 and of 
0.0008, respectively). However, the bootstrap 95  % CI 
for the BSA coefficient included zero (−3.97 to 0.485). 
Hence, only TS0 (in mm) and PTRmax were retained in 
the CPH model (referred to as the “COX1” model) with 
coefficient estimates of 0.0064 (95  % CI from 0.0032 
to 0.0134) and −1.29 (95 % CI from −4.40 to −0.184), 
respectively. Interaction of these two variables with time 
did not significantly improve the model (all P values 
>0.2) which suggests that the assumption of proportional 
hazards is reasonable (see also Figure S3 in the Online 
Resource). When excluding the TS-related variables TS0 
and PTRmax from the multivariate regression, only NEUT 
(log-transformed) was identified as significant survival 
predictor (P = 0.0006) with coefficient estimate of 0.759 
(95 % CI from 0.336 to 1.72). The interaction with time 
also did not significantly improve the model (P  >  0.1). 
This model is referred to as the “COX2” model in the rest 
of the report. The bias-corrected concordance probability 
was estimated to be 0.71 and 0.66 for the COX1 and COX2 
models, respectively, which suggests that the COX1 model 
distinguishes high-risk patients from low-risk patients bet-
ter than the COX2 model.

Predictive performance

Only patients with complete cases for ALB, BSA, NEUT, 
PTRwk2, PTRmax and TS0 were retained in the validation 
set (235 patients, 204 deaths) to evaluate the performance 

of the PAR and the COX approaches in predicting MPC 
survival data. The distribution of these variables is sum-
marised in the second column of Table 2. The median fol-
low-up time for patients still alive was 57 weeks, and the 
median survival time estimate for the group is 35  weeks 
(95 % CI from 30 to 40 weeks).

Table 3   Posterior quantities for the parameters of the lognormal and 
Weibull accelerated failure time models for the survival data of the 
reduced-training set

Lognormal distribution: µ is the mean and σ the scale parameter

Weibull distribution: α is the shape and λ the scale parameter

Intercepts θ0 and coefficients θx are for the log-transformed parame-
ters that include covariates (see “Material and methods” and example 
of Stan code in “Appendix 2”)

Posterior means and percentiles were calculated on 2000 samples 
obtained by pooling 4 chains of 500 samples after burn-in for each

Parameter Mean 95 % credible interval

Lognormal

 log(µ)

  θ0 1.25 (1.21; 1.29)

  θTS0 −0.001 (−0.0015; −0.0005)

  θPTRwk2 1.07 (0.189; 2.01)

  θALB 0.0079 (0.0006; 0.0151)

 σ 0.544 (0.453; 0.661)

Weibull

 α 2.33 (1.92; 2.75)

 log(λ)

  θ0 3.80 (3.67; 3.93)

  θTS0 −0.0037 (−0.0052; −0.0022)

  θBSA 0.762 (0.103; 1.44)

Fig. 2   Time-dependent area under the ROC curve for the two 
parametric accelerated failure time models evaluated by the PAR 
approach and for the two Cox proportional hazards models evaluated 
by the COX approach
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The predictive performance of the two approaches 
was compared by calculating the AUROC at 3, 6, 9 and 
12  months. This time points were chosen because the 
median survival times reported in recent randomised trials 
[19, 20] fall in this range. The time dependency of AUROC 
for the AFTLN, AFTWB, COX1 and COX2 models is depicted 
in Fig. 2. The AFTLN model typically performs better than 
the other models. Also, the performance of the COX mod-
els seems to decrease with time. However, for clarity, the 
AUROC time curves are plotted without their confidence 
bands which all overlap at any time. The integrated AUROC 
values across all time points were 0.68 (95 % CI 0.60–0.75), 
0.60 (95  % CI 0.51–0.68), 0.65 (95  % CI 0.57–0.73) and 
0.64 (95  % CI 0.55–0.72) for the AFTLN, AFTWB, COX1 
and COX2 models, respectively. The 95 % CIs of the inte-
grated AUROC values overlap, which suggests that all four 
models perform globally, similarly on the validation set. 
The extrapolation ability of the AFTLN and AFTWB models 
is illustrated in Fig. 3 and seems to be higher for the AFTLN.

Discussion

Prognostic models for survival of patients with MPC are essential 
to identify stratification variables and control for known impor-
tant variability in the data when conducting large, prospective, 
Phase III randomised controlled trials. It is also essential to indi-
vidualise care and treat patients more effectively. In this study, 
two different survival modelling approaches have been evaluated 
retrospectively using the control arm data of two independent 
Phase III studies of patients under gemcitabine treatment. The 

first approach, referred to as the PAR approach, aims at incor-
porating model-predicted TS reduction metrics into a parametric 
survival model that can be used for clinical trial simulations. This 
approach utilises time-series of imaging data to interpolate early 
change in TS for all patients. The second approach, referred to as 
the COX approach, simply aims at identifying empirical prog-
nostic factors with the commonly used multivariate CPH regres-
sion model. Our results suggest that the two approaches perform 
similarly in predicting survival probability of new MPC patients, 
as indicated by the 95 % CIs of the integrated AUROC values.

Regardless of the modelling approach applied, the baseline 
variable TS0 appears to be a significant prognostic factor for 
patients with MPC, although the effect is weak overall: in the 
COX1 model for instance, the hazard ratio (HR) for 1-cm increase 
in TS0 is 1.07 (95 % CI 1.03–1.14); in the AFTLN model, the ratio 
of median survival time (AF) for 1-cm increase in TS0 is 0.990 
(95 % credible interval 0.985–0.995). The other risk factors iden-
tified were different depending on which approach was applied. 
With the PAR approach, the metric PTR at week 2 was identi-
fied as strong survival predictors in the AFTLN model (AF ratio of 
2.92 for 1 unit increase, with 95 % credible interval from 1.21 to 
7.46) although it was not in the AFTWB model. The fact that the 
predictive value of the PTR metric was similar at each time point 
assessed (week 2–10) is consistent with the predicted median TS-
dynamic trend in the studied patients treated with gemcitabine 
(Figure S1 in the Online Resource). Also, patients with higher 
albumin levels were found to survive slightly longer (AF ratio of 
1.08 with 95 % credible interval from 1.01 to 1.16), which is con-
sistent with biology (inflammation marker) and with a previously 
reported MPC prognostic model [7]. Finally, increase in BSA was 
related to increase in median survival time (AF ratio of 2.14 with 

Fig. 3   A visual evaluation of the ability of the lognormal and 
Weibull accelerated failure time models to predict the survival data in 
the validation set. The observed median survival curves (solid black 
lines) are plotted along with their 95 % confidence intervals (dashed 

black lines) as well as with the simulated median survival curves 
(solid grey lines) and their 95 % credible intervals (grey areas). The 
vertical dashed lines represent the last follow-up time in the reduced-
training set, i.e. 69 weeks
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95 % credible interval from 1.11 to 4.22) in the AFTWB model. 
Since patients undergoing gemcitabine chemotherapy are dosed 
by BSA, this means that patients with higher doses might survive 
longer, which suggests that the standard dose for gemcitabine 
(1000 mg/m2) might not be optimal for all studied MPC patients. 
Using the COX approach, PTRmax was identified as significant 
risk factor with HR estimate of 0.275 (95 % CI 0.0123–0.832). 
However, the CPH model that includes only NEUT as covariate 
(COX2 model) performed as well as the model with both TS0 and 
PTRmax (COX1 model) in predicting patient survival, thereby sug-
gesting that variables derived from TS imaging data might not 
be better prognostic factors for patients with MPC than some of 
the toxicology markers like baseline neutrophils. Patients with 
high pre-treatment neutrophil counts are probably more at risk 
than patients with lower counts (HR ratio of 2.14 with 95 % CI 
from 1.40 to 5.58), as it was suggested in a previous study [10]. It 
should be noted that only NEUT was retained in the CPH model 
when analysing the reduced-training set (excluding TS-related 
variables) compared to 8 variables when analysing the original 
training set using the LASSO method. This can be explained by 
the decreased power of the analysis when reducing the training set 
and probably also by the difference of variable selection method.

The choice of the modelling approach clearly depends on the 
purpose of the survival analysis. The PAR approach has been 
recommended to aid oncology drug development decisions such 
as compound screening, dose selection and trial design [15–18]. 
In the present example for MPC, this approach could reason-
ably predict the mortality risk of patients from an independ-
ent study, with similar performance compared to the more con-
ventional COX approach. However, our work suggests caveats 
against the PAR approach. Firstly, a unique AFT model could not 
be selected on the basis of the training set (see Figure S2 in the 
Online Resource), possibly due to the small study sample size 
(120 patients, 58 deaths). This emphasises the difficulty of defin-
ing the distribution of survival times when using parametric mod-
els with limited survival data. Although the AFTLN and AFTWB 
models could predict the validation data with similar global pre-
dictive accuracy, the distributional assumption on time to death 
seems to affect the identification of prognostic factors (Table 3) as 
well as the extrapolation ability of the model (Fig. 3). It should 
be stressed that using the Weibull distribution, longitudinal TS 
metrics were not identified as better survival predictors than other 
baseline characteristics. Nevertheless, we acknowledge that other 
commonly used AFT models, such as the log-logistic and gen-
eralised gamma distributions, were not assessed in this analysis 
and might provide a better description of the training data than the 
lognormal and Weibull distributions. Secondly, the PAR approach 
is more time-consuming than the COX approach as it involves 
modelling the TS dynamics rather than simply evaluating empiri-
cal metrics. Also, the individual model parameters, used to inter-
polate early change in TS for each patient, always carry uncer-
tainty. For simplicity, we ignored parameter uncertainty in the 
present analysis by using the posterior means of the individual 

parameters. However, this can introduce bias in the subsequent 
evaluation of these variables as survival predictors. Ideally, sev-
eral sets of TS reduction metrics should be produced by sampling 
from the posterior distribution of the individual parameters, if a 
Bayesian approach is applied. This issue has also been addressed 
in a frequentist modelling approach where shrinkage of individual 
parameter estimates can affect the type I error of falsely detecting 
or failing to detect TS metrics as predictors of survival [32].

We developed the parametric AFT models using a Bayes-
ian approach mainly because we found a probabilistic pro-
gramming language convenient for the analysis of censored 
data and because credible intervals for the covariate effects 
are obtained. The identification of prognostic factors was sim-
ply done by forward selection based on LOO estimates and 
the 95 % credible intervals of the coefficients. Alternatively, 
methods that use shrinkage priors could be employed for vari-
able selection [33, 34]. These methods are similar to frequen-
tist penalised regressions, in the sense that the coefficients of 
(apparently) irrelevant covariates would have credible inter-
vals that include zero, although it offers the advantage of read-
ily producing the uncertainty distribution of the parameters.

In conclusion, the PAR modelling approach that utilises 
model-derived TS metrics in addition to baseline patient char-
acteristics could predict reasonably well survival of patients 
with MPC undergoing gemcitabine chemotherapy. However, 
determining the distribution of survival times appeared chal-
lenging with data from only one small study and seems to 
affect the identification of risk factors. Moreover, the predic-
tive performance was not significantly better than a simple 
CPH model that incorporates only baseline neutrophil count 
as covariate. Nevertheless, our findings should be confirmed 
by analysing data sets that have higher power for multivari-
able survival regression. In particular, the predictive value of 
the new potential prognostic factors BSA (gemcitabine dose) 
and TS-related metrics should be reassessed together with 
established risk factors on a larger MPC study.
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Appendix 1: Stan code for the hierarchical model 
of the tumour size time‑series
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Appendix 2: Stan code for the Weibull accelerated 
failure time model
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