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Consistent activation and functioning of thyroid hormones are essential to the human
body as a whole, especially in controlling the metabolic rate of all organs and systems.
Impaired sensitivity to thyroid hormones describes any process that interferes with the
effectiveness of thyroid hormones. The genetic origin of inherited thyroid hormone defects
and the investigation of genetic defects upon the processing of thyroid hormones are of
utmost importance. Impaired sensitivity to thyroid hormone can be categorized into three
conditions: thyroid hormone cell membrane transport defect (THCMTD), thyroid hormone
metabolism defect (THMD), and thyroid hormone action defect (THAD). THMD is caused
by defects in the synthesis and processing of deiodinases that convert the prohormone
thyroxine (T4) to the active hormone triiodothyronine (T3). Deiodinase, a selenoprotein,
requires unique translation machinery that is collectively composed of the selenocysteine
(Sec) insertion sequence (SECIS) elements, Sec-insertion sequence-binding protein 2
(SECISBP2), Sec-specific eukaryotic elongation factor (EEFSEC), and Sec-specific tRNA
(TRU-TCA1-1), which leads to the recognition of the UGA codon as a Sec codon for
translation into the growing polypeptide. In addition, THMD could be expanded to the
defects of enzymes that are involved in thyroid hormone conjugation, such as
glucuronidation and sulphation. Paucity of inherited disorders in this category leaves
them beyond the scope of this review. This review attempts to specifically explore the
genomic causes and effects that result in a significant deficiency of T3 hormones due to
inadequate function of deiodinases. Moreover, along with SECISBP2, TRU-TCA1-1, and
deiodinase type-1 (DIO1) mutations, this review describes the variants in DIO2 single
nucleotide polymorphism (SNP) and thyroid stimulating hormone receptor (TSHR) that
result in the reduced activity of DIO2 and subsequent abnormal conversion of T3 from T4.
Finally, this review provides additional insight into the general functionality of selenium
supplementation and T3/T4 combination treatment in patients with hypothyroidism,
suggesting the steps that need to be taken in the future.
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INTRODUCTION

Selenium as a basic element was first discovered by the Swedish
chemist Jons Jacob Berzelius in 1817 (1, 2). Selenium is a trace
element, and as such a “micronutrient” in humans and animals is
generally obtained from the diet through food or other forms of
supplementation (3, 4). We obtain dietary selenium in the form
of selenomethionine (SeMet), selenocysteine (Sec), selenate, and
selenite. Selenium metabolic systems play significant
physiological roles in thyroid hormone metabolism, immunity,
and antioxidant defense (4, 5). Selenium deficiency is associated
with the occurrence, virulence, and progression of viral
infectious diseases (6). In contrast, selenium supplementation
resulted in immunostimulation, such as enhanced proliferation
of activated T cells, activation of natural killer cells, and tumor
regression mediated by cytotoxic lymphocytes (7, 8).

Selenium inadequacy is related to various types of diseases,
such as cardiovascular disease (9–13), cancer (14–16),
hepatopathy (17, 18), and arthropathy (19). Keshan disease is
an endemic cardiomyopathy that occurs in selenium deficient
areas in China and is prevented by sodium selenite
supplementaion (9, 10, 12). Selenium deficiency is correlated
with a significant increase in cancer incidence and mortality
(14–16) and epidemiological evidence has accumulated on the
cancer-preventing effects of selenium (20–22). Low selenium
status is also characterized by liver injury (18) presumably
resulting from elevated levels of oxidative stress (23). Oxidative
stress caused by selenium deficiency plays a detrimental role in
the development of joints (19). Selenium deficiency is the main
cause of endemic Kashin–Beck disease (KBD), which is mainly
presented as an arthropathy and reported in low-selenium areas
of Far Eastern Asia. Furthermore, the pathogenesis of
osteoarthritis (OA) may also be associated with oxidative stress
caused by selenium deficiency (24–28).

Selenium is required for the production of thyroid hormone-
metabolizing enzymes that are deiodinases, and selenium
supplementation is thought to improve the function of
thyrocytes (29). Impaired sensitivity to thyroid hormones,
including genetic defects in thyroid hormone transport,
metabolism, and action, describes disorders that interfere with
the biological actions of thyroid hormone (30–32). Herein, we
review the pathophysiology of impaired sensitivity to thyroid
hormone. Of these, inherited disorders caused by thyroid
hormone metabolism defects, mainly due to dysfunction
of deiodinase, one of the selenoproteins, including the
selenoprotein physiology, will be highlighted.
SELENOPROTEIN

Selenium
Selenium is a trace element. Selenium metabolism systematically
proceeds in the order of absorption, transportation,
transformation, and excretion of selenium (Figure 1). Selenium
is taken from the diet in organic forms, Sec and SeMet, and
inorganic forms Selenate and Selenite. Selenium is absorbed by
small intestine and taken up by the liver, which synthesizes and
Frontiers in Endocrinology | www.frontiersin.org 2
exports the selenoprotein P (SELENOP), ultimately circulating in
the bloodstream. SELENOP, with a number of Sec residues, carries
selenium to other tissues and organs, and the transported selenium
is converted to selenophosphate via intracellular selenium
metabolic pathway (33, 34). Selenium is excreted through
exhalation and urine. Selenosugars are key urinary metabolites
for selenium excretion within the required to low-toxic range
(35–37).

Selenium plays a biological role mainly in the form of
selenoproteins synthesized by the selenium metabolic system.
Glutathione (GSH) and thioledoxin (TXN) systems first reduce
ingested inorganic selenium to hydrogen selenide (H2Se). Sec
amino acids converted from selenide are incorporated into specific
sites of selenoproteins, such as the catalytic sites of the
selenoenzyme. Mechanistically, selenophosphate is produced by
the catalytic action of selenophosphate synthetase 2 (SEPHS2)
through the reduction of hydrogen selenide. The subsequent
reaction with phosphoseryl-tRNA (PSer-TRU-TCA1-1) yields
Sec-TRU-TCA1-1. The intracellular machinery utilizing the
UGA codon incorporates Sec amino acids into polypeptide
chains. Selenocysteine insertion sequence binding protein 2
(SECISBP2) binds to the selenocysteine insertion sequence
(SECIS) element located in the 3’-untranslated region (UTR) of
selenoprotein mRNA, mediating the transfer of Sec-TRU-TCA1-1
to the A-site of the ribosome, which recognizes the UGA codon
for integration of Sec. The selenoprotein translation machinery is
collectively composed of SECIS elements, SECISBP2, Sec-specific
eukaryotic elongation factor (EEFSEC), and aminoacylated
Sec-TRU-TCA1-1, which can make the UGA codon recognized
as a Sec codon and can be translated into the growing
polypeptide (19).

Selenocystein
Selenocystein (Sec) is the 21st proteinogenic amino acid, which
was discovered by biochemist Thressa Stadtman at the National
Institutes of Health (2, 38). Sec is a cysteine analogue with a
selenium-containing selenol group in place of the sulfur-
containing thiol group. After a long standing investigatory
period, Sec has been confirmed as a new proteinogenic amino
acid only after TRU-TCA1-1 was identified and characterized
first in procaryote and later in mammalians (39–42).

Selenoprotein
Selenoprotein is a protein containing a Sec amino acid residue.
The biological function of selenium is mostly demonstrated
through the selenoprotein domain, which contains Sec residues.
Twenty-four selenoproteins have been identified and
characterized in mice. Targeted deletion of these selenoproteins
has revealed their essential roles in developmental processes and in
the pathogenesis of diseases (43). In the human genome,
25 selenoprotein genes have been identified so far (44).
Selenoproteins can be classified into subfamilies based on their
cellular functions, such as anti-oxidation [Glutathione peroxidase
(GPX)-1, GPX2, GPX3, and GPX4], calcium metabolism
(SELENOK, SELENOT), myogenesis (SELENON), protein
AMPylation (SELENOO), protein folding (SELENOF,
SELENOI, SELENOS), redox regulation [thioredoxin reductase
January 2022 | Volume 12 | Article 803024
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(TXNRD)-1, TXNRD2, TXNRD3, methionine sulfoxide reductase
(MSRB)-1, SELENOH, SELENOM, SELENOW], selenium
transport and storage (SELENOP), selenophosphate synthesis
(SEPHS2), and thyroid hormone metabolism [deiodinase (DIO)-
1, DIO2, DIO3] (45, 46). The cellular functions of other
selenoproteins, such as GPX6 and SELENOV, remain to be
elucidated. GPXs, such as GPX1 (cytosolic GPX), GPX2
(gastrointestinal GPX), and GPX4 (phospholipid hydroperoxide
GPX), promote the decomposition of a wide variety of peroxides,
protecting the cells from oxidative damage (47, 48). TXNRDs use
NADPH as an electron donor to return oxidized TXN to a
reduced dithiol, where oxidation states have a decisive effect on
regulating various cell behaviors, including proliferation and
apoptosis (49). The physiological importance of TXNRD is
further supported by the embryonic lethality of either Txnrd1 or
Txnrd2 knockout mice (50, 51). DIOs regulate thyroid hormone
metabolism by catalyzing the conversion of thyroid hormones
from precursor thyroxine (T4) to biologically active
triiodothyronine (T3) or inactive reverse T3 (rT3) (52). The
expression levels of some selenoproteins are affected by the
degree of selenium intake. Selenium deficient animals and
human cell lines, for example, have decreased the transcription
of selenoproteins, such as GPX1, DIOs, SELENOI, and
SELENOW (53–55). Some selenoproteins, such as GPX1 and
Frontiers in Endocrinology | www.frontiersin.org 3
SELENOW, are more sensitive to selenium supplementation
or deficiency. The hierarchy of selenoprotein expression is
more obvious at a limited intracellular selenium level
(3). Selenium deficiency in cells in culture has also shown to
reduce selenoprotein transcript levels by nonsense-mediated
decay (56).
THYROID HORMONE PHYSIOLOGY

Homeostatic regulation of the thyroid hormone economy is
tightly maintained by a feedback control mechanism involving
the hypothalamus, pituitary, and thyroid gland (H-P-T) axis, as
shown in Figure 2. As thyroid hormones are inhibitory for H-P-T
axis, the decreased supply of thyroid hormones decreases the
inhibitory effect on this axis leading to its increased activity.
Conversely, excess supply of thyroid hormones shuts down the
system through the same H-P-T axis pathway, resulting in a
restored steady state. Fine tuning of the local thyroid hormone
requirement is controlled through three additional steps. First,
thyroid hormone entry across the cell membrane through
transmembrane transporters such as MCT8 and MCT10
through facilitated diffusion (57–59). Second, the formation of
active T3 (triiodothyronine) by removal of one of the outer ring
FIGURE 1 | Selenium metabolic process in mammals. Selenium in organic forms, Sec and SeMet, and inorganic forms Selenate and Selenite taken from the diet,
undergoes several conversion steps, and is incorporated into polypeptide chains, completing synthesis of selenoprotein. Selenide is synthesized from inorganic forms
reduced by TXNRD/TRX or GRX/GSH systems and organic forms cleaved by SCLY. SEPHS2 synthesizes selenophosphate from selenide, and the subsequent reaction
with PSer-TRU-TCA1-1 mediated by SEPSECS yields Sec-TRU-TCA1-1. SECISBP2 binds to SECIS located in the 3′UTR of a selenoprotein mRNA and mediates the
transfer of Sec-TRU-TCA1-1 to the A-site of ribosome. Finally, Sec-TRU-TCA1-1 recognizes the UGA codon as the Sec integration codon. SeMet, selenomethionine;
Sec, selenocysteine; GRX, glutathione reductase; TRX, thioredoxin; TXNRD, thioredoxin reductase; GSH, glutathione; MGL, methionine gamma-lyase; SCLY,
selenocysteine lyase; SEPHS2, selenophosphate synthetase 2; SARS, seryl-tRNA synthetase; PSTK, phosphoseryl(Sep)-tRNA kinase; SEPSECS, Sep-tRNA: Sec-tRNA
synthase; EEFSEC, Sec-specific eukaryotic elongation factor; SECISBP2, SECIS binding protein 2. Modified from Exp Mol Med. 2020 August; 52: 1198–1208.
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iodine atoms (5’-deiodination) from prohormone T4 (thyroxine),
or inactive rT3 and T2 by inner ring (5-deiodination) from T4
and T3, respectively, provide additional levels of control (52).
Finally, the integrity of thyroid hormone receptors (THRs),
through which thyroid hormone action is mediated, determines
the type and extent of thyroid hormone response. Thyroid
hormone action occurs not only in the nucleus of the target
cell, but also in the cytoplasm (60, 61). The former, known as a
genomic effect, has been studied extensively (62, 63). There are
two THRs (THR-alpha and THR-beta) encoded by separate genes
located on chromosomes 17 and 3, respectively. Different
isoforms are formed by alternative transcription and splicing.
The receptors have structural and sequence similarities with DNA
binding and T3 binding domains. Other regions of the molecules
are involved in dimeric formation with another THR or another
type of nuclear receptor, and in binding coactivators and
corepressor cofactors (64, 65). In the nucleus, THRs act as
transcription factors that regulate the expression of certain
genes, which are recognized through the thyroid hormone
response element. Binding of unliganded dimeric receptors
(without T3) to the thyroid hormone response element and
recruitment of corepressor proteins results in inhibition of the
expression of genes that are positively regulated by T3. When T3
binds to a receptor, the THR molecule undergoes a steric change,
resulting in the release of corepressor proteins, dissociation of
dimers, and formation of heterodimers of THR and retinoid X
receptors that then bind coactivator proteins. This change
promotes the expression of target genes and ultimately
increases the synthesis of certain proteins. Although THRs
Frontiers in Endocrinology | www.frontiersin.org 4
reside primarily in the nucleus, they shuttle rapidly between the
nucleus and cytoplasm. Recently, cryptic cytoplasmic functions
have been described to other THR subtypes, expanding the
diverse cellular responses to thyroid hormone. (66). Thyroid
hormones can also act through binding sites at plasma
membrane such as integrin avb3 (67).
SYNDROMES OF IMPAIRED SENSITIVITY
TO THYROID HORMONE

Impaired sensitivity to thyroid hormone refers to any process
that interferes with the effects of thyroid hormone, including
defects in the transport, metabolism, or action of thyroid
hormone (30, 68–70). Each defect is named representing the
step affected as detailed in the following sections: (32, 71, 72).

Thyroid Hormone Cell Membrane
Transporter Defect (THCMTD)
Defects in one of the cell transport proteins that allow thyroid
hormones to enter cells can cause decreased intracellular levels of
thyroid hormones. Defective cell transport proteins may not
locate their normal sites on the cell membrane or transport
hormones. This causes a disorder depending on the hormone
transporter that is affected. For example, a defect in
monocarboxylate transporter 8 (MCT8) results in elevated
serum concentrations of T3 and low levels of T4 and rT3 (68).
This transporter is also involved in thyroid hormone secretion
from the thyroid gland (73).
A

B

C

FIGURE 2 | Regulation of TH supply, metabolism and genomic action. (A) Central feedback control that regulates the amount of TH in blood. (B) Intracellular
metabolism of TH, regulating TH bioactivity. (C) Genomic action of TH. CBP/P300, cAMP-binding protein/general transcription adaptor; TFIIA and TFIIB,
transcription intermediary factor II, A and B; TBP, TATA-binding protein; TAF, TBP-associated factor. Modified from Refetoff S, Dumitrescu AM. Syndromes of
reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab. 2007
Jun;21(2):277–305.
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Thyroid Hormone Metabolism
Defect (THMD)
T4, a major form secreted by the thyroid gland, is a prohormone
that must be converted to active T3 in the cytoplasm. Any defect
in the factors involved in this enzymatic deiodination reaction
can reduce T3 production, impairing the sensitivity to thyroid
hormones. Abnormalities in the synthesis or degradation of
various deiodinases may be included in these defects. Patients
in this category had low serum T3 and high T4 and rT3
concentrations. More details in this category of defects will be
described in section 5.

Thyroid Hormone Action Defect (THAD)
Theoretically, for the thyroid hormone to enter the target cell to
exhibit genomic effects, it must be transported into the nucleus
and form a complex with the thyroid hormone receptor (THR)
along with a series of cofactors to regulate the transcription of
target genes. Therefore, it can interfere with the action of thyroid
hormones due to disorders arising from defects in nuclear
migration and various cofactors, but there have been no
reports of patients showing such disorders in actual
clinical practice.

Genomic thyroid hormone action is mediated through THRs,
which act as transcription factors that activate or repress the
transcription of certain target genes. Most RTHs are caused by
THR defects (30). Mutant THR proteins have a reduced ability to
bind cognate ligands or protein cofactors or bind to target genes.
Mutations in the thyroid hormone receptor beta gene (THRB),
which encodes the thyroid hormone receptor beta (THR-beta),
are the most common cause of RTH and are defined as RTH-beta
(74). In contrast, RTH-alpha, caused by mutations in the thyroid
hormone receptor alpha gene (THRA), encoding thyroid
hormone receptor alpha (THR-alpha), has rarely been
reported (75).
INHERITED DEFECTS OF THYROID
HORMONE METABOLISM

SECISBP2 Mutations
Since SECISBP2 is epistatic to selenoprotein, SECISBP2 defects
lead to low expression levels of selenoproteins due to poor Sec
insertion and UGA decoding. To date, 12 families with
SECISBP2 mutations have been identified. Three of them had
homozygous alleles, while nine had compound heterozygous
alleles. Altogether, 20 unique SECISBP2 mutations have been
reported (70, 76–82)

Nearly all families from published cases exhibit common TFT
abnormalities: elevated free T4 (FT4), elevated rT3, low free T3

(FT3), and normal or slightly elevated TSH levels. Such
abnormalities are a universal indication of dysfunctional T4 to
T3 conversion due to deficient DIOs from epistatic SECISBP2
mutations (83).

Other biochemical signatures include low serum selenium
levels, reflecting deficiencies of SELENOP and GPX3. Similarly,
all but one patient (Family 5) exhibited short stature and delayed
Frontiers in Endocrinology | www.frontiersin.org 5
skeletal development (78). These are the most common clinical
features of SECISBP2mutations. Growth retardation in Dio2 and
Dio3 null mice suggests that the human phenotype is also
mediated by abnormal thyroid hormone metabolism (84, 85).
For more severe cases, failure to thrive was observed, while
Family 4, arguably the most extreme case, exhibited multiple
skeletal abnormalities such as craniofacial dysmorphism,
bilateral clinodactyly, kyphoscoliosis, and leg asymmetry (77).

Symptoms unrelated to the skeleton and growth vary greatly
depending on the severity of the mutations. Among the
published cases, six suffered from delayed motor milestones
and muscle weakness, especially in the legs (77–81). Families 5,
6, and 7 all exhibit characteristic phenotypes of SEPN1
myopathies due to defects in SELENON, affected axial muscles,
adductors, and sartorius (78, 79). Additionally, families 7 and 10
have connective or fatty tissue infiltrating the adductor muscles
(79, 81). In some cases, myopathy is severe enough to exhibit
Gowers’ signs or a waddling gait. All families suffering from
myopathy, except for family 6, also suffer from neurological
symptoms (78). Intellectual disability is the most common, while
families 5 and 10 each have milder neurological symptoms:
delayed motor milestones and attention deficit disorder,
respectively (78, 81). Neurological phenotypes are difficult to
associate with a deficit of any specific selenoprotein.

In severe cases, bilateral hearing loss (either sensorineural or
conductive), secretory otitis media, and rotatory vertigo have
been observed (77–79). One hypothesis associates this phenotype
with a DIO2 deficit (84). However, a more recent alternate
hypothesis suggests that the buildup of reactive oxygen species
(ROS) due to antioxidant GPX1 deficiency leads to cochlear
damage and hearing loss (78).

Common metabolic phenotypes such as elevated fat mass
index, obesity, and paradoxically increased systemic sensitivity to
insulin have also been observed in adults and children (78). Gpx1
null mice exhibiting increased ROS levels become insulin
sensitive (86). In contrast, mice overexpressing Gpx1 develop
insulin resistance (87). Thus, it is likely that these phenotypes are
the result of increased cellular ROS due to GPX1 deficiency.
Overall, a link between selenoproteins and systemic insulin
sensitivity has been suggested. Family 10 was noted as the
patient exhibited impaired glucose tolerance despite GPX1
deficiency (81). These conditions are assumed to be
independent of SECISBP2 mutations.

The only adult in the studies, proband of family 5, exhibits
unique phenotypes such as azoospermia and photosensitivity
(78). Azoospermia is likely a result of the underexpression of
GPX4, thioredoxin/glutathione reductase (TGR), and selenium-
containing protein V (SELENOV), the first two of which are
integral in sperm development. Cutaneous photosensitivity is
attributed to the underexpression of the antioxidant
selenoprotein, which increases susceptibility to ROS generation
from UV rays. The other characteristics and clinical features are
summarized in Table 1.

TRU-TCA1-1 Mutation
Homozygosity mapping with known consanguinity in the
proband (an 8-year-old boy who exhibited thyroid dysfunction
January 2022 | Volume 12 | Article 803024
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TABLE 1 | Selenoprotein mutations affecting thyroid hormone metabolism defects (THMDs) and their clinical features.

balance Metabolic effects and others Status

– Homozygous

– Compound
heterozygous

– Homozygous

rineural Obesity. Protruding tongue. Left eye
semiptosis

Compound
heterozygous

rineural

s media.
o

Fatigue. Severe Raynaud disease.
Azoospermia. Photosensitivity.
Persistent reduction in rbc and total
lymphocyte counts. Elevated fat mass
index, increased insulin sensitivity

Compound
heterozygous

rineural Nonketotic hypoglycemia. Eosinophilic
colitis. Elevated fat mass index,
increased insulin sensitivity

Compound
heterozygous

ctive

s media.
o

Fatigue. Bilateral hyperopia, esotropia.
Hypoplastic thyroid gland

Compound
heterozygous

– Compound
heterozygous

– Compound
heterozygous

Obesity, impaired glucose tolerance.
Fatigue. Right eye ptosis

Homozygous

– Compound
heterozygous

– Compound
heterozygous

Fatigue. Abdominal pain. Homozygous

Anorexia and weight gain.
Hypothyroidism

Homozygous*

Heterozygous*

Thyroid goiter, congenital
hypothyroidism

Homozygous

Heterozygous

Down syndrome Heterozygous

Resistance to TRH. Elevated cholesterol Heterozygous

erozygous DIO2mutation and a homozygous TSHRmutation.
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Family #
(Reference)

Mutations Protein
change

Thyroid hormone
metabolism

Skeletal structure and growth Muscular and neurological effects Hearing and

FT4 rT3 FT3 TSH

SECISBP2
1 (70) c.1619G>A p.R540Q ↑ ↑ ↓ ↑ Short stature, delayed bone age – Normal

2 (70) c.1312A>T p.K438X ↑ ↑ ↓ normal Short stature, transient growth
retardation

– Normal

c.1283+29G>A, abnormal splicing Frameshift

3 (76) c.382C>T p.R128X ↑ ↑ ↓ normal Short stature, delayed bone age – –

4 (77) c.358C>T p.120X ↑ ↑ ↓ ↑ Short stature, delayed bone age.
Failure to thrive. Craniofacial
dysmorphism. Bilateral clinodactyly,
short fifth metacarpals.
Kyphoscoliosis, leg asymmetry

Hypotonia, hyporeflexia, limited flexion of the neck.
Symmetrical generalized peripheral sensitive
neuropathy in the legs. Hip girdle weakness,
waddling gait, Gower’s sign. Impaired motor
coordination. Intellectual disability

Bilateral sens
hearing loss

c.2308C>T p.R770X

5 (78) c.668delT p.F223F
fs X32

↑ ↑ normal normal Genu valgus, external rotation of
the hip

Muscle weakness, reduced aerobic exercise
capacity, reduced lung vital capacity. Abnormal
spinal curvature, fatty infiltration. Delayed motor
and speech developmental milestones

Bilateral sens
hearing loss.
Secretory otit
Rotatory vertc.881-155T>A, abnormal splicing Frameshift

6 (78) c.2071T>C p.C691R ↑ ↑ ↓ normal Short stature, delayed
development. Failure to thrive

Muscle weakness, hypotonia, lumbar spinal rigidity,
nasal voice. Delayed motor milestones

Bilateral sens
hearing loss

Intronic SNP, abnormal splicing Frameshift

7 (79) c.1529_1541dupCCAGCGCCCACT p.M515Q
fs X48

↑ – ↓ normal Short stature, delayed
development. Failure to thrive

Delayed motor and intellectual milestones. Fatty
infiltration. Intellectual disability

Bilateral cond
hearing loss.
Secretory otit
Rotatory vertc.235C>T p.Q79X

8 (80) c.2344C>T p.Q782X ↑ ↑ ↓ normal Delayed development Delayed motor and intellectual milestones.
Intellectual disability’

Normal

c.2045-2048 delAACA p.K682 fs
683X

9 (82) c.589C>T p.R197X ↑ ↑ normal normal Short stature, delayed
development. Failure to thrive

– –

c.2037G>T p.E679D

10 (81) c.2045-2048 p.K267K
fs X2

↑ ↑ ↓ normal – Leg weakness, Gowers’ sign. Fatty infiltration.
Attention deficit disorder

–

11 (82) c.1588A>G p.T530A – – – – – – –

c.1711C>T p.Q571X

12 (82) c.283delT p.Y95I fs
X31

– – – – – – –

c.589C>T p.R197X

TRU-TCA1-1
13 (88) C65G ↑ ↑ normal normal – Muscle weakness –

DIO2 and TSHR
14 (89) DIO2 c.274A>G p.T92A ↓ – ↓ ↑ – – –

TSHR c.1349G>A p.R450H

15 (89) DIO2 c.274A>G p.T92A ↓ – ↓ ↑ – – –

TSHR c.1574T>C p.F525S

DIO1
16 (90) c.282C>A p.N94K – ↑ ↓** ↑ – – –

17 (90) c.603G>A p.M201I – ↑ ↓** – – – –

*The proband has a homozygous deiodinase type-2 (DIO2) mutation and a heterozygous thyroid-stimulating hormone receptor (TSHR) mutation, whereas his affected grandson has a he
**Free T3 (FT3) levels by themselves were never specified. The probands were tested for reverse T3 (rT3)/FT3 ratio.
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[raised T4, normal T3, raised reverse T3]) identified a single
interval in the proband, encompassing the chromosomal locus of
only one gene (TRU-TCA1-1) in the Sec-incorporation pathway.
Sequencing of this gene in the proband indicated homozygosity
for a single nucleotide change, C65G in TRU-TCA1-1 (88). The
early stages of tRNASec maturation involve sequential base
modifications, yielding two major tRNASec isoforms containing
either 5-methoxycarbonyl-methyluridine (mcm5U) and 5-
methoxycarbonyl methyl-2’-O-methyluridine (mcm5Um) at
position 34, situated in the anticodon loop. Isoform containing
mcm5U is known for its role in synthesizing housekeeping
selenoproteins, while another isoform containing mcm5Um is
known to be responsible for the synthesis of stress-related
selenoproteins (91, 92). Primary cells from the proband
showed a marked reduction in the mcm5Um isoform of
tRNASec, whereas the mcm5U isoform of tRNASec was
relatively preserved. Radiolabeled tRNASec injection into
Xenopus oocytes followed by chromatography analysis
indicated significantly attenuated base modification in C65G
TRU-TCA1-1 compared with the wild-type, indicating
weakened subsequent methylation of mcm5U at position U34.
This confirms that the maturation of mutant tRNASec is
impaired. These findings indicate that a TRU-TCA1-1
mutation can selectively impair the synthesis of stress-related
selenoproteins (88).

DIO2 SNP and TSHR Mutations
In an extensive case-finding study conducted in Korea, which
targets patients who present inappropriately high TSH levels
despite a high dose of levothyroxine (L-T4) and a drop in TSH
levels only after addition of liothyronine (L-T3), two patients
were noted (89). The first is a 68-year-old Asian man with
symptoms of anorexia and weight gain for three months. Initial
serum TSH was 85.50 mIU/L (0.27–4.20) and FT4 was 0.16 ng/
dL (0.93–1.70). After diagnosis of hypothyroidism, he began to
take L-T4 at 100 mg per day, but his serum TSH level was not
suppressed. When L-T3 30 mg was administered three times a
day instead of L-T4 100mg, the serum TSH level dramatically
decreased. The second patient was a 75-year-old Asian woman
who had suffered from a huge thyroid goiter (up to 10 cm in
diameter) since her early twenties. Her thyroid function tests
revealed extremely high TSH levels, inappropriately high FT4

and relatively low T3 levels; TSH 82 mIU/L, FT4>7.70 ng/dL, T3
64 ng/dL without thyrotoxic symptoms. Her goiter decreased in
size dramatically when administered L-T3 30 mg twice a day,
followed by a decrease in TSH level to 8.21 mIU/L and an
increase in T3 level to 94 ng/dL without differences in FT4 levels.
The TRH stimulation test revealed that it was less likely due
to either RTH-or TSH-secreting pituitary adenoma for
inappropriately increased TSH. Nucleotide sequencing of the
first patient revealed a homozygous SNP in the DIO2 gene
(c.274A>G, DIO2 T92A), which had previously been identified
in a certain portion of the population as a significant SNP (93)
and a heterozygous mutation in the TSHR gene (c.1349G>A,
R450H) (94). Interestingly, the second patient also had a
homozygous DIO2 T92A mutation, together with a
Frontiers in Endocrinology | www.frontiersin.org 7
heterozygous TSHR F525S mutation. Both TSHR R450H and
F525S are loss-of-function mutations. Since it was first reported
that DIO2 is regulated by TSH (95, 96), there have been reports
supporting the same concept in various cell types (97, 98). Large
cohort studies with normal thyroid function also support the
notion that TSH regulates DIO2 both in pediatric and adult
populations (99, 100). In the same context, one can hypothesize
that decreased signal from TSH due to defects in TSHR as well as
DIO2 dysfunctional SNP results in reduced activity of DIO2 and
abnormal conversion of T3 from T4 (Figure 3). To prove this
hypothesis, DIO2 activity was measured using fibroblasts
obtained and primarily cultured from patients harboring the
DIO2 T92A SNP together with the TSHR R450H mutation. Both
the relative activity and mRNA expression of DIO2 were blunt in
fibroblasts from the patient, confirming the hypothesis (89).

DIO1 Mutations
Next generation sequencing analyses of two patients from two
unrelated families presenting with abnormal TH metabolism and
elevated serum rT3 levels and rT3/T3 ratios revealed two missense
DIO1 mutations (p.Asn94Lys and p.Met201Ile) (90). In silico
prediction of these DIO1 mutants suggested pathogenic variants,
and in vitro assessment of the functional activity of DIO1 mutants
showed decreased enzymatic activities, confirming that this
mutation is disease-causing. Heterozygous Dio1 knock-out mice
back crossed>10 times into theWT57BL/J5 strain showed elevated
serumrT3 levels andelevated rT3/T3ratios, consistentwith thedata
observed in the affected patients. Advances and widespread
sequencing technologies will allow us to identify more mutations
in patients showing a bizarre thyroid function test.
SELENIUM SUPPLEMENTATION

Healthy Population
The effect of selenium deficiency and selenium supplementation
on general health, especially on thyroid function, remains to be
elucidated (29). Several trials have been conducted in regions
with different baseline selenium status in UK, New Zealand,
USA, and rural Tibet (101–105). No definite effects or consistent
adverse effects on thyroid function have been observed (102). In
critical illnesses, such as severe sepsis or trauma injuries,
selenium supplementation showed null or only moderate
effects on thyroid function (106, 107). These findings suggest
that selenium supplementation does not play an important role
in determining the serum thyroid hormone status. Meanwhile,
selenosis, i.e., an excess of Se intake, should be avoided, as Se in
high dosages is toxic, potentially due to elevated selenoprotein P
levels as observed in clinical trials with therapeutic dosages
of selenite.

SECISBP2 Mutations
Identification of the clinical phenotypes of affected patients and
the metabolic pathways responsible for them provides insight
into targeted treatment options. Selenium supplementation
could first be considered an ideal treatment modality for
January 2022 | Volume 12 | Article 80302
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disorders caused by selenium and selenoprotein dysregulation.
Administration of up to 400 µg of selenomethionine-rich yeast,
but not sodium selenite, normalized the serum selenium
concentration but did not recover normal thyroid hormone
metabolism in patients with SECISBP2 mutations (108). The
difference in Selenium bioavailability between selenomethionine
and selenite results from the efficiency of Selenium
incorporation. Selenomethionine seems to be more efficient
because it can be non-specifically incorporated into all
circulating serum proteins (109), whereas selenite is
metabolized and inserted as Sec into the growing peptide chain
of selenoproteins (110).

Autoimmune Thyroid Diseases
Hashimoto’s thyroiditis and Graves’ disease are the most
common autoimmune thyroid diseases (111). Reduced serum
selenium concentrations have been reported in patients with
Frontiers in Endocrinology | www.frontiersin.org 8
autoimmune thyroid disease (112, 113). Consequently, several
studies have tested the efficacy of selenium supplementation in
patients with Hashimoto’s thyroiditis. Three trials reported
successful reductions in TPO autoantibodies titers and/or
improvement of mood and well-being (114–117). As no
consistent adverse events were observed, routine selenium
supplementation in patients with Hashimoto’s thyroiditis was
considered as a promising adjuvant treatment option (118). It is
worth noting that experiences with subjects deficient in
both iodine and selenium, and displaying increased disease
symptoms when Se supplementation was initiated without
at the same time rais ing iodine supply (so cal led
myxedematous cretinism).

Selenium supplementation trials in patients with Graves’
disease are limited. One of the major and severe complications
of Graves ’ disease, ophthalmopathy (also known as
orbitopathy) is an inflammatory process in nature and
FIGURE 3 | TSHR loss-of function mutations and homozygous DIO2 T92A SNP (“double hit”) cause decreased activity of DIO2, resulting in a novel form of
abnormal thyroid hormone metabolism. cAMP produced by interaction of TSH and TSHR affects the cAMP response element located upstream of
promoter region of DIO2. Lack of cAMP production caused by loss-of-function mutation of TSHR and DIO2 T92A SNP cooperatively causes decreased
DIO2 enzymatic activity.
January 2022 | Volume 12 | Article 803024

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Lee et al. Inherited Thyroid Hormone Metabolism Defect
presents as a protrusion of one or both eyes. Increased
intraorbital pressure results in proptosis and compressive
neuropathy, and inflammation of the extraocular muscles
causes diplopia (119). One randomized clinical trial of
selenium supplementation in patients with mild Graves’
orbitopathy was performed, and the quality of life and eye
disease parameters improved significantly after 6 months of
treatment (120, 121). Recently, it was reported that selenium
suppressed hyaluronan production, inflammatory cytokines,
and intracellular ROS generation in cultured orbital
fibroblasts of patients with Graves’ orbitopathy (GO),
suggesting a basis for the use of selenium in the treatment of
GO (122).
THYROID HORMONE REPLACEMENT

Approximately 5–10% or more of biochemically well-controlled
hypothyroidism patients with levothyroxine (L-T4) treatment
have persistent complaints, such as depression and impaired
psychological wellbeing (123). There are various explanations for
the discrepancies between thyroid function tests and clinical
symptoms, but there is no definite answer yet. Instead,
expectations for T3/T4 combination therapy have been raised
as a realistic solution. Several trials using combined T3/T4
therapy have been conducted for comparison with L-T4
monotherapy in the past years. Some studies have shown a
beneficial effect, such as patient preference or an improved
metabolic profile (124–127), however, in general, patients on
T3/T4 combination therapy do not have improved outcomes
compared with those on L-T4 monotherapy (128, 129). Possible
explanations for unsatisfactory results may include inadequate L-
T4 and L-T3 doses or frequency of administration (130).

Moreover, individuals with genetic variations in thyroid
hormone metabolism should be considered (130). A subgroup
that could be targeted is individuals with common genetic
variations in DIO2, such as T92A SNP, which encodes the
deiodinase 2 enzyme that converts T4 to T3 locally in several
tissues (131). In a study conducted in the UK, the T92A SNP in
DIO2 was associated with lower baseline psychological well-
being in patients on LT4 replacement therapy and with better
response to T3/T4 combination therapy, compared with patients
without the SNP on L-T4 replacement therapy (132). In contrast,
results from a large population-based cohort study revealed no
effect of the T92A SNP on quality of life or cognitive function
measures (133).

Generally, L-T3 is much more effective in treating
developmental symptoms in patients with SECISBP2
mutations. For example, delayed linear growth can be
improved by L-T3 supplementation (76). Similarly, L-T3

improved growth, speech, and development, while normalizing
TFT (78). Of particular interest is the treatment of Japanese
patients (79). The proband was initially treated with GH alone,
since 52 months of age, in the hope of normalizing the TFT and
improving his growth. While six years of GH treatment increased
his height SDS from -3.4 to -1.7, his TFT abnormalities persisted.
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Addition of L-T3 to the treatment for six months normalized
TFT and advanced bone age. Later treatment of the proband with
a-tocopherol (vitamin E) was shown to have decreased lipid
peroxidation products and increased circulating white blood cells
and neutrophils, strengthening the immune system.

The effect of L-T3 administration was also tested in two
patients, as it was demonstrated to equally suppress serum TSH
concentration, which was not sufficiently suppressed by L-T4 in
T92A SNP in DIO2 and TSHR mutations (89).

While the American Thyroid Association guidelines generally
disadvocate the routine use of T3/T4 combination therapy in
patients with hypothyroidism (134), the European Thyroid
Association guidelines state that a 3-month trial of T3/T4
combination might be considered experimentally in adherent,
biochemically well-controlled patients who have persistent
symptoms despite L-T4 treatment (135). Sufficiently powered
prospective randomized controlled trials are therefore
prerequisite before concrete conclusions can be drawn,
especially considering the genetic variations responsible for
thyroid hormone metabolism discussed in this review.
Collectively, these findings could provide clinical relevance in a
select population of hypothyroidism patients who might benefit
from T3/T4 combination therapy.
CONCLUSIONS AND
FUTURE DIRECTIONS

The main reason for the increased interest in rare genetic
diseases and their molecular genetic mechanisms is to facilitate
the effective treatment of more common diseases related to it. In
the treatment of hypothyroidism, there has always been much
controversy about T4 treatment and T3/T4 combination
therapy. It is the Se status and Se intake that may be critical
for success or failure of the T3/T4 combination therapy, in view
of Se deficiency potentially impairing sufficient DIO expression
in target tissues for efficient T3 production (without this defect
being reflected in circulating thyroid hormone concentrations).
It is expected that a fundamental approach to this will become
possible as knowledge accumulates through future studies. As
our understanding of selenoprotein metabolism and action
deepens, the scope for its clinical application expands. In the
future, it is expected that a new era of the most appropriate
thyroid hormone replacement therapy will further expand our
understanding of the molecular mechanisms of action of
selenium and selenoprotein, especially the entire process of
thyroid hormone metabolism through DIOs and its related
pathological conditions.
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