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Abstract.
BACKGROUND: Ticks are known as the representatives of hematophagous arachnids. They cause various tick-borne diseases,
such as severe fever with thrombocytopenia syndrome (SFTS) and Lyme disease. To understand the mechanism of virus infection
caused by ticks, morphology for the anatomical characteristics of crucial organs has been widely studied in acarological fields.
The conventional methods used for tick observation have inevitable limitations. Dissection is the standard method to obtain the
morphological information, and complex microscopy methods were utilized alternatively.
OBJECTIVE: The study goal is to obtain the morphological information of ticks in different growth stages non-invasively.
METHODS: Optical coherence tomography (OCT) is employed to acquire structural images of various internal organs without
damage for observing the growth process of larva, nymph, and adult in Haemaphysalis longicornis ticks in real-time.
RESULTS: Various internal organs, such as salivary glands, rectal sac, genital aperture, and anus, were well-visualized by
the OCT enface and cross-sectional images, and the variation in size of these organs in each growth stage was compared
quantitatively.
CONCLUSIONS: Based on the obtained results, we confirmed the potential feasibility of OCT as a non-destructive real-time
tool for morphological studies in acarology. Further research using OCT for acarological applications can include monitoring
the growth process of ticks in terms of structural changes and investigating morphological differences between normal and
virus-infected tick specimens.
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1. Introduction

Ticks are one of the hematophagous arachnids that live by feeding on the blood of birds and mammals
including livestock and even humans [1]. Ticks constitute the subclass of Acari and have families of
Ixodidae, Argasidae, and Nuttalliellidae. Growth stages and life cycles of ticks go through egg, larval,
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nymphal, and adult life. Various tick-borne diseases include severe fever with thrombocytopenia syndrome
(SFTS), Lyme disease, babesiosis, Q fever, and ehrlichiosis [2–6]. Except for the egg stage, ticks take
blood as the main feeding source at every growth stage. Hypostome and salivary glands are major organs
for ticks to suck blood. The hemoglobin and proteins in the blood are digested at the cytoplasm of
the gut inside their body, which is the main digestive organ [7]. Genital aperture is the reproductive
organ in female ticks that is important for examining the reproduction of the tick population. Therefore,
morphological study of ticks is essential to observe its variation caused by specific factors including
viruses, and studying the internal organs is needed to understand how the dissemination of tick-borne
diseases occur [8].

In this sense, observation of the organs and tick morphology is done by the common dissection
methods [9]. During dissection, the specimen is fixed, and then internal organs are extracted sequentially
starting to peel off the integument (outer cover). Although these methods can provide the most direct
approach to confirm certain organs, there is a critical disadvantage of damaging the specimen inevitably.
On the other hand, various imaging techniques have been employed to visualize such structures in
ticks. Microscopic imaging method, such as transmission electron microscopy (TEM), scanning electron
microscopy (SEM), and confocal microscopy, has been widely used to acquire high-resolution images.
However, lack of depth information is the main drawback of these methods, which produce images
of the external appearance, and the preparation of the specimen, such as fixation, dehydration, and
coating, is required [10–12]. Besides, for functional imaging, fluorescence imaging has also been applied
to monitor the digestion process, but the acquired images were limited to topology without depth
information [13]. In addition to these imaging technologies, magnetic resonance imaging (MRI) and
conventional x-ray imaging, on the other hand, can both produce tomographic images, but the resolution
of the aforementioned methods has a major limitation of obtaining a precise visualization of ticks [14,15].
Although phase-contrast x-ray has been applied to visualize tissues and organs inside small living animals,
the radiation caused by the synchrotron x-rays leads to molecular damages, which is detrimental to the
living specimen [16].

Another optical imaging technique, the optical coherence tomography (OCT), which is a non-invasive
imaging technique using interferometry, can be an alternative to visualize the ticks. OCT uses a non-
ionizing broadband light source providing high-resolution tomographic images [17]. The resolution of
the OCT is higher than that of ultrasound imaging and less than that of confocal microscopy, while the
penetration depth is up to ten times deeper than confocal microscopy [18]. One of the great advantages of
OCT imaging is the capability of non-invasive imaging without any damage to the specimen. Therefore,
OCT has been applied in various medical fields, such as ophthalmology [19,20], dentistry [21,22],
otolaryngology [23,24], dermatology [25,26], and surgical operation [27,28]. Currently, OCT applica-
tions are not limited to medical fields but also in multidisciplinary studies such as agriculture [29,30],
industry [31,32], and biology [33]. In addition, OCT has been applied for entomological research, such as
monitoring a cardiac function in Laval fly and morphological assessment of moth [34–37]. In Table 1, the
conventional dissecting method and imaging techniques that could be used for morphological study of
ticks were briefly compared with OCT in various aspects [14,16,38–41].

In this study, the ultimate purpose of this study was to confirm the applicability of OCT to study tick
morphology and reveal its novelty for acarological research. To this end, an OCT system was developed
to observe various organs, both inside and outside, in tick specimens at different growth stages (larval,
nymphal, and adult life). After anesthetizing the tick specimens, tomographic images of the organs were
obtained in vivo through OCT enface and cross-sectional images. Here, we focused on imaging and
comparing vital organs in the digestive, genital, and excretory system, such as the gut, salivary glands,
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Table 1
Comparison of dissection and imaging techniques used for small living animals

Dissection Electron microscopes Phase-contrast X-ray MRI OCT
Penetration depth – ∼ 1 µm Entire body Entire body 1–3 mm
Observable area External & External Internal Internal External &

internal internal
Resolution – Nanometer-scale 6–70 µm 60 µm to 5–20 µm

millimeter-scale
Damage to specimen Irreversible (In-vitro) Irreversible (In-vitro) Radiation & (In-vivo) None (In-vivo) None

damage damage Irreversible damage
Note: Values are for typical biological tissue.

genital aperture, anus, and festoons, which are directly related to various tick-borne diseases harmful
to humans and associate with the reproduction and development of ticks. The variation in the sizes of
these organs was also analyzed quantitatively. Through this study, the internal morphology of ticks in
each growth stages was identified and analyzed without damages, and the applicability of OCT to the tick
study was demonstrated.

2. Method

2.1. The development of optical coherence tomography (OCT) system

For this study, a spectral-domain optical coherence tomography (SD-OCT) system, which utilizes
a spectrometer to collect raw interference signals, was fundamentally developed to acquire images.
The overall configuration of the SD-OCT system is presented in the schematic shown in Fig. 1. The
utilized optical laser was a broadband light source with a center wavelength of 840 nm and bandwidth
(full width at half maximum; FWHM) of 50 nm (EXS210022-02, SLED, EXALOS, Switzerland). The
laser was connected to an optical interferometer. This interfered light was transferred to the customized
spectrometer and dispersed by wavelengths as it passes through the diffraction grating (transmission
type, 1800 lines/mm, Wasatch Photonics Inc., USA). The achromatic lens (AC508-100-B, Thorlabs,
USA) made the dispersed light to be focused on the line scan camera (high-speed CMOS camera with
2048 (H) × 2 (V) pixels, spL2048-140km, Basler, Germany), while maintaining the dispersion of the
light. The captured raw signals (A-scan signals) were processed to generate OCT cross-sectional images
(B-scan images) through the software algorithm. For scanning the specimens, a two-axis Galvano scanner
(GVS002, Thorlabs, USA) was used at the sample arm for a raster scanning, which is a method for image
capture as the scanning beam sweeps from side to side for a rectangular pattern [42]. The measured lateral
resolution of the developed SD-OCT system was 15 µm (verified using resolution target, USAF 1951,
Edmund-Optics, USA), and the measured axial resolution was 6.2 µm. The signal-to-noise ratio (SNR)
of the OCT engine was 92.5 dB, which was measured by a specular surface method reported in [43].

The raw data from the frame grabber (PCIe-1433, National Instruments, USA) was processed by the
software developed using a graphical programming language LabVIEW 2018 [44]. The frame rate of the
system was 50 frames per second, and the OCT B-scan image could be displayed at every 20 milliseconds
in real-time. A total of 1000 B-scan images were collected for C-scan to acquire the entire tomographic
images for each tick specimen, which was taken within 20 seconds. For the rapid data processing, we
used a compute unified device architecture (CUDA) with graphics processing units (GPU) to perform fast
Fourier transform (FFT), wavenumber-linearization (k-linearization), and background noise removal [45].
After log-scaling, the processed data was sent to the CPU thread to save, and the OCT B-scan image was
displayed on the computer monitor in real-time.
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Fig. 1. A schematic diagram of the developed spectral-domain optical coherence tomography (SD-OCT) system. C: collimator,
DG: diffraction grating, FC: fiber coupler, GS: Galvano scanner, L: lens, LS: light source, LSC: line scan camera, M: mirror, PC:
polarization controller, S: sample.

2.2. Preparation of Haemaphysalis longicornis tick specimens

The examined tick specimens of the study were Haemaphysalis longicornis (Acari: Ixodidae) species
known as the ‘Asian long-horned tick’ in East and Central Asia [46]. These species transmit tick-borne
diseases like theileriosis to livestock and be one of the major vectors for human diseases such as Lyme
disease and severe fever with thrombocytopenia syndrome (SFTS). Three examined tick specimens
(named as A ∼ C) consisted of three different growth stages of larval, nymphal, and adult life. Larva and
nymph are indistinguishable from male and female [47], and the adult tick specimens were all collected
with a female since they are the main vector for tick-borne diseases as they have an active feeding habit
in the reproduction season. The specimens were collected from Jinju, Korea in 2018 by the Animal
Systematics and Taxonomy Laboratory at Kyungpook National University. During the experiment, the
specimens were gently anesthetized using the ethyl acetate anesthesia method [48].

3. Results

3.1. Gut distribution comparing

The photographs of the specimens in this paper were imaged using a digital microscope (AM3113T,
Dino-Lite, Taiwan). For comparing the gut distribution inside the tick specimens, OCT enface images
(frontal view) covering the whole body of specimens in each growth stage were collected, and the
representative images are shown in Fig. 2 with the corresponding microscopic images viewed on the
dorsal side. The microscopic image of the larva specimen (tick specimen A) in Fig. 2a illustrates only
three legs, which is the unique characteristics in the larval stage. In Fig. 2c, the round line appears on the
dorsal shield (scutum) of the adult specimen A, which is a typical structure found only in female adult
ticks. Through the microscopic images, some of the external features in each specimen can be observed.
However, these microscopic images are unable to provide information about internal organs. On the other
hand, OCT enface images in Fig. 2d–f present the distribution of the internal organs that belong to the
same specimens shown in the microscopic images (Fig. 2a–c). Through the OCT enface images, it can be
observed that the internal organs become more complex and distinct according to the growth stages. The
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Fig. 2. Microscopic and OCT enface images (frontal view) for the comparison of gut distribution. (a)–(c) Microscopic images of
larva specimen (A), nymph specimen (B), adult specimen (A), respectively. (d)–(f) OCT enface images of larva specimen (A),
nymph specimen (B), adult specimen (A), respectively. The depth of each OCT enface image is denoted at the right bottom. Red
arrows indicate salivary glands. Yellow arrows indicate midgut.

salivary glands indicated with the red arrows become more clearly visible as the growth processes from
larva to adult along with an increased dimension. The midgut indicated with the yellow arrows is also
shown in each specimen, and the distribution of the midgut spreads more evenly throughout the body as
the growth stage proceeds. The depth values marked in each OCT enface image illustrate the distance
from the top dorsal surface to the enface image plane inside the specimen. Since the head part of each
specimen was lower than the dorsal shield, the OCT enface images could not cover the head part together
with the body.

3.2. Cross-sectional comparison of the organs

One of the compelling advantages of OCT imaging is its capability of non-invasive tomographic
imaging in the depth direction. Based on the acquired OCT data, we observed the changes in specific
organs at each growth phase through the OCT cross-sectional images. Figure 3 shows the representative
microscopic and OCT cross-sectional images (transverse view) of the larva specimen B, nymph specimen
B, and adult specimen B. The locations of each OCT cross-sectional image are marked on the microscopic
images of the specimens (Fig. 3a–c) with the dotted lines. The specimens were imaged on the ventral side,
and the presented OCT cross-sectional images (Fig. 3d–i) were averaged with the adjacent three B-scan
slides toward the y-axis. The genital aperture of tick is the specific organ that can only be identified
in adults, which starts to emerge when a nymph enters the adult life stage (position is indicated by the
red arrows in Fig. 3d–f). The beginning of the genital aperture development is observed in the form of
empty space shown in Fig. 3e of the nymph specimen. Finally, the morphological structure of the genital
aperture is clearly revealed in the OCT cross-sectional image of the adult specimen B (Fig. 3f), and the
spatial structure inside has become more pronounced. The development of anus is also observed along the
growth process. Figure 3g–i is the OCT cross-sectional images for the anus region of each specimen, and
the yellow arrows indicate the locations of the anus. In Fig. 3g, the larva specimen (B) shows a strong
internal intensity at the anus location, although the body thickness is too thin to be appropriate for the
axial resolution of the system. In the case of the nymph specimen (Fig. 3h), the overall appearance of the
anus in the depth direction is well visible, and in the adult specimen (Fig. 3i), the internal structure of the
anus becomes more distinguishable.
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Fig. 3. Microscopic images on the ventral side and OCT cross-sectional images (transverse view) about genital aperture and
anus. (a–c) Microscopic images. The dotted lines indicate the location of each OCT cross-sectional image plane. (d–f) OCT
cross-sectional images for genital aperture. Red arrows indicate the position of the genital aperture. (g–i) OCT cross-sectional
images for the anus. Yellow arrows indicate the position of anus. Black scale bar: 500 µm. White scale bar: 200 µm.

Fig. 4. Microscopic images on the ventral side and OCT cross-sectional images in the sagittal view. (a–c) Microscopic images.
The dotted lines indicate the position of each OCT cross-sectional image plane. (d–f) OCT cross-sectional images in the sagittal
view. White, red, and yellow arrows indicate the festoons, rectal sac, and basis capitulum, respectively. Black scale bar: 500 µm.
White scale bar: 200 µm.

In addition to the frontal view (Fig. 2) and transverse view (Fig. 3), OCT cross-sectional images
corresponding to the sagittal view were also acquired, since OCT imaging can provide tomographic
images without limitation for the direction. Figure 4 shows the representative OCT cross-sectional images
corresponding to the sagittal view for the tick specimens at each growth stage. The Specimens are
larva Specimen (C), nymph Specimen (B), and adult Specimen (C), respectively. Figure 4a–c present
the microscopic images in the ventral direction for each specimen, and the black dotted lines indicate
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Fig. 5. The representative A-scan profile and quantitative measurements of the organ sizes at different growth stages. (a) OCT
cross-sectional image of adult specimen C (sagittal view). The red line indicates the position of the A-scan profile, which is the
anus region. (b) A-scan profile of the anus site. (c) Numerical graph of the sizes of specific organs at each growth stage. Each
value is the averaged size of all three specimens in each growth stage. error bar: standard deviation.

the position of each corresponding OCT cross-sectional image plane. The OCT cross-sectional images
covering from the head part to the end of festoons are presented in Fig. 4d–f, and the festoons, rectal sac,
and basis capitulum are indicated in each image with the white, red, and yellow arrows, respectively. Both
festoons and rectal sac increase in size and distribution as the growth progressed from larval to adult life,
and the development of the basis capitulum marked with the yellow arrow is also confirmed.

The size comparison of specific internal organs, according to the growth stages, is depicted in Fig. 5.
Figure 5a and b are the representative OCT cross-sectional image and amplitude scan (A-scan) profile,
respectively, that describe the measurement and analysis procedure of dimensions of specific organs
toward the depth direction. The OCT cross-sectional image in Fig. 5a is for adult specimen C as the
sagittal view, and the red line indicates the position of A-scan profile in Fig. 5b that is the site of the
anus. The size of the anus in the depth direction was measured as 67.8 µm through the A-scan profile.
In Fig. 5c, the sizes of specific organs were measured through A-scan profile according to each growth
stage. Here, the representative organs including genital aperture, rectal sac, anus, and body thickness were
compared, and the sizes were averaged with all the specimens in each growth stage. Since the genital
aperture is only presented in adult ticks, there was no size value for the genital aperture in the larval and
nymphal stages. In the case of the anus, the larval stage could not be measured due to body thickness.
It was confirmed that the size of the rectal sac and body thickness increased dramatically as the growth
proceeded. In particular, the body thickness of the adult ticks is larger than the penetration depth of the
OCT system.

4. Discussion

In this study, we developed a customized spectral-domain optical coherence tomography to observe
various internal and external organs of ticks and compare them according to the growth stage including
larval, nymphal, and adult life. The developed system presented a proper performance to identify the
internal morphology of tick specimens with the axial resolution of 6.2 µm, the lateral resolution of 15 µm,
and the signal-to-noise ratio of 92.5 dB.
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The results show clear images of specific internal organs, such as the salivary glands, gut, rectal sac,
and festoons, without damage to the specimens, which is the unavoidable drawback in the conventional
dissecting method and several imaging techniques. In addition, the inner structures of the organs that
protrude from the ventral surface, such as the anus, genital aperture, and basis capitulum, were also
identified through the OCT cross-sectional images for sagittal and transverse views. Since the genital
aperture and anus are the main reproductive and excretory organs, respectively, the morphological
observations about them with comparing the changes according to the growth stages could be an important
approach in the study of tick’s morphology. Although this structure can be also observed by the outer
appearance, OCT imaging allows obtaining the visual information of the development process inside
the body. To calculate the depth information for the acquired OCT images, we applied the refractive
index of 1.5 that is for an exoskeleton of insects [49]. Every OCT images presented in this paper were
reconstructed by averaging adjacent five B-scan images to reduce the background noise and enhance
the image quality. The accuracy and validity of the acquired OCT images of the internal organs can be
verified through the previous anatomical study by Edwards et al. [9].

As a result, we demonstrated the applicability of OCT for the morphological study of ticks. The notable
advantages of OCT imaging that involve non-invasive and non-ionizing characteristics substantiated the
feasibility of future studies, such as monitoring and comparing the inner morphological variation between
the tick specimens that are carrying the virus (experimental group) and the control group.

5. Conclusion

In this study, we utilized a laboratory customized SD-OCT system to observe various internal organs
and the appearance of the Ixodidae ticks (Haemaphysalis longicornis) in morphology. In particular, the
specimens were prepared using different ticks from each growth stage, such as larvae, nymphs, and adults,
to compare specific organs in each growth stage. The organ distribution inside each tick specimen was
visualized through the OCT enface images, and major organs, such as the genital aperture, anus, festoons,
rectal sac, and basis capitulum, were observed in the depth direction through the OCT cross-sectional
images. In addition, the variation in size of the major organs was compared by averaging all specimens in
each growth stage and presenting them as a bar graph to provide a comprehensive analysis of the novel
imaging system. The real-time and non-destructive OCT results clearly confirm the potential merits of the
proposed scheme over the conventional dissecting methods. To the best of our knowledge, this is the first
study that identifies the morphological structures inside the ticks according to the different growth stages
via OCT imaging. By confirming the feasibility of the OCT application in tick morphology research, it
can be concluded that the study could contribute to several future studies in acarology.
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