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Review

Introduction

Cerebral insults such as a traumatic brain injury (TBI), stroke, 
or status epilepticus (SE) can lead to detrimental outcomes for 
patients who suffer from one of these events. All of these insults 
have been shown to cause acute cell death, disruption of the blood 
brain barrier, reduced neurological functional performance and 
altered cellular signaling within the injured tissue. One signaling 
pathway that has been shown to be activated after all of these cere-
bral insults is the Janus kinase 2 and signal transducer and acti-
vator of transcription 3 (JAK2-STAT3) signaling pathway. This 
pathway activates numerous genes responsible for many cellular 
functions that may play a critical role in both neural injury and 
repair; however, the precise contribution of JAK2-STAT3 activa-
tion after TBI, stroke, and SE remains incompletely understood.

When the JAK2-STAT3 pathway is activated after cerebral 
insults, it leads to the increased expression of genes associated with 
cell proliferation, differentiation and survival.1-6 Activation of this 
pathway occurs when a hormone, growth factor or cytokine binds 
to a receptor which then phosphorylates JAK2. JAK2 in turn 
phosphorylates STAT3, which then dimerizes and translocates to 
the nucleus where it binds to the promotor region of genes con-
taining gamma-activated sequences. In the adult nervous system, 
this pathway is mostly dormant unless the central nervous system 
suffers a stressor or insult. The insult, whether a TBI, stroke, or 
SE, leads to release of hormones, growth factors and cytokines 

which result in activation of this pathway. This review will exam-
ine the effects of JAK2-STAT3 activation in each of these injury 
models and how altering this pathway after these cerebral insults 
effects neurological recovery in preclinical models.

JAK2-STAT3 Activation after TBI

Traumatic brain injury (TBI) is a major public health prob-
lem and is the leading cause of morbidity and mortality in indi-
viduals under the age of 45.7 TBI causes a host of health issues 
including cognitive and motor defects as well as posttraumatic 
epilepsy.8-11 These adverse outcomes significantly decrease the 
quality of life for individuals who suffer TBI and new therapies 
are needed. One approach is to identify and disrupt the cellular 
and molecular changes that contribute to these adverse outcomes. 
The JAK2-STAT3 pathway has been shown to become activated 
after TBI in several different experimental models. Although 
there are several differences in the method of experimental TBI, 
the current findings all show that there is an increase in the phos-
phorylation of JAK2 and/or STAT3 within the injured tissue as 
early as 3 h after injury.3,4,12-14 Several groups have also shown 
that many known STAT3 genes have increased expression after 
experimental TBI,3-6,12 however, the effect of JAK2-STAT3 path-
way modulation on outcome is variable.

Zhao et al. 2011 has been able to partially block JAK2 and 
STAT3 phosphorylation 3 h after a TBI with administration of 
the JAK2 inhibitor AG490. They also determined that neuro-
logical recovery was worsened with the administration of AG490 
after a TBI. This same group also found that giving human 
recombinant erythropoietin (rhEPO) after a TBI increased JAK2 
and STAT3 phosphorylation and decreased apoptosis of cortical 
cells in peri-injured cortex cells of rats after an experimental TBI. 
When they added both rhEPO and the JAK2 inhibitor AG490 
they found that pJAK2 and pSTAT3 levels were reduced and that 
the mRNA levels of several apoptosis related genes were increased 
while they did not see a difference in TUNEL staining. Their 
findings suggest that activation of the JAK2-STAT3 pathway 
after a TBI is advantageous for neuronal recovery.

While several groups have investigated inhibitory neurotrans-
mitter receptor regulation, specifically GABA(A) receptor regu-
lation, after a TBI, Raible et al. has found a correlation between 
pSTAT3 levels and GABA

A
R α1 after an experimental TBI, 

suggesting that activation of this pathway may lead to altered 
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The JAK2-STAT3 signaling pathway has been shown to 
regulate the expression of genes involved in cell survival, 
cell proliferation, cell-cycle progression, and angiogenesis in 
development and after cerebral insults. Until recently, little 
has been known about the effects of this pathway activation 
after cerebral insults and if blocking this pathway leads to bet-
ter recovery. This review exams the role of this pathway after 
3 cerebral insults (traumatic brain injury, stroke, and status 
epilepticus).
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inhibitory signaling.12 Since one of the sequelae of a TBI is the 
subsequent development of epilepsy, preventing this alteration of 
inhibitory signaling after injury could inhibit the development of 
post traumatic epilepsy.

JAK2-STAT3 Activation after Stroke

Within developed countries, stroke is the leading cause of 
death and disability and beyond the immediate 4–6 h after an 
acute ischemic stroke, there is no known therapy that improves 
outcomes for this illness.15 Numerous pathological events such as 
necrosis, apoptosis, edema, and altered cellular signaling occur 
after cerebral ischemia as well as after subdural hematomas.16 
As with TBI, several groups have shown that the JAK2-STAT3 
pathway is activated in in vitro and in vivo experimental models 
of stroke.17-25 While all of the research to this point has shown 
that there is an increase in phosphorylation of JAK2 and/or 
STAT3 after stroke, there are conflicting data whether this path-
way activation leads to improved neurological recovery.

Several groups have found that treating animals with hypoxic 
preconditioning, rhEPO, or other novel compounds increased 
the activation of the JAK2-STAT3 pathway and improved neuro-
logical recovery after experimental stroke.18,22 Furthermore, some 
investigators have blocked JAK2-STAT3 phosphorylation with 
AG490 or WP1066 (an analog of AG490) and found that cell 
death markers or functional performance were worsened.18,19,22 
These findings suggest that treatments that activate the JAK2-
STAT3 pathway after experimental stroke may lead to improved 
functional performance and/or decreased cell death.

On the contrary, Satriotomo et al. found that administration 
of the JAK2 inhibitor AG490 or a STAT3 siRNA after experi-
mental cerebral ischemia decreased infarction volume, neuro-
nal damage, apoptosis, and GFAP-positive cells.14 These results 
suggest that activation of the JAK2-STAT3 pathway leads to 
decreased cerebral recovery and that blocking this pathway leads 
to better neurological outcomes. The jury thus remains out and 
further studies are required to determine the functional effects 
of JAK2-STAT3 pathway activation following cerebral ischemia.

JAK2-STAT3 Activation after SE

Status epilepticus (SE) is clinically defined as the occurrence 
of a single unremitting seizure with a duration longer than 15–30 
min or frequent clinical seizures without interictal return to base-
line lasting at least 15–30 min. SE is a common life-threatening 
neurological disorder that is seen most commonly in the pediat-
ric population.26-30 Individuals who have had SE may experience 
morbidities including cognitive impairment, epilepsy, and recur-
rent SE.27,31 Pilocarpine or kainic acid induced SE in rodents is 
a common model used by researchers to study the mechanisms 
underlying epilepsy development or epileptogenesis. These SE 
models mimic human SE and result in rodents that have similar 
morbidities as humans.32-35

As with both TBI and stroke, several studies have found that 
the JAK2-STAT3 pathway is activated in the hippocampus as 
early as 1 h after experimental SE and that several known STAT3 
regulated genes are activated.1,36-38 Two reports have shown 
JAK2-STAT3 activation can be blocked pharmacologically 
(by WP1066 or Pyridone 6) and prevent some STAT3-related 
genes from being activated.1,20 These STAT3 regulated genes 
are involved in GABA

A
R subunit regulation, cell survival, cell 

proliferation, and cell cycling. Grabenstatter et al. found that 
when STAT3 phosphorylation was blocked during SE, the sever-
ity of the subsequent epilepsy was reduced in the rat pilocarpine 
model.1 This may suggest that JAK2-STAT3 activation after SE 
at least partially contributes to the subsequent development of 
epilepsy. This same study also found that after administration 
of WP1066, there was no difference in FJB staining; suggesting 
that cell death was not altered by blocking JAK2-STAT3 activa-
tion after insult.1

Conclusion

Multiple types of cerebral insults, including TBI, stroke and 
SE, have been shown to activate the JAK2-STAT3 pathway and 
increase expression of STAT3 related genes involved in cellular 
proliferation, differentiation, survival and inhibitory neurotrans-
mission (Fig. 1). However, there are conflicting reports on the 
effects of blocking this pathway. Some have reported worsened 
neurological recovery when blocking this pathway, while oth-
ers have demonstrated advantageous effects. Further investiga-
tion is needed to determine if it is feasible to selectively block 
only certain genes downstream of the JAK2-STAT3 pathway to 

Figure  1. Overview of JAK2-STAT3 signaling pathway after cerebral 
insults. Traumatic brain injury (TBi), stroke, and status epilepticus (Se) 
injury models have shown that the JAK2-STAT3 pathway becomes acti-
vated which is indicated either by the increased phosphorylation of JAK2 
and/or STAT3.1,3,4,10-12,15-23,34-36 when JAK2-STAT3 becomes phosphorylated 
it results in the increased expression of STAT3 related genes involved in 
cell proliferation,1,4-6 cellular differentiation,1,4-6 cell survival,1,3-6,15,20 and 
inhibitory neurotransmission.1,10,34
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prevent the deleterious effects associated with activation of this 
pathway while maintaining the beneficial neuroprotective effects 
of JAK2-STAT3 pathway activation.
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