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Abstract 

Human cells generate a vast complexity of noncoding RNAs, the “RNA dark mat ter,” whic h includes a vast small RNA (sRNA) transcriptome. 
T he biogenesis, biological rele v ance, and mechanisms of action of most of these transcripts remain unkno wn, and the y are widely assumed to 
represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome b y attempting to answ er the f ollo wing 
question—can a significant number of no v el sRNAs correspond to no v el members of known classes, specifically, microRNAs (miRNAs)? By 
de v eloping and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel 
miRNA f amilies, e xist in just one human cell line compared to just 1 91 4 known miRNA loci. Moreo v er, potentially tens of thousands of miRNAs 
remain to be disco v ered. Strikingly, man y no v el miRNAs map to e x ons of protein-coding genes emphasizing a comple x and interlea v ed archi- 
tecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome 
harbors a multitude of no v el regulatory molecules. Ov erall, these results suggest that we are at the very beginning of understanding the true 
functional complexity of the sRNA component of the “RNA dark matter.”
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n the recent two decades, the existence of pervasive tran-
cription of the human genome which results in generation
f a very complex pattern of long noncoding (lnc) RNAs, de-
ned by transcripts > 200 nt, has been well-established [ 1–
 ]. On the other hand, multiple transcriptome mapping ef-
orts have also shown that mammalian cells also possess a
ighly complex small RNA (sRNA, < 200 nt) transcriptome
 4–13 ]. The first indication of the complexity of the mam-
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malian sRNA transcriptome was provided by a 2007 study
that detected ∼450K sRNAs in two human cell lines using
high-density tiling arrays [ 4 ]. The high complexity of the hu-
man sRNA transcriptome was then confirmed in multiple sub-
sequent transcriptome studies that relied on next-generation
sequencing (NGS) [ 5–11 ]. For example, the study by the EN-
CODE consortium detected > 150K novel sRNAs in just one
human cell line [ 7 ]. While multiple mammalian sRNAs belong
to the well-characterized functional classes of sRNAs, such
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as microRNAs (miRNAs), small nucleolar RNAs (snoRNAs),
small nuclear RNAs (snRNAs), and others, the vast major-
ity of sRNAs identified in these transcriptome surveys repre-
sented novel sRNAs that have not been previously annotated
[ 14–16 ]. For example, the ENCODE consortium found ∼7K
annotated sRNAs compared to > 150K novel sRNAs [ 7 ]. 

Thus, the situation with the mammalian sRNA transcrip-
tome resembles that of the lncRNA transcriptome where most
of the detected transcription has been found outside of the
annotated exons and a number of different transcript classes
could be identified [ 17 , 18 ]. However, even though the func-
tions and mechanisms of action of lncRNAs remain a subject
of debate, the biogenesis of many of them is well-understood
[ 1 ], and a number of different models that explain functional-
ity and mechanism of action have been proposed [ 19 , 20 ]. On
the other hand, much less is known about biogeneses, func-
tions, or mechanisms of action of most of the components of
novel sRNA transcriptome leading to the prevailing assump-
tion that most of them represent stable products of degra-
dation of long transcripts or transcription by-products [ 21 ].
Nonetheless, we have recently shown using high-throughput
phenotypic assays in cultured human cells that a surprisingly
large fraction of novel sRNAs can have biological signifi-
cance [ 22 ]. These results imply that novel sRNA transcrip-
tome might represent a major source of hitherto unexplored
regulatory RNA molecules and warrant further exploration. 

Considering the many unknowns of the novel sRNA tran-
scriptome, it is very hard to annotate and classify these tran-
scripts into various sRNA classes based on the shared bio-
genesis, function or mechanistic aspects. In fact, novel sRNAs
have been mostly classified based on the genomic features with
which they associate [ 23 , 24 ], e.g. several classes of novel sR-
NAs, such as promoter-associated small RNAs (PASRs) [ 4 ],
transcription start site (TSS)-associated RNAs (TSSa-RNAs)
[ 5 ], and transcription initiation RNAs (tiRNAs) [ 9 ], have been
found associated with promoters and transcriptional start
sites of genes. Novel sRNAs have also been found associated
with gene termini, as exemplified by termini-associated short
RNAs (TASRs) [ 4 , 10 ] and splice sites as represented by splice-
site RNAs (spliRNAs) [ 8 ]. However, such annotations provide
limited insight into functionality of sRNAs since it is quite
possible that sRNAs associated with the same genomic fea-
tures might have very different properties. 

Therefore, in an effort to functionally annotate the novel
sRNA transcriptome, we explored a possibility that many
novel sRNAs might represent novel members of a known
functionally relevant class of sRNAs—miRNAs. To achieve
this, we developed a pipeline to discover novel canonical miR-
NAs which have to satisfy two conditions: (i) being generated
in vivo using the canonical Drosha / DGCR8 miRNA biogene-
sis pathway and (ii) possessing correct RNA secondary struc-
ture of Drosha-dependent miRNAs. We further validated the
pipeline by detecting in vivo signatures of Dicer cleavage in
the novel miRNAs. Using this approach, we discovered thou-
sands of novel miRNAs in just one human cell line, includ-
ing many that map to exons of known genes, and we esti-
mate that tens of thousands of others may exist. Overall, our
results are consistent with a highly complex and interleaved
genomic organization where in multiple functional elements
and transcripts share the same genomic sequence [ 25 ] and
further highlight the complexity of the transcriptional out-
put and architecture of the functional elements in the human
genome. 
Materials and methods 

Biological material 

Human chronic myelogenous leukemia and embryonic kidney 
cell lines K562 and 293FT were obtained from the Cell Bank 

of Chinese Academy of Sciences and National Infrastruc- 
ture of Cell Line Resource, respectively. Cells were cultured 

in Roswell Park Memorial Institute (RPMI) 1640 medium 

(Thermo Fisher Scientific, USA) and Dulbecco’s Modified Ea- 
gle Medium (DMEM, Sigma), respectively, supplemented with 

10% (v / v) fetal bovine serum (Thermo Fisher Scientific, USA) 
and 1% pen / strep (v / v) (Thermo Fisher Scientific, USA) at 
37 

◦C in 5% CO 2 . 

Generation of a stable inducible Drosha knockdown 

system and small RNA-seq 

The lentiviral plasmid pHS-ASR-ZQ021 that contained 

Drosha small hairpin RNA (shRNA) sequence under the con- 
trol of a Dox-inducible H1 promoter and TetR protein sta- 
bilized by fusion with enhanced green fluorescent protein 

(EGFP) was generated by SyngenTech (Beijing, China) and 

confirmed by Sanger sequencing. The lentivirus particles were 
generated by transfecting the 293FT packaging cell line with 

the pHS-ASR-ZQ021 and used to transfect the K562 cell line 
at the multiplicity of infection (MOI) of 15. Mixed popula- 
tion of transfected K562 cells containing the Drosha shRNA 

sequence was selected by the flow cytometry (BD CytoFLEX) 
using EGFP fluorescence and expanded. From this popula- 
tion, individual cells were then selected by the flow cytome- 
try (BD CytoFLEX) and cultured 5–7 days to generate mono- 
clonal populations. Out of those, six monoclonal populations 
were tested for the Drosha knockdown efficiency and the best 
one was selected to establish a stable inducible Drosha knock- 
down system. These experiments were outsourced to Syngen- 
Tech (Beijing, China). 

For validation of the system and discovery of novel miR- 
NAs, the K562 cells harboring Drosha shRNA were plated 

into 3 ml of culture medium supplemented with 1 μg / ml 
Dox (doxycycline, Macklin Inc., 24390-14-5) at a density of 
5 × 10 

5 cells / ml in six-well plates and incubated for 3, 13,
and 31 days, with Dox continuously present in the medium.
The cells were also grown in parallel without Dox as a con- 
trol. For each well, the medium with or without Dox was 
changed every 2 days. Two independent biological replicates 
were performed for the 3-day treatment, and three for the 13- 
and 31-day treatments. After the incubation, aliquots of two 

million cells from each biological replicate were harvested and 

used for total RNA isolation with TRNzol Universal reagent 
(TIANGEN, Beijing, China), following the manufacturer’s 
protocol. The knockdown of Drosha mRNA was assessed us- 
ing reverse-transcription quantitative polymerase chain reac- 
tion (RT-qPCR) using primers TCTA CA GTGGTTGGAA C- 
GA G and A CTCA CA CTCGGATTCA CTG against Drosha 
mRNA and GAPDH mRNA as a control. Each RT-qPCR re- 
action was performed in three separate wells. The RT-qPCR 

was performed on the Mx3005P cycler (Agilent Technologies,
Inc.). The C t values were analyzed using MxPro software (Ag- 
ilent Technologies, Inc.) with Comparative Quantitation (Cal- 
ibrator) settings. 

Construction of sRNA-seq libraries was conducted with 

NEB Next ® Multiplex Small RNA Library Prep Set for 
Illumina ® (NEB). The procedure selects for sRNAs with 5 

′ 

phosphate and 3 

′ hydroxyl termini. After the library construc- 
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and TLG . 
ion, the polymerase chain reaction (PCR) products corre-
ponding to sRNAs in the range of 20–40 nt were purified
y denaturing polyacrylamide gel electrophoresis (PAGE) and
sed for sRNA-seq on the Illumina platform (Hiseq 2500) and
ingle-end 50-base strategy. The library construction and se-
uencing were performed by Novogene Inc. (Beijing). 

mall RNA-seq data analysis 

he raw reads that contained any of the following features
ere removed: (i) > 10% of bases were N , (ii) > 50% of bases
ad low ( ≤5) quality scores, (iii) sequence adapters, or (iv)

ong homopolymeric tracks. The quality-filtered reads were
hen aligned to the reference human genome (GRCh37 / hg19)
sing Bowtie2 (v2.2.9) with the default settings. The align-
ents with unique 5 

′ and 3 

′ coordinates were generated by
amtools (v1.9) in a strand-specific fashion and used for the
ubsequent analyses after removing the alignments that over-
apped the RNA family of repeats as annotated by the Repeat-

asker track ( https:// hgdownload.soe.ucsc.edu/ goldenPath/
g19/ database/ rmsk.txt.gz ) of the UCSC Genome Browser. 
The RPKM values for each annotated miRNA from miR-

ase v22 ( https:// www.mirbase.org/ ) or a unique sRNA align-
ent i were calculated for each sample as shown below, where
C denotes the read counts for the sRNA i in the sample j ,
RL is the total read length in the sample j , and TRC is the

otal read count in sample j . Only reads 5 

′ and 3 

′ ends of which
atched the corresponding termini of the annotated miRBase
iRNAs or unique sRNA alignment were used for the reads
er kilobase per million mapped reads (RPKM) calculations. 

RPK M i, j = 

R C i, j × 10 

9 

TR L j × TR C j 

To determine the effect of Drosha knockdown on annotated
iRBase miRNAs, we used adjusted fold change ( AFC ). AFC

voids a problem of division by zero for miRNAs with no
ead counts in the control samples. AFC of 0.5 represents no
hange, while down- and upregulated transcripts would have
FC in the ranges of [0, 0.5) and (0.5, 1], respectively. The

ormula to calculate AFC for each sRNA i in each sample j
each biological replicate for each time point of 3, 13, or 31
ays) is shown below. 

AF C i, j = 

RPKM ( + Dox ) i, j 

RPKM ( −Dox ) i, j + RPKM ( + Dox ) i, j 

To discover novel Drosha-dependent sRNAs, we used two
etrics. First, the expression fold change ( FC ) of each unique

RNA alignment i in each sample j (each biological replicate
or each time point of 13 or 31 days) was calculated as shown
elow. 

F C i, j = 

RPKM ( + Dox ) i, j 

RPKM ( −Dox ) i, j 

We then calculated the average fold change ( ave .FC i ,t ) for
ach alignment i across in each time point t (13 or 31 days). 

Second, we calculated statistical significance of depletion
or each sRNA alignment in response to Dox using two-sided
tudent’s t -test with six-pair samples (three biological repli-
ates for each time point of 13 or 31 days). Only sRNAs with
etectable expression (RPKM > 0) in at least two of the six
Dox samples were used in this analysis. The P -values were

hen adjusted for multiple comparisons with the Benjamini–
Hochberg method in the R environment to get the false discov-
ery rate (FDR). Drosha-dependent sRNAs were then defined
as those that satisfied two conditions: (i) ave.FC had to be < 1
in both the 13- and 31-day time points and (ii) FDR had to
be < 0.2. 

Known genes and lncRNAs were downloaded from
GENCODE release 42 ( https:// ftp.ebi.ac.uk/ pub/ databases/
gencode/ Gencode _ human/ release _ 42/ ). The coordinates of
407 vlincRNAs identified in K562 cell line were taken
from St Laurent et al. [ 26 ]. The ENCODE small RNA-
seq data were downloaded from the UCSC Genome
Browser ( http:// www.genome.ucsc.edu/ cgi-bin/ hgFileUi?db=
hg19&g=wgEncodeCshlShortRnaSeq ). For the evolutionary
conservation analysis, the genomic coordinates of the homol-
ogous sequences in the genomes of mouse (mm10), marmoset
(calJac3), and bushbaby (otoGar1) were determined by the
LiftOver tool from the UCSC Genome Browser. The coor-
dinates of the sRNAs bound to the Argonaute (AGO) pro-
teins and Dicer binding sites were downloaded from Gene Ex-
pression Omnibus (GEO) using the following GEO accession
numbers: GSE55331 [ 27 ], GSM721075 [ 13 ], and GSE55324
[ 27 ]. Since AGO proteins bind mature miRNAs, the over-
lap was performed using a 2-base shift at either the 5 

′ or
3 

′ ends. However, since Dicer binds to a longer pre-miRNA,
the overlap with the Dicer dataset required at least a 1-
base overlap. The AGO-qCLASH data [ 28 , 29 ] were down-
loaded from GEO using the following accession numbers:
GSM5015717, GSM5015718, GSM5015719, GSM5015720,
and GSM5015721. A sequence of each hybrid read was split
into the first 25 nt and the remaining sequence that were then
separately aligned to the genome and only unique alignments
were kept. The alignments corresponding to the first 25 nt of
the hybrid reads were overlapped with the coordinates of the
known and novel miRNAs. The alignments of the remaining
sequences were overlapped with the coordinates of the anno-
tated genes. The BEDTools (v2.25.0) suite was used for all
operations related to genomic overlap. All overlaps were per-
formed in a strand-specific fashion with the exception of over-
laps with the different classes of repeats. 

To assign novel miRNAs to the existing miRNA families,
the covariance models of 4170 RNA families were down-
loaded from the Rfam (release 14.10) database [ 30 ]. The nu-
cleotide sequences of all the novel miRNAs together with their
100 nt upstream and 100 nt downstream genomic sequences
were compared with these models using the Infernal software
(version 1.1.4) [ 31 ] with the default or the “-rfam” param-
eter that sets stringent filters. For each miRNA, only hits on
the same genomic strand and with the minimal E -value were
kept. 

The odds ratio ( OR ) of enrichment of the overlap of sRNAs
with a genomic element i relative to the random chance was
calculated as follows: 

O R i = 

L S i /T S i 
T L i /T LG 

, 

where LS i is the length of the sRNAs overlapping the genomic
element i , TS i is the total length of the sRNAs mapping to
genome, TL i is the total length of the genomic element i , and
TLG is the total length of the genome. Note that the total
length of the RNA family of repeats were removed from L i

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/rmsk.txt.gz
https://www.mirbase.org/
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_42/
http://www.genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeCshlShortRnaSeq
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the sRNA could be located close to either 5 or 3 end of 
Results 

Establishing a stable inducible Drosha knockdown 

system 

To identify novel sRNAs that could potentially correspond
to novel miRNAs, we have chosen an in vivo approach by
profiling sRNA transcriptome in cultured cells depleted of
the RNase III endonuclease Drosha that together with the
DGCR8 protein forms the Microprocessor complex respon-
sible for the first critical step in biogenesis of the majority of
known miRNA [ 32–35 ]. During this step, pre-miRNA hair-
pins are cleaved from the long primary (pri-miRNA) tran-
scripts and later processed to mature miRNAs by Dicer [ 36 ],
and therefore depletion of the Drosha enzyme should also
deplete the mature miRNAs. To achieve Drosha depletion,
we transfected human leukemia cell line K562 with a lentivi-
ral construct encoding shRNA targeting the Drosha mRNA
under the control of Dox-inducible H1 promoter and TetR
protein (Fig. 1 A; “Materials and methods” section). After se-
lecting stable transfected clones, we have tested depletion of
Drosha mRNA using RT-qPCR in cells grown for 3, 13, and
31 days in the presence of Dox and in the control cells grown
in parallel without Dox (Fig. 1 B). We found that the 3-day
incubation time was not sufficient to see significant depletion
of Drosha mRNA (Fig. 1 B and Supplementary Table S1 ). In-
stead, a longer incubation time of 13 days was required to ob-
serve a significant (on average 94%) depletion of the transcript
in response to Dox (Fig. 1 B and Supplementary Table S1 ).
Considering that miRNAs are relatively stable [ 37 ] and there-
fore long time of Drosha depletion might be required to ob-
serve a change in the steady-state levels of these molecules,
we also tested a longer incubation time point of 31 days
and found that Drosha mRNA was also significantly (on av-
erage 91%) depleted in these samples as well (Fig. 1 B and
Supplementary Table S1 ). 

To assess the sensitivity and specificity of the effect of
the Drosha knockdown on its true targets in our system,
we have first selected two subsets of known miRNAs an-
notated in the public miRNA database, miRBase [ 38 ]. One
group represented 1289 mature miRNAs corresponding to
763 pre-miRNAs ( Supplementary Table S2 ) that were proven
to be generated by the Drosha / DGCR8 complex based on
in vitro cleavage assays and will be referred to as “Drosha-
dependent” miRNAs [ 39 ]. The second group consisted of 486
atypical mature miRNAs that have been previously shown
not to require Drosha activity for their biogenesis and were
mostly (466 / 486) represented by “mirtrons,” generated by
splicing of short introns [ 40–42 ], as well as some others such
as sno- and tRNA-derived miRNAs and 5 

′ capped miRNAs
( Supplementary Table S2 ). Atypical miRNAs share many fea-
tures with the typical miRNAs such as downstream process-
ing of pre-miRNAs by Dicer, export to cytosol via Exportin-
5, loading into the RNA-induced silencing complex (RISC)
and regulation of their targets [ 43 ]. Therefore, since the ma-
jor difference between the typical and atypical miRNAs is the
“Drosha-dependent” processing step, the latter group should
represent a strict control for the specificity of the discov-
ery of the “Drosha-dependent” sRNAs and will be referred
to as “Drosha-independent” miRNAs. In addition, miRBase
contains 972 mature miRNAs ( Supplementary Table S2 ) that
were shown not to be efficiently processed in vitro from the
corresponding pri-miRNAs by the purified Drosha / DGCR8
complex [ 39 ] but not classified as atypical. Still, since it is con-
ceivable that such “Drosha-inefficient” miRNAs could theo- 
retically be generated by the Drosha / DGCR8 complex in vivo ,
we did not include them in the analysis of the specificity of the 
Drosha-depletion system (also see below). Finally, the Drosha- 
dependent status of the remaining 133 miRBase miRNAs has 
not be characterized and therefore these miRNAs were also 

not included in the analysis. 
The effect of Drosha depletion in cells grown with and with- 

out Dox for 3, 13, and 31 days was evaluated using sRNA- 
seq analysis performed on sRNAs in the range of 20–40 nt.
Consistent with little Drosha depletion observed at 3-day, no 

decrease in either group of miRNAs could be observed at that 
time point (Fig. 1 C and Supplementary Table S3 ). However,
the “Drosha-dependent” miRNAs exhibited a stark decrease 
in abundance in response to Dox at both 13- and 31-day time 
points while the “Drosha-independent” miRNAs have shown 

the opposite trend (Fig. 1 C and Supplementary Table S3 ).
These patterns were highly reproducible in each of the three 
biological replicas done for each of these time points (Fig.
1 C and Supplementary Table S3 ). The results above strongly 
supported high level of specificity of our Drosha knockdown 

system towards true Drosha / DGCR8 substrates. However,
downregulation of sRNAs in response to Drosha depletion 

could also be caused by secondary effects and therefore such 

sRNAs would not represent real substrates of the Micropro- 
cessor complex. Therefore, we have developed additional fil- 
tering steps to select true miRNAs based on specific features 
of their RNA folding patterns. 

Developing a deep learning model to select true 

novel Microprocessor substrates 

Proper processing by the Microprocessor complex requires 
presence of specific sequence and structural features in the 
pre-miRNA hairpins as well in their immediate flanking 
DNA sequence [ 44–48 ]. Therefore, we have tested whether 
the true substrates of the Drosha / DGCR8 complex could 

be distinguished based on the presence of such features 
by the multi-branch convolutional neural network (MuS- 
tARD) method that can learn specific sequence-structure pat- 
terns from a specific class of user-defined sRNAs [ 49 ]. We 
used MuStARD to build a model that can recognize proper 
sequence-structure patterns around the “Drosha-dependent”
miRNAs using sequences of 695 out of the 763 “Drosha- 
dependent” pre-miRNAs from miRBase and 5000 randomly- 
selected sequences from the human genome as respectively 
the positive and negative components of the input training 
set (“Materials and methods” section and Supplementary 
Table S4 ). The MuStARD algorithm works with a 100 

base-long sequences; therefore, the sequences of the pre- 
miRNAs (on the order of 70 nt) were extended equally in 

each direction using flanking genome sequence. Based on 

the current knowledge of the recognition of its targets by 
the Drosha / DGCR8 complex [ 36 ], such 100 base-long se- 
quences should contain most of the sequence–structure infor- 
mation required for proper recognition by the Microprocessor 
complex. 

To validate the model, however, we used mature miRNAs 
since they would more properly represent the situation with 

the novel sRNAs found in this study for which pre-miRNA 

sequences are not known. However, since the relative posi- 
tion of a novel sRNA in the RNA structure is not known—

′ ′ 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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A B

C

Figure 1. Establishing the inducible Drosha knockdown system. ( A ) Schematics of the stable Drosha shRNA expressing lentiviral cassette under the 
control of a Tet-On promoter. ( B ) Depletion of Drosha mRNA in the human K562 cells containing stably integrated Drosha shRNA cassette in response 
to growth in presence of Dox for variable amounts of time relative to the cells grown without Dox in parallel for each biological replicate (B1–B3). ( C ) 
Depletion of Drosha-dependent and Drosha-independent miRBase miRNAs in the Drosha depleted cells. The AFC ( Y -axis) of [0, 0.5) and (0.5, 1] 
represents, respectively, decrease or increase in the expression levels while 0.5 (the dashed red line) means no change (see “Materials and methods”
section for more details). Box plots indicate median (middle line), 25th, 75th percentile (box), and 1.5 × interquartile range (whiskers) as well as the 
a v erage (asterisk) for each biological replicate (B1–B3). 
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he hairpin recognized by the Drosha / DGCR8 complex—we
ave extended sequence of each miRNA to 100 bases us-

ng the flanking genomic sequence in three different ways:
i) extending by 10 nt at the 5 

′ end and extending to 100
t by adding the remaining sequence at the 3 

′ end, (ii) ex-
ending by 10 nt at the 3 

′ end and extending to 100 nt by
dding the remaining sequence at the 5 

′ end, and (iii) ex-
ending equally at both ends (Fig. 2 A). For each sequence,

uStARD returned a score in the range of [0, 1] with the
core of 1 signifying the highest probability of a sequence
aving the sequence–structure property of a positive train-
ng set, in this case “Drosha-dependent” miRNA. For each
f the 695 “Drosha-dependent” pre-miRNAs, we used their
orresponding 1173 mature miRNAs to calculate MuStARD
core for each of the three extended sequences and selected
he highest (Fig. 2 A). In parallel, we also generated the MuS-
ARD scores calculated using the same strategy for the 116
Drosha-dependent” mature miRNAs not used in the model
onstruction (the validation set). As can be seen from Fig. 2 B,
he model performed very well on both the training and the
validation “Drosha-dependent” miRNA sequences—94.1%
(1104 / 1173) and 89.7% (104 / 116) of miRNAs in these two
respective categories had maximum MuStARD scores in the
range of (0.5, 1] ( Supplementary Table S4 ). For comparison,
only 0.44% (22 / 5000) of the negative sequences had MuS-
tARD scores in this range ( Supplementary Table S4 ). Since
∼90% of the “Drosha-dependent” miRNAs from the valida-
tion set had the maximum MuStARD score > 0.5, we have
selected this threshold for the downstream analysis. 

We then further tested the specificity of the model on
the “Drosha-independent” miRNAs. Importantly, none of the
miRNAs from this control group were used in the model train-
ing either as part of the positive or negative sets. As shown
in the Fig. 2 B, the model could clearly separate the “Drosha-
dependent” miRNAs from this control group: only 33.5%
(163 / 486) of the mature “Drosha-independent” miRNAs had
maximum MuStARD score > 0.5 ( Supplementary Table S4 ).
Altogether, these results argue for a high level of specificity of
the MuStARD model in identification of sequences that could
be efficiently processed by the Microprocessor complex. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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Figure 2. Establishing and validating the MuStARD model for predicting proper RNA secondary str uct ure of Drosha-dependent miRNAs. ( A ) Schematic 
diagram of obtaining the MuStARD score for a miRBase miRNA or an sRNA. ( B ) Violin plots of the distribution of MuStARD scores obtained using a 
MuStARD model on the training and validation sets of miRBase Drosha-dependent miRNAs, miRBase Drosha-independent miRNAs, and random 

genomic regions. The dashed lines within the plots indicate (from bottom to top) 25th percentile, median, and 75th percentile. The numbers above 
indicate total numbers of sequences in each category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development of the genome-wide miRNA 

discovery pipeline 

Given the high specificity of the genetic and AI-based miRNA
discovery strategies, represented by respectively the Drosha
knockdown system and MuStARD model, we have developed
a discovery pipeline of novel miRNA that is based on ap-
plication of both of these strategies as described in Fig. 3 .
The first part of the pipeline identifies sRNAs that are po-
tentially processed by the Drosha enzyme. The second part
further filters the candidates to identify sRNAs that have se-
quence and structure features of true and efficient substrates
of the Drosha / DGCR8 complex. Finally, the performance of
the model is validated based on the fraction of the resulting
novel miRNAs that have evidence of in vivo Dicer cleavage
as determined by the presence of the expected sRNAs derived
from the opposite strand of the RNA duplex (Fig. 4 A–C). 

To identify “Drosha-dependent” novel sRNAs, we used
the sRNA-seq data from the six pairs of the Dox treated
13- and 31-day samples and the corresponding −Dox con-
trols represented by a total of 747 170 505 NGS reads, of
which 650 556 475 could be mapped to the genome (Fig.
3 and Supplementary Fig. S1 ). For each of the 12 samples,
we then further filtered the alignments to select a total of
642 057 268 uniquely mapping reads, coordinates of which
were further collapsed to generate 20 620 641 alignments
( ∼1 M to ∼4.7 M per sample) with unique 5 

′ and 3 

′ coor-
dinates that were used for the downstream analysis (Fig. 3
and Supplementary Fig. S1 ). As the next step, we excluded the
alignments that overlapped the “RNA” class of repeats as an-
notated by the RepeatMasker database [ 50 ] to remove poten-
tial degradation products of highly abundant cellular RNAs,
such as ribosomal RNAs (rRNAs), snRNAs, or transfer RNAs
(tRNAs), that compose this class of genomic repeats. Then,
for each of the 20 014 675 remaining alignments, we calcu-
lated fold change (FC) between each Dox-treated sample and
the corresponding control (Fig. 3 and Supplementary Fig. S1 ;
“Materials and methods” section). Therefore, for each sRNA
alignment, we calculated FC in each of the six pairs of Dox-
treated and control samples and then used these values to cal-
culate the average FC ( Supplementary Fig. S1 and “Materials
and methods” section). Then, for each sRNA alignment, we
calculated statistical significance of the FC using paired Stu- 
dent’ s t -test. W e then used the raw P -values as input into the 
Benjamini–Hochberg procedure to select 435 158 alignments 
that decreased in response to the Drosha depletion with the 
average FC < 1 and FDR < 0.2 (Fig. 3 and “Materials and 

methods” section). Since different sRNA alignments could be 
derived from the same pre-miRNAs, we merged the coordi- 
nates of the 435 158 sRNA alignments to obtain 323 257 

clusters (Fig. 3 and Supplementary Fig. S1 ). Of those, 322 101 

clusters did not overlap miRBase pre-miRNAs and thus po- 
tentially represented novel miRNAs, while 1156 clusters cor- 
responded to annotated miRBase miRNAs. Of the latter,
most (1095 / 1156) clusters corresponded to mature miRBase 
miRNAs. 

As the final step of the part 1, we have selected a single 
representative alignment with the maximum read depth for 
each cluster and only kept alignments in the length range of 
20–25 nt consistent with the length distribution of the known 

miRNAs (Fig. 3 and Supplementary Fig. S1 ). As the result,
we obtained 41 806 and 860 sRNAs that represented respec- 
tively potential novel miRNAs and annotated mature miR- 
Base miRNAs (Fig. 3 ; Supplementary Tables S5 and 6 ). As ex- 
pected, majority, 646 / 860 or 75.1%, of the miRBase miRNAs 
detected by our pipeline were represented by the “Drosha- 
dependent” miRNAs ( Supplementary Table 6 ). Interestingly,
another 169 / 860 (19.7%) were represented by the “Drosha- 
inefficient” miRNAs (Fig. 3 and Supplementary Table S6 ),
suggesting that these transcripts could indeed be processed 

in a Drosha-dependent fashion in vivo , even though exhibit- 
ing poor processing in vitro [ 39 ]. The remaining 26 and 

19 miRNAs were represented by respectively the “Drosha- 
independent” miRNAs and the miRNAs Drosha dependency 
of which has not been characterized in vitro (Fig. 3 and 

Supplementary Table S6 ). 
To estimate the performance of the first part of the pipeline,

we calculated two metrics. First, we estimated precision of the 
detection of boundaries of the annotated miRBase miRNAs 
by the alignments generated at the final part of the pipeline.
As summarized in Fig. 3 and shown in the Fig. 5 A–C for 
several examples, the boundaries of 45.4% of the 646 ma- 
ture “Drosha-dependent” miRBase miRNAs were detected 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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Figure 3. Schematic representation of the miRNA disco v ery pipeline. The two steps of the pipeline and the key numbers and metrics are shown. 



8 Gao et al. 

A

B C

D E

Figure 4. Obtaining evidence of the in vivo Dicer cleavage of various groups of miRNAs and sRNAs. ( A ) Schematics of the prediction and detection of 
psRNAs. ( B ) Fraction of predicted (top) and detected (bottom) psRNAs for each indicated group of miRNAs or sRNAs. ( C ) Violin plots showing the 
distributions of expression levels of miRBase miRNAs and novel miRNAs in K562 cells. The dashed lines within the plots indicate (from bottom to top) 
25th percentile, median, and 75th percentile. ( D and E ) Fractions of sRNAs from each indicated group of miRNAs or sRNAs that o v erlap with either the 
AGO- (D) or Dicer-associated (E) sRNAs from the studies of Rybak-Wolf et al. [ 27 ] and Valen et al. [ 13 ]. 
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A

B

C

Figure 5. Example of detection of Drosha-dependent miRBase miRNAs using the pipeline developed in this study. Genomic contexts, miRBase 
annotations, and predicted targeting and psRNAs are shown for hsa-miR-3157 ( A ), hsa-miR-190b ( B ), and hsa-miR-135a1 ( C ) miRNAs. The secondary 
RNA str uct ures are based on the predictions generated by the MuStARD program. 
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precisely (0 base shift) by our pipeline, while those of ad-
ditional 30.7% and 14.7% were detected with respectively
only 1- or 2-base shifts from both 5 

′ and 3 

′ ends combined
( Supplementary Table S7 ). Thus, the boundaries of ∼91% of
the annotated “Drosha-dependent” miRNAs were detected
with relatively high precision (within two bases). 

Second, we estimated the sensitivity and specificity of the
first part of the pipeline by determining the fraction of
the “Drosha-dependent” or “Drosha-independent” miRBase
miRNAs that were classified as “Drosha-dependent” sRNAs.
To estimate this, we first determined how many “Drosha-
dependent” or “Drosha-independent” miRNAs were ex-
pressed in our samples using the total 20 620 641 sRNA
alignments that were obtained from the Drosha-depleted or
control samples prior to selecting Drosha-dependent sRNAs
(Fig. 3 ). Overall, we could detect respectively 906 and 326
“Drosha-dependent” and “Drosha-independent” miRNAs
( Supplementary Table S6 ). Of the 906 “Drosha-dependent”
miRNAs, the pipeline correctly classified the aforementioned
646 or 71.3% as “Drosha-dependent” miRNAs. On the other
hand, only 26 or 8% of the 326 atypical miRNAs were incor-
rectly classified as “Drosha-dependent” in our pipeline (Fig.
3 and Supplementary Table S6 ). In addition, we could de-
tect expression of 355 “Drosha-inefficient”miRNAs, of which
169 (47.6%) could be classified as “Drosha-dependent” by
our pipeline (Fig. 3 and Supplementary Table S6 ). Thus, the
first part of the pipeline could correctly classify the majority
(71.3%) of the truly positive “Drosha-dependent” miRNAs,
while incorrectly classifying a small fraction (8%) of the truly
negative “Drosha-independent” miRNAs ( Supplementary 
Table S6 ). And, as expected, it had somewhat higher
fraction of positive calls in an ambiguous category of
“Drosha-inefficient” miRNAs that might contain true Drosha
substrates. 

As shown in the Supplementary Fig. S2 , the 260 expressed
“Drosha-dependent” miRBase miRNAs that were not de-
tected by our pipeline also tended to be depleted in response
to Drosha knockdown; however, the fold depletion was not
as high as for the 646 “Drosha-dependent” miRNAs that
were correctly classified by our pipeline ( Supplementary Table 
S8 ). Such miRNAs could represent very stable sRNA species
steady state levels of which are less responsive to Drosha
knockdown. In summary, the part 1 of the pipeline could iden-
tify majority of the annotated miRBase miRNAs expressed
in K562 and generated by the Drosha / DGCR8 complex with
high precision, sensitivity and specificity. 

We then applied the MuStARD model to the 41 806 novel
miRNA candidates ( Supplementary Table S5 ) and classified
them into three groups. As expected, the vast majority (93.7%
or 605 / 646) of the Drosha-dependent miRBase miRNAs de-
tected in the part 1 of the pipeline had the maximum MuS-
tARD scores > 0.5 (Fig. 3 ). The corresponding fraction for
the novel miRNA candidates was significantly smaller—only
3834 out of 41 806 (9.2%) sRNAs had the maximum MuS-
tARD scores of > 0.5 and will be referred to as “strong
Drosha / DGCR8 substrates” (Fig. 3 and Supplementary Table 
S5 ). Still, as mentioned above, only 0.44% of the random se-
quences had such score ( Supplementary Table S4 ), thus novel
miRNA candidates generated by the part 1 of the pipeline
were enriched 20.8-fold (9.2% versus 0.44%) in the sequences
with the high ( > 0.5) maximum MuStARD scores compared
to the random genomic regions. On the other hand, major-
ity of the novel miRNA candidates, 32 244 out of 41 806
( ∼77%), had the scores in the range of [0, 0.05] (Fig. 3 and 

Supplementary Table S5 ). In this regard, most of the ran- 
dom genomic regions (96.6% and Supplementary Table S4 ) 
also had scores in this range. Therefore, the miRNAs candi- 
dates with such low scores likely did not represent true miR- 
NAs. Drosha has been reported to have noncanonical sub- 
strates and thus have other functions in addition to miRNA 

processing [ 51 , 52 ]. It is therefore likely that sRNAs in this 
group represent such noncanonical substrates or, alternatively,
they represent sRNAs levels of which are indirectly affected 

by Drosha depletion. Therefore, we will refer to this group 

as “noncanonical / indirect Drosha substrates.” Conceivably,
this category can also include very weak substrates of the 
Drosha / DGCR8 complex. Additional 5728 out of 41 806 

(13.7%) novel miRNA had the scores in the range of (0.05,
0.5] (Fig. 3 and Supplementary Table S5 ). This group could 

contain weak substrates of Drosha / DGCR8 complex and will 
be referred to as “weak Drosha / DGCR8 substrates.”

Based on sequence analysis, we realized that many novel 
miRNA candidates represented novel members of a large 
miRNA gene family hsa-mir-548. Therefore, we developed 

an additional filtering step in the pipeline to remove such 

sequences (Fig. 3 ). First, using the VSEARCH program 

[ 53 ], we found that all known members of the hsa-mir- 
548 family could be clustered together using 70% sequence 
identity level. Therefore, we used this threshold to clus- 
ter the miRNA candidates together with the known mem- 
bers of the hsa-mir-548 family and found that 1108 / 3834 

(28.9%) of the candidates in the “strong Drosha / DGCR8 

substrates” category corresponded to novel members of 
the hsa-mir-548 family. The novel hsa-mir-548 miRNAs 
were then removed from the subsequent analysis, resulting 
in a category of 2726 sRNAs representing “novel strong 
Drosha / DGCR8 substrates” that will be further referred to as 
“novel miRNAs” (Fig. 3 and Supplementary Table S9 ). Fur- 
thermore, using the same approach, we also removed novel 
members of the mir-548 gene family from the categories 
of 5728 “weak Drosha / DGCR8 substrates” and 32 244 

“noncanonical / indirect Drosha substrates” to generate re- 
spectively 5416 and 30 876 “novel weak Drosha / DGCR8 

substrates” and “novel noncanonical / indirect Drosha sub- 
strates” categories (Fig. 3 ). 

Properties of novel miRNAs 

Majority ( ∼2 / 3) of the 2726 “novel miRNAs” represented 

novel miRNA families while 939 of them ( ∼1 / 3) could be as- 
signed to 289 distinct known miRNA families in the Rfam 

database ( Supplementary Table S10 and “Materials and meth- 
ods” section). Most of these miRNAs represented distant 
members of the families since the same search done using strin- 
gent parameters resulted in only 32 novel miRNAs assigned 

to 16 distinct miRNA families ( Supplementary Table S10 ). 
Interestingly, 65 out of 2726 “novel miRNAs” mapped an- 

tisense to miRBase miRNAs ( Supplementary Table S9 ). These 
sRNA are likely processed from natural antisense transcripts 
which overlap some miRBase miRNAs. Such transcripts have 
been reported previously [ 54 ]. The same study also reported 

that the antisense regions could form hairpin structures based 

on the patterns of RNA editing mediated by adenosine deam- 
inases acting on RNA (ADARs) [ 54 ]. Currently, only four 
sense-antisense miRNA pairs are annotated in the miRBase.
Of the additional 65 antisense miRNAs found in this work,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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ne overlapped an antisense miRNA Hsa-Mir-337-as anno-
ated in the MirGeneDB 2.1 database [ 55 ]. We will refer to
he 65 novel antisense miRNAs as “novel miRNAs-AS.” The
emaining 2661 sRNAs will be referred to as “novel miRNAs-
AS,” which also contained one sense-antisense miRNA pair.
mong “novel miRNAs-NAS,” two have been previously re-
orted in the MirGeneDB 2.1 database under the names of
sa-Novel-2 and Hsa-Novel-3 ( Supplementary Table S9 ). 
Evolutionary conservation of RNA structure is consid-

red as one of the attributes of functional RNAs. Therefore,
e tested presence of conserved pre-miRNA structures in

hree other species with different evolutionary distances from
umans—a New World monkey (marmoset), a prosimian
bushbaby), and a rodent (mouse)—which split from the hu-
an lineage respectively ∼43, ∼64, and ∼76 million years

go [ 56 , 57 ]. For each of the 2726 “novel miRNAs,” we
sed the extended 100 nt sequences with the maximum MuS-
ARD score (Fig. 2 A) to search and extract the homologous
equences in the genomes of the three species (“Materials and
ethods” section). Then, we estimated how many of the ho-
ologous sequences might fold into Drosha-dependent pre-
iRNA structures by calculating the MuStARD score for each

equence. A homologous sequence was considered to have
onserved RNA fold if its MuStARD score was > 0.5. Based
n this analysis, we found that 19.8%, 4.1%, and 3.7% of the
riginal 2726 human “novel miRNAs” are conserved in, re-
pectively , the marmoset, bushbaby , and mouse genomes (Ta-
le 1 and Supplementary Table S11 ). 
We then performed the same analysis for the 1286 miR-

ase Drosha-dependent miRNAs which contain well-studied
iRNAs with widely accepted functions and biological signif-

cance [ 38 ]. Not surprisingly, the miRBase miRNAs exhibited
 much higher conservation level—for the three species, the
ractions of conserved RNA fold among the miRBase miRNAs
anged from ∼3- to ∼10-fold higher than those for the novel
iRNAs (Table 1 and Supplementary Table S11 ). Neverthe-

ess, the novel miRNAs showed a significantly higher conser-
ation level than the 5000 random genomic regions as evi-
enced by ∼21- to 61-fold higher fractions of conserved RNA
old among the former (Table 1 and Supplementary Table 
11 ). 

A total of 648 (23.8%) novel human miRNAs exhibited
onserved RNA folds in at least one of the three species with
ach species containing a unique set of conserved miRNAs
 Supplementary Fig. S3 and Supplementary Table S11 ). A sim-
lar pattern was also observed for the miRBase miRNAs, while
he corresponding number was 861 (67.0%, Supplementary 
ig. S3 and Supplementary Table S11 ). Therefore, it is quite

ikely that more novel miRNAs identified in this work are con-
erved in genomes of species not tested in this work. Over-
ll, these results suggest that the novel miRNAs are less con-
erved than the known miRBase miRNAs yet have a much
igher conservation level than the random genomic regions
see “Discussion” section). This notion is further emphasized
y the fact that only 21 (0.8%) novel human miRNAs had
onserved RNA fold in all the three species compared to 293
22.8%) for miRBase and 0 for the random regions (Table 1 ,
upplementary Fig. S3 and Supplementary Table S11 ). 

alidation of the miRNA discovery pipeline 

 true pre-miRNA generated by the Drosha / DGCR8 cleavage
s subjected to further processing by Dicer riboendonuclease.
This step results in an RNA duplex, containing the “guide”
and “passenger” strands, of which typically only the former is
loaded into the RISC complex [ 36 ]. Therefore, the evidence of
Dicer processing as manifested by the presence of the passen-
ger miRNA (psRNA) is a hallmark property of a true miRNA
[ 58 ]. Thus, we used this property to validate the bona fide na-
ture of the novel miRNAs discovered in this work using the
following three steps outlined in the Fig. 4 A: (i) prediction
of genomic coordinates of potential psRNA for each miRNA
candidate, (ii) detection of the potential psRNAs in sRNA-seq
data, and (iii) comparing the results to the negative control sR-
NAs that are not expected to represent miRNAs. 

To accomplish the first step, we have developed an au-
tomatic algorithm (“Materials and methods” section) to es-
timate genomic coordinates of a potential psRNA for each
miRNA candidate based on the predicted RNA structure
of the corresponding pre-miRNA, location of the pipeline-
detected miRNA candidate in that structure, and the pattern
of Dicer cleavage that creates 2 nt overhangs between the
passenger and driver miRNAs [ 36 ]. Using this algorithm, we
could predict genomic coordinates for 1247 / 1289 (97%) of
the “Drosha-dependent” mature miRBase miRNAs (Fig. 4 B
and Supplementary Table S12 ). In this analysis, each miRBase
miRNA was treated as a “guide” miRNA. Of the 1247 miR-
NAs, miRBase contained the coordinates of the corresponding
psRNAs for 1012 miRNAs ( Supplementary Table S13 ). The
coordinates of the 840 / 1012 (83%) of the predicted psRNA
were detected with 4-base shifts from both 5 

′ and 3 

′ ends com-
bined compared to the coordinates provided by the miRBase,
arguing for the high precision of our psRNA predicting algo-
rithm ( Supplementary Table S13 ). 

Of the 2726 “novel miRNAs,” only 118 mapped on the
same strand and within 60 bp of each other and thus poten-
tially representing the mature products of the same 59 pre-
miRNAs. Thus, the vast majority (2667 / 2726 or 97.8%) of
“novel miRNAs” represented different pre-miRNAs. There-
fore, we used each of the 2726 “novel miRNAs” to pre-
dict the coordinates of the corresponding potential psR-
NAs using the extended sequence that produced that max-
imum MuStARD score. As the result, we successfully pre-
dicted psRNAs for 63 / 65 (96.9%) of “novel miRNAs-AS”
and 2177 / 2661 (81.8%) of the “novel miRNAs-NAS” cat-
egories of miRNA candidates ( Supplementary Table S12 ).
In addition, using the same procedure, we predicted poten-
tial psRNAs for 3707 / 5416 (68.4%) and 17 501 out of
30 876 (56.7%) for the miRNA candidates from the respec-
tive categories of “novel weak Drosha / DGCR8 substrates”
and “novel non-canonical / indirect Drosha substrates” (Fig.
4 B and Supplementary Table S12 ). Interestingly, the fraction
of predicted psRNAs was the highest for the miRBase miR-
NAs, and it correlated with the MuStARD score of the novel
miRNAs and random reads (Fig. 4 B and Supplementary Table 
S12 ). The lack of predicted psRNA is likely explained by the
inability of an RNA to fold in a structure that even remotely
resembles a pre-miRNA. As expected, the fraction of such
sequences would be lowest in the miRBase miRNAs and it
would increase among the novel sRNAs with the decrease in
the MuStARD score. 

Passenger miRNAs can be unstable, have lower abundance
levels than the driver miRNAs and therefore are not always
detectable even for known miRNAs [ 59 ]. In order to in-
crease the sensitivity of the psRNA detection in the second
step of the validation, we have included multiple additional

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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Table 1. Conservation of novel miRNAs 

Human sequences Species Homologous sequences 
Conserved Drosha-dependent pre-miRNA 

structures 

Number Fraction 
Shared by three 

species Number Fraction 
Shared by three 

species 

Novel miRNAs (2726) Marmoset 1654 60.7% 388 (14.2%) 541 19.8% 21 (0.8%) 
Bushbaby 767 28.1% 113 4.1% 

Mouse 710 26.0% 100 3.7% 

Drosha-dependent miRBase Marmoset 995 77.4% 437 (34.0%) 776 60.3% 293 (22.8%) 
miRNAs (1286) Bushbaby 578 44.9% 441 34.3% 

Mouse 609 47.4% 465 36.2% 

Random genomic regions Marmoset 2890 57.8% 363 (7.3%) 25 0.5% 0 (0%) 
(5000) Bushbaby 1292 25.8% 10 0.2% 

Mouse 737 14.7% 3 0.1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sRNA-seq datasets from the ENCODE consortium [ 7 ] rep-
resented by 181 libraries from 43 cell types with a total of
171 994 643 unique reads. After removing reads overlapping
the RNA repeats, we combined the filtered reads with the
unique reads from sRNA-seq data obtained in this study to
generate a total of 201 295 825 unique sRNA reads. A psRNA
was considered detected if its genomic coordinates matched
those of a unique sRNA read within a 2-base shift at either
the 5 

′ or 3 

′ end (total shift ≤ 4 bases) as shown in Fig. 4 A. 
As the third step of the validation, we generated a true neg-

ative control to estimate the performance of the psRNA pre-
diction as a proper metric in selecting true Drosha-dependent
miRNAs. We randomly selected 50 000 novel sRNAs from
the 20 014 675 novel sRNAs with unique 5 

′ and 3 

′ ends that
were used as the input into the pipeline (Fig. 3 ). After remov-
ing sRNAs that corresponded to the novel members of the
mir-548 family and miRBase miRNAs, this number was re-
duced to 49 229 of which our algorithm could predict co-
ordinates of potential psRNA for 29 271 (59.5%) sRNAs
( Supplementary Table S12 ). We then applied the MuStARD
model to these 29 271 sRNAs and found that respectively
21 579, 5574, and 2118 sRNAs had scores in the ranges of [0,
0.05], (0.05, 0.5], and (0.5, 1] ( Supplementary Table S12 ). The
21 579 random sRNAs with the very low MuStARD scores
of [0, 0.05] would thus represent the true negative controls
that are expected to have the lowest fraction of real Drosha-
dependent miRNAs. 

As expected, the “Drosha-dependent” miRBase miRNAs
had the highest associations with psRNAs. Of the 646 such
miRNAs detected by our pipeline (Fig. 3 ), we could pre-
dict potential psRNAs for 96.6% (624 / 646, Fig. 4 B and
Supplementary Table S12 ) and detect the presence of 91.5%
(571 / 624) of these psRNAs in the RNA-seq data as shown
in Fig. 4 B and exemplified in the Fig. 5 A–C for several
miRNAs. On the other hand, also as expected, the negative
control sRNAs had the smallest fraction of potential psR-
NAs that were detected in the sRNA-seq data—699 out of
21 579 or 3.2% (Fig. 4 B and Supplementary Table S12 ).
Strikingly, as shown in Fig. 4 B and Supplementary Table S12 ,
we could detect potential psRNAs for 30.4% (662 / 2177) of
the “novel miRNAs-NAS,” which was 9.5-fold higher than
the aforementioned fraction for the random sRNAs (3.2%).
Several such examples are shown in Fig. 6 A–D. In addi-
tion, the detected psRNA fraction for the “novel miRNAs-
AS” category was even higher—42 / 63 (66.7%, Fig. 4 B and
Supplementary Table S12 ), arguing that these miRNAs are
also generated by Dicer. Interestingly, the corresponding frac-
tion for the “novel noncanonical / indirect Drosha substrates”
was 739 out of 17 501 (4.2%), somewhat higher than the ran- 
dom sRNAs (Fig. 4 B and Supplementary Table S12 ), suggest- 
ing that some members of this category were true miRNAs.
Furthermore, as expected, the detected psRNA fraction for 
the “novel weak Drosha / DGCR8 substrates”was even higher,
396 / 3707 (10.7%, Fig. 4 B and Supplementary Table S12 ), in- 
dicating that some of the miRNA candidates in this category 
were also true miRNAs. 

Overall, taken together, the Drosha-dependency, the high 

MuStARD score and the strong enrichment in association 

with psRNAs, strongly argue that the 2726 sRNAs in both 

the “novel miRNAs-AS” and “novel miRNAs-NAS” cate- 
gories represent bona fide miRNAs. The failure to detect psR- 
NAs for 1536 / 2240 (68.6%) of these sRNAs is likely due 
to the sensitivity of detection since, as shown in Fig. 4 C and 

Supplementary Table S14 , the “novel miRNAs” tend to have 
much lower expression levels than the annotated “Drosha- 
dependent” miRNAs. 

However, our results suggest that additional miRNAs do 

exist. Based on the fractions of the sRNAs associated with 

psRNAs, it appears that besides the 2726 novel miRNAs, ad- 
ditional miRNAs exist in the “novel weak Drosha / DGCR8 

substrates” and even “novel non-canonical / indirect Drosha 
substrates” categories. Furthermore, strikingly, we observed 

increase in the fractions of the psRNA-associated sRNAs 
among the randomly selected sRNAs with the increase in the 
MuStARD scores. Specifically, random sRNAs with the scores 
in the ranges of (0.05, 0.5] and (0.5, 1] contained respectively 
5.7% and 9.0% psRNAs, which were higher than the 3.2% 

which was found for the background random sRNAs (Fig. 4 B 

and Supplementary Table S12 ). Interestingly, the group of ran- 
dom sRNAs with the MuStARD scores in the range of (0.5,
1] and with psRNA was represented by 190 entities, which 

corresponded to 0.38% of the original 50 000 randomly cho- 
sen sRNAs ( Supplementary Table S12 ). Considering that the 
random sRNAs were chosen from 20 014 675 sRNAs, this 
would mean that the total number of Drosha-dependent miR- 
NAs in just one human cell line could be as high as ∼80K (see 
“Discussion” section). 

Canonical miRNAs function by interacting with the AGO 

proteins to form the RISC RNA–protein complex [ 60 ].
Therefore, we further explored whether the novel miRNAs 
identified in this work also interact with AGO proteins. We 
took advantage of two publicly available datasets that identi- 
fied sRNAs associated with either AGO2 / 3 from the study by 
Rybak-Wolf et al. [ 27 ] or AGO1 / 2 proteins from the study by 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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Figure 6. Example of detection of no v el miRNAs using the pipeline de v eloped in this study. Genomic contexts and predicted targeting and psRNAs are 
sho wn f or no v el miRNAs detected in CDS of gene NOMO3 ( A ), 5 ′ UTR of gene TBC1D3F ( B ), 3 ′ UTR of gene DYNC1I2 ( C ), and intron of gene CDC73 
( D ). The secondary RNA str uct ures are based on the predictions generated by the MuStARD program. 
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Valen et al. [ 13 ]. We then calculated the fractions of the over-
lap between the various aforementioned categories of sRNAs
(those identified using our pipeline, random sRNAs, and the
control miRBase miRNAs) and the AGO-interacting sRNAs
(“Materials and methods” section). As shown in the Fig. 4 D,
we have observed an increase in the fraction of overlap with
the increasing MuStARD scores ( Supplementary Table S15 ).
While certain amount of nonspecific signal could be expected
in such experiments, it would not be expected to correlate
with the propensity of the RNA structures to fold into RNA
structures recognized by the Drosha / DGCR8 complex which
is measured by the MuStARD score. Instead, this trend argued
for a high specificity of the observed interactions between the
sRNAs and the AGO proteins. 

The additional proof for specificity of the interactions came
from the observation that the fractions of the overlaps were al-
ways higher for the novel Drosha dependent sRNAs compared
to the random sRNAs reads with the same MuStARD score
(Fig. 4 D and Supplementary Table S15 ). Finally, the sRNAs
with psRNAs had higher fractions of the overlap than those
without psRNAs (Fig. 4 D and Supplementary Table S15 ). In
fact, based on the Rybak-Wolf et al. dataset, the fraction of
the “novel miRNAs-NAS” sRNAs with psRNAs that associ-
ated with AGO2 / 3 proteins was almost as high as that for
the miRBase miRNAs—33.2% versus 35.7% (Fig. 4 D and
Supplementary Table S15 ). All of the above general trends
were found in both datasets (Fig. 4 D and Supplementary 
Table S15 ). Overall, we found that 613 / 2661 and 34 / 65 sR-
NAs from the respectively “novel miRNAs-NAS” and “novel
miRNAs-AS” datasets were found to interact with the AGO
proteins in at least one dataset ( Supplementary Table S15 ).
The failure to detect all sRNAs in these categories could be ex-
plained by the cell-type specificity of miRNA expression since
the two datasets were obtained in cell lines other than K562.
This is a likely reason why only 1682 / 2880 miRBase miR-
NAs were found to be associated with AGO proteins in these
datasets ( Supplementary Table S15 ). 

We then explored whether novel miRNAs could bind and
potentially regulate other transcripts similar to the canoni-
cal miRNAs. Transcriptome-wide miRNA-binding sites could
be identified by a combination of AGO immunoprecipita-
tion of RISC complexes followed by ligation of the miRNAs
that are base-paired to their targets inside the complexes us-
ing crosslinking, ligation, and sequencing of hybrids on arg-
onaute (AGO-CLASH) approach [ 61 , 62 ]. To identify bind-
ing sites of our novel miRNAs, we took advantage of a pub-
licly available dataset from a human HCT116 cell line based
on a modified AGO-qCLASH method [ 28 , 29 ]. Indeed, we
could detect 123 / 2661 and 2 / 65 sRNAs from the respectively
“novel miRNAs-NAS” and “novel miRNAs-AS” interacting
with 3 

′ untranslated regions (UTRs) of respectively 390 and
24 genes. The failure to detect all novel miRNAs likely stems
from the cell-type specific expression of these molecules since
only 570 / 2880 miRBase miRNAs could be detected in this
dataset. However, these results suggest that in principle, novel
miRNAs appear to participate in the same interactions as the
canonical miRNAs. 

The study Rybak-Wolf et al. also provided genome-wide
information of Dicer binding using a PAR-CLIP assay [ 27 ],
which allowed for an independent confirmation of Dicer-
mediated processing of novel miRNAs found in this work. The
fractions of overlap were appreciably lower for each category,

even for the known miRBase miRNAs — > 35% for AGO ver- 
sus 16.3% for Dicer (Fig. 4 E and Supplementary Table S15 )—
which is likely due to the transitory interactions between 

Dicer and its substrates. Still, we observed very similar gen- 
eral trends as in the AGO datasets (Fig. 4 E and Supplementary 
Table S15 ), arguing that the parameters used in this work such 

as the Drosha-dependency, MuStARD score, and the associ- 
ation with psRNA tend to select for true miRNAs that are 
processed by Dicer and interact with AGO proteins. 

Support by multiple sequencing reads and evidence of con- 
sistent processing at the 5 

′ ends constitute two important cri- 
teria that are currently used for defining known high confi- 
dence miRNAs [ 38 , 58 ]. To define a high confidence miRNA,
miRBase requires ≥ 20 reads to overlap each the “guide”
and “passenger” miRNA with ≥50% of these reads having 
the same 5 

′ ends [ 38 ]. Using these criteria, 201 / 2661 (7.6%) 
“novel miRNAs-NAS” and 19 / 65 (29.2%) “novel miRNAs- 
AS” could be classified as high confidence ( Supplementary 
Table S16 ). In this analysis, the same 5 

′ end was defined within 

a 2-base shift to allow for imprecision of mapping and se- 
quencing. Overall, 220 / 2726 (8.1%) of the novel miRNAs re- 
ported here could be classified as high confidence using these 
criteria ( Supplementary Table S16 ). However, for compari- 
son, only ∼500 (26%) out of 1914 human miRBase miRNA 

loci could be classified as high confidence [ 38 ]. The miR- 
Base developers note that not being classified as “high con- 
fidence” does not mean that a miRNA is not real since the 
main reason for this is the lack of expression data [ 38 ]. In 

fact, 1225 / 1914 (64%) human miRBase microRNA loci do 

not have sufficient expression data to reach the ≥20 reads re- 
quirement [ 38 ]. Likewise, only 17.6% (481 / 2726) novel miR- 
NAs reached the ≥20 reads requirement, however based on 

a much smaller sRNA-seq dataset than miRBase: ∼200 mil- 
lion used in this study versus 5.5 billion reads used by miR- 
Base [ 38 ]. Therefore, it is highly likely that the number of high 

confidence novel miRNAs will increase with including more 
sRNA-seq data in the analysis. Furthermore, it is important to 

note that many of our novel miRNAs are derived from exons 
of mRNAs and therefore, they would also overlap by abun- 
dant small degradation products of these exons. This in turn 

would reduce the fraction of reads having the same 5 

′ ends 
compared with the miRBase miRNAs most of which do not 
map to exons. Indeed, we found this to be the case since the 
fraction of novel miRNAs with ≥50% reads having the same 
5 

′ end increased from 45.7% (220 / 481) for all novel miR- 
NAs to 56.2% (95 / 169) for those mapping outside of exons 
( Supplementary Table S16 ). 

Novel miRNAs are enriched in exons of mRNAs 

Analysis of the genome-wide distribution of the 2726 “novel 
miRNAs” revealed a strong enrichment in exons of mRNAs 
with the corresponding odds ratio of enrichment being 14.6 

(Fig. 7 A and B; Supplementary Table S17 ). For comparison,
the corresponding odds ratio for the “Drosha-dependent”
miRBase miRNAs expressed in the same cell line was 2.7 (Fig.
7 A and B; Supplementary Table S17 ). Interestingly, as exem- 
plified in Fig. 6 A–D, members of the “novel miRNAs” cate- 
gory were enriched in both coding and noncoding portions 
of mRNAs (Fig. 7 B and Supplementary Table S17 ). Strikingly,
the strongest odds ratios for the of enrichment “novel miR- 
NAs”were found in the coding regions (CDSs) followed by the 
5 

′ UTRs and then 3 

′ UTRs (Fig. 7 B and Supplementary Table 
S17 ). In contrast, the “Drosha-dependent” miRBase miRNAs 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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A

B

Figure 7. Distribution of Drosha-dependent miRBase miRNAs expressed in K562 and novel miRNAs among the different genomic features. ( A ) Total 
numbers and fractions of the miRBase miRNAs expressed in K562 (left) and novel miRNAs (right) mapping to the various genomic features are shown. 
Each miRNA was counted just once according to the hierarchy shown on the right. ( B ) Odds ratios of enrichment of the miRBase and novel miRNAs in 
the indicated genomic features. 
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were not enriched in the CDSs (Fig. 7 B and Supplementary 
Table S17 ). In fact, 50.1% (346) of the “novel miRNAs” lo-
cated in exons were found in the CDSs of 325 genes, while
the remaining 29.1% (201) and 20.7% (143) “novel miR-
NAs” were found in respectively 5 

′ and 3 

′ UTRs of 202 and
139 genes (Fig. 7 A and Supplementary Table S17 ). Overall, we
found 690 “novel miRNAs” mapping to exons of 651 genes. 

The “novel miRNAs” were also enriched in the exons
of lncRNAs; however, much less so than the “Drosha-
dependent” miRBase miRNAs with the corresponding odds
ratios of 3.5 and 20.7 (Fig. 7 B and Supplementary Table S17 ).
Of all other genomic features tested, the “novel miRNAs”
have shown moderate enrichment in the vlinc (very long in-
tergenic noncoding) subclass of lncRNAs [ 26 , 63 ] while the
“Drosha-dependent” miRBase miRNAs were depleted in this
class of transcripts as evidenced by the corresponding the odds
ratios of 1.8 and 0.4 (Fig. 7 B and Supplementary Table S17 ). 

Discussion 

In this work, we established a pipeline for discovery of novel
miRNAs. Using this pipeline, we identified 2726 novel miR-
NAs representing 2667 novel miRNA loci (excluding the miR-
NAs that are likely derived the same pre-miRNA) in a single
human cell line. It is important to emphasize that we focused
on discovering only the canonical, Drosha-dependent miR-
NAs. For comparison, miRBase contains 1914 miRNA loci
(represented by 2880 mature miRNAs), including both the
Drosha-dependent and Drosha-independent, atypical miR-
NAs. Furthermore, we estimate that tens of thousands of other
miRNA loci exist, suggesting that the true complexity of the
sRNA transcriptome is currently significantly under-estimated
even for the known classes of sRNAs. 

The criteria for defining true miRNAs have evolved over
time to reflect the progress of the data generation technolo-
gies in order to separate this class of sRNAs from other tran-
scripts which might share some similar features [ 38 , 58 , 64 ,
65 ]. The novel miRNAs found in this work satisfy five such
conditions as follows. First, the size range: the lengths of the
novel miRNAs fall within the appropriate range for the ma-
ture miRNAs. Second, the RNA fold: the sequences of novel
miRNAs are part of the appropriate RNA structures that have
the same folding properties as those for the known canoni-
cal miRNAs as determined by the deep learning MuStARD
algorithm. 

Third, biogenesis: canonical miRNAs are produced by the
sequential action of Drosha and Dicer riboendonucleases [ 36 ].
The sRNA candidates were initially selected by the virtue of
being dependent on Drosha. Then, the validity of the novel
miRNAs identified using the pipeline was confirmed by iden-
tification of the in vivo signature indicative of the final step
of the miRNA biogenesis common to all known miRNAs—
Dicer cleavage of the stem-loop pre-miRNA precursors [ 36 ].
During this step, the Dicer riboendonuclease-mediated cleav-
age in the stem region of a pre-miRNA hairpin structure gen-
erates a pair of sRNAs—the guide miRNA and the psRNA
[ 36 ]—the latter of which is typically much less stable than the
former but can be still detectable and functional in vivo [ 66 ,
67 ]. Indeed, we have found that the fraction of the psRNA-
associated novel miRNAs obtained by the pipeline was signif-
icantly higher than found in randomly sampled sRNAs that
were used as input in the pipeline: 31.4% versus 3.2%. Since
the search for the associated psRNAs was conducted using
exactly the same conditions and datasets for both the ran- 
domly sampled sRNAs and pipeline-derived novel miRNA 

candidates, the higher fraction of detected potential psRNAs 
for the novel miRNA candidates is highly suggestive of the 
Dicer-mediated cleavage. And, since the psRNAs were found 

in the cellular sRNA population, the psRNA association is in- 
dicative of Dicer cleavage which takes place in vivo —a strong 
argument that the 2726 novel miRNAs identified in this work 

do represent bona fide miRNAs. In addition, we could di- 
rectly detect interaction with Dicer for a subset of the novel 
miRNAs. 

Fourth, interaction with the AGO proteins: all true miR- 
NAs function via interactions with these proteins. In this 
work, we have provided strong evidence that our novel miR- 
NAs indeed interact with AGO proteins. Furthermore, for a 
subset of the novel miRNAs, we have provided evidence for 
direct binding to target mRNAs inside the RISC complex.
Fifth, a subset of novel miRNAs satisfied criteria associated 

with high confidence miRNAs. Finally, an appreciable frac- 
tion ( ∼1 / 3) of the novel miRNAs appear to represent distal 
members of known miRNA families. Taken together, these 
properties argue against the possibility that the novel miR- 
NAs reported here represent some novel class of sRNAs that 
are not miRNAs. However, given the complexity of the hu- 
man sRNA transcriptome, this formal possibility exists and 

additional studies are required to unambiguously confirm the 
true miRNA natures of these entities. 

However, despite sharing multiple features with the known 

miRNAs, the novel miRNAs identified in this work have three 
characteristic features that differentiate them from the anno- 
tated miRBase miRNAs. First, novel miRNAs have relatively 
low expression levels. However, this does not necessarily mean 

that these transcripts represent non-functional noise. As we 
have recently shown using high-throughput phenotypic as- 
says based on over-expression of sRNA in cultured human 

cells, functional sRNAs had a statistically significant tendency 
to have lower expression than sRNAs with no function [ 22 ].
A possible explanation for biological relevance of these low- 
expressed sRNAs could be a restricted pattern of expression 

and functionality limited to a specific subpopulation of cells 
[ 22 ]. In fact, cell-to-cell heterogeneity in expression of miR- 
NAs have been detected in previous studies utilizing high- 
throughput single-cell sequencing methods [ 68–71 ]. Second,
novel miRNAs are less conserved than the annotated miR- 
NAs. This however could indicate involvement of these miR- 
NAs in a human-specific function, as recently shown for a 
human-specific miRNAs miR-1229–3p [ 72 ]. Still, 100 novel 
human miRNAs appear to be conserved in as distantly re- 
lated species as mouse and hundreds more are conserved in 

the genomes of primates. 
Third, novel miRNAs are significantly enriched in exons of 

mRNAs, including the protein-coding regions. For example,
previously, among all 1289 Drosha-dependent miRBase miR- 
NAs, only 52 were found in exons, compared to 690 found in 

this work in just one human cell line. These observations are 
consistent with the complex, interleaved organization of the 
information encoded in the human genome in which a single 
base pair could be part of multiple functional elements [ 25 ],
for example, protein-coding and regulatory RNA species as 
shown in this work. Furthermore, as we have shown recently,
multiple other novel classes of functional sRNAs likely exist 
[ 22 ], which significantly expands the complexity of the infor- 
mation encoded by the genome. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf070#supplementary-data
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Our work suggested that many other miRNAs exist that
ould be detected using the pipeline developed in this study
hich consists of two main parts. The first part identifies sR-
As that are depleted in vivo in response to depletion of

he key miRNA biogenesis enzyme, Drosha riboendonucle-
se. The second part further refines such sRNAs to identify
hose that have structure-sequence features of true Drosha-
ependent miRNAs using a deep learning-based approach.
e found that both parts of the pipeline are necessary. First,

ot all sRNAs that are depleted in response to Drosha repre-
ent true Drosha-dependent miRNAs as shown by two lines
f evidence. First, only a small fraction (13%, 41 806 out of
22 101) of the novel (not overlapping miRBase) Drosha-
epleted sRNAs had the miRNA-like size distribution of
0–25 nt. This contrasted with most (78.5%, 860 / 1095) of
he miRBase miRNAs found to be depleted in response to
rosha falling within this size range. Second, only 9.2% of the
rosha-depleted sRNAs had high MuStARD scores of (0.5,
] compared to the corresponding fraction of 93.7% for the
rosha-dependent miRBase miRNAs. Therefore, only a small

raction of sRNAs, levels of which decreased in response to
rosha depletion, represented true Drosha-dependent miR-
As. These results are not surprising and are likely due to

he following two major reasons. One, indirect effects—not
ll sRNAs that respond to the change in Drosha level are
enerated by this enzyme. Rather, they could represent down-
tream effects of the changes in the levels of the true Drosha
argets. Also, Drosha has been shown to generate products
ther than miRNAs [ 51 , 52 ]. Two, the accuracy of the deep
earning-based approach alone was also not as high as that of
he whole pipeline. The fraction of the randomly selected sR-
As that had high (0.5, 1] MuStARD scores and for which the
redicted psRNAs were detected was 9.0% (190 / 2118). This
alue was substantially lower than the corresponding fraction
f 31.4% for the pipeline-derived novel miRNAs. Altogether,
hese results suggest that a combination of the two approaches
s required to properly refine novel miRNA candidates. 

Still, the deep learning-based approach alone showed
romise as evidenced by the analysis of the randomly selected
RNAs—with the increase in the MuStARD score, we ob-
erved a significant increase in the fraction of the detected
sRNAs. Specifically, 3.2% (699 out of 21 579) of the ran-
om sRNAs with the scores in the range of [0, 0.05] had
etectable psRNA. However, this fraction increased to 5.7%
318 / 5574) and 9.0% (190 / 2118) for the random sRNAs
hose MuStARD scores were in the ranges (0.05, 0.5] and

0.5, 1], respectively (Supplementary Table S12). Since all cat-
gories of sRNAs were subjected to the psRNA analysis using
he same analytical approach and datasets, it is hard to imag-
ne that the increase in the psRNA association is spurious es-
ecially considering that it correlates well with the strength of
he deep learning-based predictions. Instead, the increase in
he psRNA-detected fraction most likely reflects the increase
n the true novel miRNAs as evidenced by the correspond-
ng increase in the MuStARD scores. Strikingly, extrapolating
rom the fraction of the randomly-selected sRNAs with the
igh MuStARD scores and associated psRNA, we can esti-
ate that as much as ∼80K novel miRNAs still await dis-

overy. The inability to detect them in this study most likely
tems from their low expression in K562—in fact, majority
62.5%, 12 508 130 out of 20 014 675) of all sRNAs with
nique 5 

′ and 3 

′ coordinates that were used for selection of
andom sRNAs were represented by single NGS reads. Still,
since non-coding RNAs tend to be highly cell type specific [ 3 ],
it is quite possible that these novel miRNAs are highly ex-
pressed in other cell types. 

One important caveat of this work is that we have not di-
rectly shown that the novel miRNAs regulate other transcripts
and have biological relevance. However, identification of these
transcripts represents an important first step in answering the
questions about the function and mechanism of action. Over-
all, our results show that we are clearly at the very begin-
ning of the full understanding the depth of complexity of the
sRNA transcriptome and that additional in-depth studies are
required and fully warranted to fully understand its complex-
ity and functionality. 
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Code availability 

Custom scripts constituting the pipeline used to gen-
erate genomic coordinates of Drosha substrates are
available from GitHub ( https:// github.com/ Gaofan315/
small-RNA/ releases/ tag/ smallRNA ) and Zenodo (DOI:
10.5281 / zenodo.10503904). The additional adjustments and
downstream analyses involve standard packages in the R
environment and BEDTools suite as described in “Materials
and methods” section. 
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