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Abstract

Streetscapes are basic urban elements which play a major role in the livability of a city. The visual complexity of streetscapes
is known to influence how people behave in such built spaces. However, how and which characteristics of a visual scene
influence our perception of complexity have yet to be fully understood. This study proposes a method to evaluate the
complexity perceived in streetscapes based on the statistics of local contrast and spatial frequency. Here, 74 streetscape
images from four cities, including daytime and nighttime scenes, were ranked for complexity by 40 participants. Image
processing was then used to locally segment contrast and spatial frequency in the streetscapes. The statistics of these
characteristics were extracted and later combined to form a single objective measure. The direct use of statistics revealed
structural or morphological patterns in streetscapes related to the perception of complexity. Furthermore, in comparison to
conventional measures of visual complexity, the proposed objective measure exhibits a higher correlation with the opinion
of the participants. Also, the performance of this method is more robust regarding different time scenarios.

Citation: Cavalcante A, Mansouri A, Kacha L, Barros AK, Takeuchi Y, et al. (2014) Measuring Streetscape Complexity Based on the Statistics of Local Contrast and
Spatial Frequency. PLoS ONE 9(2): e87097. doi:10.1371/journal.pone.0087097

Editor: César A. Hidalgo, MIT, United States of America

Received July 15, 2013; Accepted December 19, 2013; Published February 3, 2014

Copyright: � 2014 Cavalcante et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge funding from The Hori Sciences & Arts Foundation. The funder had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: andre@ohnishi.m.is.nagoya-u.ac.jp

Introduction

According to Rapoport, a streetscape is a more or less narrow

and linear urban space lined up by buildings, used for circulation

and other activities [1]. The physical and perceptual qualities of

streetscapes directly influence how people interact and locally

behave in the city [2,3]. Visual complexity is one example of

perceptual quality, which is related to the affective appraisal of the

environment [4,5].

In streetscapes, the interest and preference of pedestrians is

shown to heavily depend on the perceived complexity [6,7].

Specifically, pedestrians are apt to prefer streets perceived as high

in complexity. Streetscape complexity is also found to influence

driving behavior and performance [8–11]. For instance, increasing

complexity normally increases the time required for reaction and

peripheral detection tasks during simulated driving.

In this way, evaluation and analysis of important aspects of

urban life could benefit from properly measuring or quantifying

the perception of complexity in streetscapes. However, what make

us perceive or decide that a visual scene ‘‘A’’ is more complex than

a scene ‘‘B’’?

Attneave showed that for scenes containing abstract shapes,

certain visual characteristics (which he named symmetry, curved-

ness, angular variation, etc) was related to the perception of visual

complexity [12]. By combining these characteristics into a single

equation, Attneave created an objective measure which was

correlated with human judgments on visual complexity.

The characteristics of spatial frequency have also been shown to

influence the perception of visual complexity. Specifically, it is

reported that the amplitude of high-frequency components must

be preserved for complex objects to be recognized [13–15].

Similarly, specific relationships among frequency components in

the phase spectrum are crucial for visual recognition of complex

scenes [16]. These results have been extended by many other

studies in vision research, involving many types of visual scenes.

Based on the characteristics of spatial-frequency, Näsänen et al.

derived a complexity measure defined as the product between the

effective image area and median frequency of the Fourier

spectrum [17]. Chikhman et al. used the components of this

measure to analyze complexity in hieroglyphs and contour images

[18]. Notice that Näsänen’s method can be applied on real-world

scenes.

It is has also been shown that the presence of image edges is

related to visual complexity [19]. This inspired a simple and

efficient measure known as perimeter detection. The measurement

consists of counting the number of pixels which form image edges.

This procedure can be easily applied on real-world scenes by using

edge-detection algorithms.

In order to measure visual clutter, a concept closely related to

complexity, Rosenholtz et al. proposed a framework called feature

congestion. Within this framework, several image characteristics

such as contrast, color and orientation are combined into a vector

space [20]. Clutter is then determined by the covariance of the

space calculated at each location of the image.
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Another line of research was based on the idea of computing

visual complexity according to the definitions of information

theory [21]. In this view, a visual scene is considered an

information source, and its visual complexity is thought to be

determined by the amount of information associated to its

statistical distribution.

An example of information based measure is the size in bytes of

the image digital file created according to coding standards such as

JPEG and GIF. Theoretically, file size should increase as the

amount of information increases. The JPEG file size has been used

in many perception works due to its high correlation with

subjective judgments of complexity. Forsythe et al. provides an

extensive analysis of the performance of JPEG and also of

perimeter detection [22].

Another example of information based measure is the subband

entropy [23]. The subband entropy is defined as the Shannon

entropy of wavelet coefficients used to encode an image.

Other methods have also been considered to evaluate visual

complexity in urban environments. For instance, Elsheshtawy used

a manual approach to segment meaningful elements of street

houses such as windows, doorways and overall volumes of facades

[24]. Complexity was then measured based on the number and

variety of those elements. Cooper also used a manual technique to

segment street skylines, i.e., edges formed between the boundaries

of buildings and the sky [25]. Then, he used fractal dimension to

assess the complexity of these skylines.

In our previous work, we have analyzed the complexity in

streetscape images by using the statistics of local contrast [26]. We

have found that these statistics are highly correlated with

subjective judgments for daytime images. However, similar to

conventional measures of complexity, they produce poor results

when nighttime images are considered.

Since city streetscapes are experienced or appreciated through-

out the day, proper evaluation for nighttime scenery is just as

important as for those in daytime. Here, we introduce a new

measure of visual complexity which exhibits a high and robust

performance over different time scenarios. This measure is formed

by combining the statistics of local contrast with those of local

spatial frequency.

The statistics of these visual characteristics reveal structural

features related to the perceived complexity in streetscapes.

Specifically, subjects tend to associate higher complexity to

streetscapes containing: objects which elicit high-contrast changes

in their surroundings and; textures characterized by spatial

frequencies lower than the average in the environment.

We conclude that while driven by different visual characteris-

tics, the perception of complexity in streetscapes can be reliably

estimated or measured by the proposed objective method.

Methods

Image acquisition
The streetscape ensemble consists of 74 scenes. Half of the

images were acquired in Al-Kantara and Batna cities in Algeria.

The other half was acquired in the cities of Kyoto and Tokyo in

Japan. Within the dataset, 40 images were acquired in daytime

and 34 images in nighttime.

Images were shot using the camera model Nikon D300S with

lens system Nikkor AF-S DX 35 mm f/1.8G. The camera was

fixed in a tripod in order to avoid artifacts due to camera shaking.

Aperture and shutter speed were determined manually according

to the lighting conditions in each of the 74 scenes. Image files were

recorded in uncompressed color NEF format (Nikon’s raw file

designation). The size of the RAW images was 428862848 pixels

and image quality was 14 bits/pixel.

Image pre-processing for presentation
In the subjective experiments described in the next section,

images were presented to participants in a 300 display (model Dell

UltraSharp 3008WFP). This display’s highest resolution is

256061600 pixels, which prevents images being exhibited in

raw size. Therefore, images were pre-processed by decimation. This

process consists in low-pass filtering and then downsampling the image.

Low-pass filtering before downsampling is performed so as to

avoid aliasing artifacts. Here, it was used a zero-phase eighth-order

low-pass Chebyshev Type I filter with normalized cutoff frequency

of 0:8=2. The images were then down sampled by a factor of 2. In

this way, the size of the pre-processed images was 214461424

pixels which can be exhibited on the used display. Finally,

decimated images were converted to 8 bit integer arrays so that

their pixel’s luminance is within the range [0, 255].

Subjective ranking
Streetscape images were analyzed by 40 participants. Among

the participants, 27 were of Japanese nationality, 13 of Algerian

nationality, 25 were males, and 15 were female.

The subjects seat at a distance of approximately 80 cm from the

display. Each image therefore subtended 37625.12 degrees of

visual angle. The maximum spatial frequency in an image was

approximately 28.9 cycles/degree horizontally, and 28.3 cycles/

degree at vertical orientation.

In order to make the subjective evaluation faster, the

participants were initially asked to cluster the streetscapes into

three groups: simple, ordinary and complex. In this regard, they were

instructed to use their own perception or definition of complexity.

Finally, the subjects were asked to sort images inside each group in

increasing order of complexity.

After receiving the 74 ranked images from one participant, it

was necessary to represent the divisions between simple and ordinary,

and between ordinary and complex groups. These divisions were

represented by including two additional rank positions. For

example, if the group simple contained ten streetscapes, the

division between simple and ordinary groups would occupy the 11th

position in the rank. The images in the ordinary group would then

start from position 12th. In similar manner, another additional

position would be considered for the division between ordinary and

complex groups. In this way, the complexity rank returned from one

participant has 76 positions, which includes the 74 images plus the

two group divisions. It is important to notice that images and

group divisions are sorted differently by each of the 40 subjects.

Thus, the rank position of a streetscape (or group division) is a

random variable. The probability distribution of this variable is

computed by counting the number of times vi in which the image

was located by the subjects at each rank position i. This probability

distribution is represented in Figure 1.

For each streetscape, the mean r of its probability distribution of

rank position is computed by using the standard definition of

mean, i.e.,

r~
X76

i~1

½i:pi�~
X76

i~1

i:
vi

40

h i
: ð1Þ

Streetscapes are then finally sorted according to their mean r.

Group divisions are also included in the sorting since they also

have probability distributions for rank positions. This final

complexity rank is analyzed in section 3.2.

Street Complexity by Contrast and Frequency
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Objective ranking
The proposed measure of complexity b is determined by the

system represented in Figure 2. The system consists of a series of

image processing steps. In the first step, the RGB color bands of

the input streetscape are collapsed generating the grayscale image

I. Around a pixel I(x,y) of this image, let us then consider a

neighborhood nx,y of 2L|2L pixels.

The neighborhood nx,y is vectorized into a column vector n
0
x,y,

i.e.,

n
0
x,y~vec(nx,y): ð2Þ

The vectorization operation vec( ) consists of reading pixels values

in a column-wise fashion, i.e., from top to bottom and left to right

in the neighborhood.

For all possible I(x,y), the respective n
0

x,y is processed by two

workflows. In the first workflow (left-hand side of the block

diagram), a contrast map C is computed based on the definition of

root-mean-squared (RMS) contrast. In the second workflow (right-

hand side of the block diagram), the kurtosis map K is constructed

to represent spatial frequency.

The objective measure b is calculated based on the statistics of

the maps C and K. The following sections describe each part of

the methodology in detail.

Contrast map. In the proposed system, the contrast map C is

used to highlight the local contrast in the streetscape. Each value

C(x,y) of this map is calculated as the standard deviation of vector

n
0

x,y, i.e.,

C(x,y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4L2

X4L2

i~1

½nx,y(i){nx,y�2
vuut , ð3Þ

where nx,y(i) and nx,y represent the i-th element and the mean

value of n
0
x,y. The above measure is also called the RMS contrast.

Notice that although standard RMS contrast is used, there are

other definitions or measures of image contrast [27].

Kurtosis map. The kurtosis map K is used to segment the

local spatial frequency in the scene. The computation starts by

firstly log-transforming luminance values in each neighborhood,

i.e.,

n
00
x,y~log�(n

0
x,y), ð4Þ

where log�(a)~0 for av1 and log�(a)~log(a) for a§1. This

non-linear transformation reduces large differences between

luminance intensities in different parts of the image.

The spatial frequency segmentation is then carried out. The

methodology is based on the concept of analyzing the response

activity of high-frequency wavelet filters [28,29]. This concept

exploits the fact that such filters exhibit greater response activity

for high-frequency inputs, and decreased or zero activity for low-

frequency inputs. The response activity of the filters is therefore

used to represent the input frequency.

In this work, the employed high-frequency wavelets are a set of

IC filters, which are denoted by the vectors w1,w2, . . . ,wk. These

filters are learned by the FastICA algorithm [30] from a natural

scenes database. The reason why independent component analysis

is used is that it automatically generates wavelet-like filters

covering many orientations [31]. Furthermore, these filters are

bound to be centered at high-frequencies due to second-order

whitening constraints [32]. These filter properties are quantified

and analyzed in section 3.3.

After the filters have been learned, each response value in vector

ux,y is calculated as

ux,y(i)~wT
i n
00
x,y: ð5Þ

Notice that in case wi is a DC filter, its response is fixed as a

constant ux,y(i)~c for all x,y.

Finally, the kurtosis map K is computed as

K(x,y)~

1

k

Xk

i~1

ux,y(i){ux,y

� �4
1

k

Xk

i~1

½ux,y(i){ux,y�2
( )2

, ð6Þ

where ux,y is the mean value of vector ux,y. The above equation is

called kurtosis and indicates either the concentration or the

dispersion of probability mass away from the shoulder of a

probability distribution [33]. For this reason, kurtosis has been

generally used to characterize how dense or sparse is the response

activity of filters [34–36]. Examples of how the response activity

change in function of the input frequency are shown in section 3.4.

Measure of complexity b. This work proposes the following

objective measure to evaluate complexity:

b~
mC
:sC

:skewK

kurtK
, ð7Þ

where mC and sC are the mean and standard deviation of contrast

values C(x,y), skewK and kurtK are the skewness and kurtosis of

K(x,y) values. The relation between each of these parameters and

the visual structure of a streetscape is described in the section 3.5.

Basically, this measure is concerned with the presence of both

high-contrast and low-frequency image regions.

Figure 1. Probability distribution of rank position for one
streetscape. This probability distribution describes how one specific
streetscape was ranked by the participants. The vi is the number of
times the image was located by the subjects at position i. Considering
40 subjects, the probability of the image to be ranked at any specific

position i is pi~
vi

40
. The point r represents the mean of the distribution.

Notice that there are 76 possible positions due to the two additional
positions for group divisions.
doi:10.1371/journal.pone.0087097.g001

Street Complexity by Contrast and Frequency
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Results

Streetscapes
Figure 3 shows some examples of streetscapes from each city.

Figure 3(a) and 3(b) show streetscapes in the Algerian cities of Al-

Kantara and Batna, respectively. Figure 3(c) and 3(d) exhibit

Japanese streetscapes in Kyoto and Tokyo cities.

Subjective rank analysis
As described in section 2.2, streetscapes are sorted according to

the mean r of their probability distributions of rank position. The

plot in Figure 4 shows this rank. The vertical and horizontal axes

give the mean r and the resulting rank position for each

streetscape, respectively. The blue shade in the plot represents

the standard deviation of the distributions for the streetscapes.

Figure 2. Block diagram of the objective ranking system. The RGB bands of the input streetscape are collapsed to form a grayscale image I .

Around every pixel I(x,y), a neighborhood nx,y of 2L|2L pixels is considered. After vectorization, each neighborhood n
0
x,y is processed by two

workflows. The first workflow (left) creates a contrast map C where each C(x,y) is calculated as the root-mean-squared (RMS) contrast of n
0

x,y . In the

second workflow (right), n
0

x,y has its luminance intensities normalized by means of a log transform. Secondly, the responses of independent

component (IC) filters to the normalized neighborhood form the response vector ux,y . The kurtosis map K is calculated so that each K(x,y) is the
kurtosis value of the response ux,y . The proposed measure b is calculated based on statistics of contrast and kurtosis maps.
doi:10.1371/journal.pone.0087097.g002

Street Complexity by Contrast and Frequency

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e87097



Group divisions are also included, dividing the plot into three

areas, simple, ordinary and complex.

It is possible to see that streetscapes in the group ordinary have

higher standard deviation of rank position than simple and complex

streetscapes. Interestingly, group divisions exhibit lower standard

deviations than streetscapes.

The group simple consists of 12 scenes: all Algerian streetscapes;

six dayscapes and six nightscapes. The category ordinary includes

47 scenes: 24 Algerian streetscapes and 23 Japanese streetscapes;

24 dayscapes and 23 nightscapes. The group of complex

streetscape is formed by 15 images: two Algerian streetscapes

and 14 Japanese streetscapes; 10 dayscapes and four nightscapes.

Algerian scenes dominate the group of simple streetscapes and

the lower region of the group ordinary. Japanese scenes dominate

the higher region of the group of ordinary streetscapes and they

correspond to the great majority in the group complex.

In groups simple and ordinary, dayscapes and nightscapes are

evenly distributed. However, dayscapes dominate the group of

complex streetscapes.

Notice that the subjective rank is generated considering the

entire group of 40 participants. In File S1, the subjective ranks

from participants of different nationality and gender are

compared. It is found that the perception of complexity is very

similar for the different subgroups of subjects.

Learned IC filters
In order to learn the set of independent component filters, a

dataset of natural scenes was obtained from the McGill Calibrated

Color Image Database (tabby.vision.mcgill.ca/). This database

consists of TIFF formatted non-compressed images. From 100

selected scenes, 100,000 images patches of 16|16 pixels were

extracted in a non-overlapping fashion. This set of image patches

was then used as input for the FastICA algorithm [30]. The

number of learning iterations was set to 200 and the working non-

linearity was the hyperbolic tangent. Dimension reduction was not

used.

A total of 255 filters and a DC component were learned.

Figure 5(a) shows examples of the learned IC filters. The

characteristics of these filters were quantified by the parameters

of fitted Gabor functions. Figure 5(b) shows the parameters values.

In the polar plot, each filter is represented by a circle whose

orientation and distance from the plot origin represents respec-

tively the preferred orientation and the center spatial frequency of

the filter (notice that the ICA learning process does not take into

account parameters such as viewing distance, therefore, spatial

Figure 3. Streetscapes. (a) Al-Kantara. (b) Batna. (c) Kyoto. (d) Tokyo.
doi:10.1371/journal.pone.0087097.g003

Figure 4. Subjective rank analysis. Streetscapes are organized in increasing order of r-values. Circles represent Algerian streetscapes. Triangles
represent Japanese streetscapes. Unfilled circles/triangles denote dayscapes. Filled circles/triangles denote nightscapes. Stars ‘‘*’’ represent group
divisions. The blue shade represent the standard deviation around r.
doi:10.1371/journal.pone.0087097.g004
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frequency is given in cycles/pixel). The circle’s gray intensity

represents the filter’s half-amplitude spatial frequency bandwidth

(octaves). The associated graymap along with the histogram of

bandwidths values are given below the polar plot.

The polar plot shows that the IC filters are mostly centered at

the high frequency part of the Fourier spectrum. Notice the

‘‘outlier’’ circle in center of the polar plot which represents the DC

filter. The histogram of half-amplitude bandwidth shows that the

majority of filters have bandwidth values 0.3 and 0.5 octaves.

Contrast and kurtosis maps
Fig. 6 demonstrates how values in the contrast and kurtosis

maps change in function of luminance difference and cycles per

pixel, respectively. In Fig. 6(a), the upper plot shows an array of

image edges. Each individual edge is a matrix of 16616 pixels

which contains only two luminance intensity values. Specifically,

the upper half of each edge is formed by an intensity value higher

than that of its lower half. The number d below each edge is the

difference between upper and lower intensities values. From left to

right in the array, the luminance difference d increases.

The colored array of numbers C(d) contains the respective

RMS contrast values calculated for each edge (i.e., each individual

edge is considered one image neighborhood, then its RMS

contrast value is calculated by Eq.(3)). Colors are used to highlight

low, medium and high values.

Figure 6(b) shows how kurtosis map values change. The array of

control images is composed of pure two-dimensional cosine

gratings of 16616 pixels. In these gratings, horizontal and vertical

components of the spatial frequency are constrained to have the

same value. This frequency is represented by the number f below

each grating. From left to right, the frequency f increases.

Notice that the frequency segmentation based on filter activity

does not take into account viewing distance. In other words, the

process is influenced only by the number of cycles per pixel and

not by the number of cycles per degree. Thus, f is given in cycles/

pixel (cpp).

The colored array K(f ) contains the respective kurtosis map

values calculated when considering each grating one neighbor-

hood (here it was used the IC filters learned in the previous

section). Notice that low-frequency gratings generates high kurtosis

which indicates a reduced response activity from the IC filters.

High-frequency gratings, however, generate low kurtosis values

indicating a dense filter response activity.

In Fig. 7, true contrast and kurtosis maps are exhibited for an

example of streetscape image. These maps were calculated using

neighborhoods of 16616 pixels. In the streetscape, objects which

luminance intensities contrast with their surroundings generate

high values in the contrast map. One can notice, however, that

most of the structures present in the scene do not generate such

high values of contrast.

In the kurtosis map, low-frequency areas such as the road

generate high kurtosis values. On the other hand, textured regions

such as the vegetation and the sidewalk have higher energy in

high-frequencies generating lower kurtosis values.

Statistics of contrast and kurtosis maps
Figure 8 shows the histograms of the contrast and kurtosis maps

exhibited previously in Fig. 7(b) and (c). By using these histograms,

one can analyze more precisely the distribution of local contrast

and spatial frequency within the streetscape in Fig. 7(a).

For instance, in Fig. 8(a), the histogram of the contrast map

shows more clearly the number of low-contrast locations in

relation to that of high-contrast. However, while the maps and

their histograms are useful for visual inspection and interpretation

of the streetscape structure, they are not simple quantities. In other

words, they can not be used directly as objective measures of the

visual attributes of the streetscape.

The statistics of the maps on the other hand are quantities

which describe very specific characteristics of the streetscape. Fig. 8

shows the statistics of the contrast and kurtosis maps which are

used in the proposed measure of complexity b.

Figure 5. Learned IC filters. (a) Examples of learned independent component filters. (b) Filter parameters are described by the polar plot and the
bandwidth histogram. Each gray-colored circle in the polar plot represents one of the filters learned by the FastICA. The distance of the circle from the
origin represents the preferred spatial frequency of the filter and it is given in cycles/pixel. The orientation of the circle represents the orientation of
the filter and it is given in degrees. The gray intensity of the circle represents the half-amplitude spatial frequency bandwidth. The related graymap
along with the histogram of bandwidth values is shown below the polar plot.
doi:10.1371/journal.pone.0087097.g005
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The first statistic is the mean mC of contrast values C(x,y),
which is by definition a positive number. The mean value mC

increases as the number of high-contrast regions increases.

The second statistics is the standard deviation sC of contrast

values C(x,y). sC can increase due to two factors. Firstly, it

increases in the presence of image regions that generate contrast

values C(x,y) higher than mean mC. On the other hand, it also

increases with regions that yields contrast values lower than mC. In

this way, sC represents the contrast ‘‘variety’’ in the streetscape

image.

Regarding the kurtosis map, two statistics are used in measure

b: the skewness skewK and the kurtosis kurtK of K(x,y) values (one

must not confuse K(x,y) values with the kurtosis kurtK of their

distribution).

Both skewness and kurtosis depend on the mean mK of the

K(x,y) distribution. The skewness is generally regarded as a

measure of asymmetry of a distribution in relation to its mean. For

instance, if there is a tendency for K(x,y) values to be higher than

the mean mK (i.e., the distribution is asymmetric towards its right-

hand tail), then the skewness of the distribution is positive. On the

other hand, in case distribution values tend to be lower than the

mean, then skewness is negative. If the probability density

distribution is symmetrical around its mean, the skewness is zero.

In Fig. 8(b), the positive skewness, skewK~1:14, indicates

asymmetry towards K(x,y) values higher than the mean mK~63.

Notice that higher K(x,y) values represent lower frequencies.

Therefore, this positive skewK indicates asymmetry towards low-

frequencies. In other words, there is a significant number of

streetscape regions characterized by spatial frequencies lower than

that represented by the mean mK.

For highly skewed distributions, however, it is important to

investigate the presence of statistical outliers. These are generally

defined as values extremely higher or lower than the mean of the

distribution. For instance, in case of the histogram in Fig. 8(b) with

mean mK~63, outliers would be located at the extreme of the

right-hand tail of the distribution.

Due to the properties of kurtosis, the magnitude of kurtK

heavily reflects the presence of such values. Thus, kurtK is used in

the denominator of measure b to compensate skewK values which

are high due to outliers in the K(x,y) distribution.

Figure 9 shows how the statistics of the contrast and kurtosis

maps correlate with the subjective complexity rank r. In the scatter

Figure 6. Representation of contrast and spatial frequency content by using RMS contrast and kurtosis. (a) The plot shows an array of
image edges, each of 16616 pixels. The number delta below each edge represents the luminance difference between upper and lower parts. From
left to right, this luminance difference increases. The colored array of numbers C(d) are the RMS contrast values calculated when considering each
edge an image neighborhood. (b) An array of two-dimensional cosine gratings of 16616 pixels. The number f represents the spatial frequency of
each grating. The colored array of numbers K(f ) shows the respective kurtosis value generated by the proposed system.
doi:10.1371/journal.pone.0087097.g006

Figure 7. Contrast and kurtosis maps. (a) Original image. (b) Respective maps C and (c) K. Colormaps associated with RMS contrast and kurtosis
values are shown below each map.
doi:10.1371/journal.pone.0087097.g007
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plot 9(a), the mean contrast mC is given in function of r-values. The

correlation coefficient between mC and the subjective rank is

R = 0.56.

The plot 9(b) shows the statistic sC. The correlation coefficient

between sC and r is R = 0.57. Notice that the majority of

nightscapes present lower mC and sC than dayscapes.

The positive correlations between mC,sC and the subjective rank

indicate that complex streetscapes exhibit a higher number of

objects or structures which elicit high changes of luminance and

contrast in the scene.

The scatter plot 9(c) shows skewK. This statistics has a

correlation coefficient of R = 0.53 (pv10{5) with the subjective

rank. This shows that the number of regions characterized by

spatial frequencies lower than the mean in the streetscape tend to

increase with complexity.

Fig. 9(d) shows kurtK . The correlation coefficient between kurtK

and the subjective rank is R = 0.22, with a high p-value. This

indicates that these variables are not significantly correlated.

However, kurtK is an important statistic since it signalizes outliers

in the K(x,y) distributions of the streetscapes.

The proposed measure b is built as a direct combination of

these observations on the characteristics of contrast and spatial

frequency of streetscape scenes.

Objective rank analysis
This section shows how b correlates with the subjective rank r

given in Fig. 4. Here, the following conventional measures are also

analyzed: perimeter length, JPEG file size, subband entropy,

feature congestion and Näsänen’s measure.

Scatter plots in Fig. 10 present the correlation behavior of the

measures over the entire streetscape dataset. Figures 10(a) and

10(b) show the behavior of perimeter length and JPEG file size (see

File S1 for parameter settings descriptions). These measures

exhibit similar correlation coefficients with the subjective rank. In

the scatter plots of both measures, nightscapes consistently receive

lower values than dayscapes.

Figures 10(c) and 10(d) exhibit measures subband entropy and

feature congestion. Fig. 10(e) and 10(f) shows the behavior of

Nasanen’s and the proposed b. Notice that although these

measures exhibit quite different correlation coefficients, they are

also seem biased by nightscapes in same sense of the previous

measures. Still, the proposed b exhibits the highest correlation

when all streetscapes are considered (R~0:72).

Table 1 exhibits the correlation coefficients when streetscape

types are considered separately. From Table 1, it is clear that all

objective measures have higher performance for daytime images.

For instance, the correlation coefficient of JPEG file size is

R~0:83 for dayscapes and only R~0:55 for nightscapes. On the

other hand, the proposed b exhibits the highest correlation for

nightscapes, i.e., R~0:70. Notice that b also has the least

variability between the correlation coefficients for dayscapes and

nightscapes.

There are also variations in correlation for the other types of

streetscapes. For instance, objective measures exhibit higher

correlation coefficients for Japanese scenes than for those from

Algeria. In this case, the proposed b also exhibits less variation

than other measures. For simple and complex scenes, Näsänen’s

measure is the most correlated with the subjective rank, i.e.,

R~0:65 and R~0:5, respectively. For ordinary category, b has

the highest correlation R~0:41. Notice that for these three

categories, p-values are higher than 0.001.

Discussion

Much has been understood about how the early visual system

responds to contrast and spatial frequency. And while there is no

established model of how these early responses influence the

perception of complexity, it is interesting to consider physiological

results that are related to b (notice that for primitive shapes,

response activity of visual cells increases with complexity [37]).

Local contrast can vary significantly within a visual scene [38].

A contrast map is a easy way to visualize this variation in terms of

lower and higher contrast image areas. Now from a physiological

point of view, it is important to understand how the response of

early visual cells is influenced by these low and high contrast areas.

Many studies have reported that in general firing rate of visual

cells is not linearly related to the input contrast [39–41].

Specifically, firing rate increases linearly with contrast but reaches

saturation at high contrast values. Furthermore, there are

thresholds or contrast below which cells do not respond.

Measure b is linearly related to the mean contrast of the

streetscapes. Therefore, it increases with contrast but does not

saturate as in the case of cell firing rate. Also, it does not account

for any threshold effects. In order to mimic the physiological

behavior, a proper non-linear transform would have to be applied

Figure 8. Statistics of contrast and kurtosis maps. (a) Histogram of the contrast map in Figure 7. (b) Histogram of the kurtosis map in Figure 7.
The statistics of these p.d.f.s are presented at the top-right corner of the histograms. Colormaps for C(x,y) and K(x,y) values are preserved for easy
understanding.
doi:10.1371/journal.pone.0087097.g008
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on the contrast map in order to threshold and saturate contrast

values.

The contrast sensitivity function (CSF) is another important

physiological result that is related to the perception of spatial

frequency [13]. The CSF defines how much contrast is need to

perceive a spatial-frequency component. While the CSF can be

different for each person, it generally shows that low-frequency

components requires lower contrast to be perceived than high-

frequency components. In other words, CSF shows that human

subjects have higher sensitivity for low frequencies. Notice

however that adaptation and masking effects during natural vision

reduce this sensitivity after some period of exposure [42].

The contrast and kurtosis maps provide estimations of contrast

and spatial frequency for each region within a scene. According to

the CSF, spatial frequency components cannot be perceived in

case image regions do not have the required minimum contrast.

Since the current methodology does not account for the CSF, the

frequency estimations for each image region may differ from what

is actually perceived.

The discrepancy between what is measured and what is

perceived could be significant specially for nighttime images due

to lower luminance and contrast. In fact, it is known that visual

acuity (i.e., the maximum perceived spatial frequency) is reduced

in low luminance scenes [43]. Furthermore, changes in eye optics

due to low luminance can introduce aberrations. These aberra-

tions have the effect of decreasing the transmitted contrast for

medium and high-spatial frequencies [44].

Changes in the distribution of light from daytime to nighttime

also heavily influence the perception and interpretation of the

‘‘architectural’’ space [45]. Specifically, it is found dim light often

results in shrinking the perceived size of objects, ornaments and

the overall built environment. Unaccounted factors related to

perception in low luminance and contrast might be the reason for

the degraded performance of complexity measures in nightscapes.

Figure 9. Statistics of contrast and kurtosis maps (cont.). Statistics are given in function of the subjective rank r. (a) Mean contrast mC . (b)
Standard deviation sC of contrast values. (c) Skewness of K(x,y) values. (d) Kurtosis of K(x,y) values. Correlation coefficient between objective and
subjective ranks are given at the top right corner of each plot. Vertical dotted lines represents the divisions between categories simple, ordinary and
complex. In each scatter plot, the solid line represents the best least-squares-sense first-order polynomial fit. The numbers R and p at the top-right
corner of each plot indicate the Pearson’s correlation coefficient and its p-value, respectively.
doi:10.1371/journal.pone.0087097.g009
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Figure 10. Correlation between objective measures and subjective rank. Objective measures are given in function of subjective rank r. (a)
Perimeter length. (b) JPEG file size given in megabytes. (c) Subband entropy. (d) Feature Congestion. (e) Nasanen. (f) Measure b. Correlation coefficient
between objective and subjective ranks are given at the top right corner of each plot. Vertical dotted lines represents the divisions between
categories simple, ordinary and complex. In each scatter plot, the solid line represents the best least-squares-sense first-order polynomial fit.
doi:10.1371/journal.pone.0087097.g010
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The above are just few examples of issues related to the

physiological processing and perception of contrast and spatial

frequency. Notice that some of the complexity measures do not

directly exploit these image properties. However, the character-

istics of contrast and spatial frequency do influence the measure-

ments in those methods. Furthermore, these methods are also

strongly supported on knowledge about the early visual system.

The perimeter detection method, for example, is based on the

number of edges detected in the scene (see File S1). The process of

edge detection is closely related to the filtering performed by the

simple cells of the primary visual cortex (V1) [46,47]. Specifically,

these cells have very dedicated or specialized receptive fields. Due

to this characteristic, simple cells have been primarily viewed as

biological edge detectors [48,49]. According to this, one could

associate the perimeter detection measure to the activation of

simple cells.

Further research, however, shown that the characteristics of V1

receptive fields could be artificially generated by efficiently encoding

natural scenes [50]. In this coding process, filters are generated

according to optimization functions which goal is to maximize the

amount of information extracted from the input signal. These

results support a broader view of V1 cells where they are adapted

to efficiently encode visual stimuli found in the environment [34].

Due to the nature of the signal filtering performed in the

subband entropy method and in coding schemes such as JPEG,

Rosenholtz suggests that these systems are likely to capture some of

same information that is extracted by V1 cells [23]. Notice that the

methodology used to compute our kurtosis map is also a V1-like

filtering technique. However, in contrast to the subband entropy

and JPEG filtering, the independent component filters strongly

focus on high-frequency bands.

In regard of JPEG filtering, it is also worthy noticing that there

are additional constraints which are inspired by the human visual

system. Specifically, the loss of information during coding is

controlled so that low-frequency image components suffer less

losses than high-frequency components. This rationale is derived

from the human contrast sensitivity function.

After an image has been encoded by JPEG, the size of the

digital file may be thought as the amount of information left in the

image after losses. Similar thinking can be used to interpret the

subband entropy measure. In this case, entropy represents the total

amount of information in the frequency bands since there are no

losses involved.

Interestingly, it has been shown that the size of the JPEG file is

highly correlated with the number of edges in an image (i.e., the

perimeter length measure) [22]. This result corroborates the

connection between edge detection and coding of visual scenes.

The correspondence between JPEG file size and the perimeter

length measure can also be observed for streetscapes. As shown in

Fig. 10, these measures have quite close correlation coefficients

with the subjective rank. Even analyzing at a streetscape type level

(see Table 1), the maximum difference between their coefficients is

not higher than 0.05. It is easy to see that this does not hold for any

other pair of measures.

In this way, the measures of visual complexity analyzed here

share similarities in terms of physiological foundations, image

processing methodology, and correlation behavior with the

subjective rank. In summary, methods employ filtering techniques

to extract low-level image characteristics which have well-

understood influence in the human visual system. The objective

measures are then derived in function of a single or a combination

of these image characteristics.

Our results suggests that low-level image characteristics are

indeed related to the complexity perceived in streetscapes. On

daytime images for example, the use of these characteristics allow

objective measures to be highly correlated with the opinion of

participants. Nonetheless, the effectiveness of these methods can

considerably fluctuate across streetscape types. The same behavior

is noticed for categories of images different than streetscapes

[18,22]. These studies suggest that different low-level character-

istics may best suit different image categories.

In case of streetscapes, the statistics of local contrast and spatial

frequency provide a competitive performance in comparison to

the state-of-art methods. In fact, considering the entire dataset, the

proposed measure b exhibits the highest correlation with the

subjective rank.

Measure b has also less variability in correlation with subjective

perception from daytime to nighttime images. For streetscapes,

this is an important advantage. For instance, a more stable

measure could be used to analyze visual interest and preference of

pedestrians without requiring changes in the methodology.

Furthermore, it could be used to analyze the human perception

during nighttime driving, which is has been pointed out as a

difficult problem since the visual system behaves differently from

daytime to nighttime [51].

The proposed measure also provides insight on the morpho-

logical features of the built space which are related to the

perception of complexity. Specifically, in streetscapes high

complexity is found correlated with the presence of high contrast

structures and areas defined by spatial frequencies lower than the

average in the scene. High contrast image features and the energy

in low frequencies are in fact reported to drive human attention or

emotional event processing.

Table 1. Correlation coefficients between objective and subjective ranks for individual streetscape types.

Perimeter JPEG SB Entropy FC Näsänen Proposed b

Dayscapes 0.79 0.83 0.53 0.65 0.80 0.77

Nightscapes 0.59 0.55 0.27 0.46 0.57 0.70

Japan 0.66 0.63 0.56 0.56 0.71 0.60

Algeria 0.41 0.44 0.30 0.27 0.42 0.51

Simple 0.48 0.52 0.30 0.45 0.65 0.25

Ordinary 0.18 0.21 0.12 0.1 0.19 0.41

Complex 0.45 0.39 0.31 0.36 0.50 0.36

Correlation coefficients are calculated considering only the number of images in the specific streetscape type referenced in the most left column. Values in bold font
represents significant correlation coefficients (pv0:001).
doi:10.1371/journal.pone.0087097.t001
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Now, the definition of streetscapes given in the introductory

section clearly indicates that this category can hold very

heterogeneous scenes. Diversity can come from many factors such

as different types of architecture, geography, time scenario, and

even season which directly influence the city vegetation.

Therefore, objective measures based on reduced sets of low-

level image characteristics are unlikely to be satisfactory for all

possible streetscapes. The statistical framework proposed in this

work can be easily applied to identify new image characteristics

related to the perception of complexity.

The diversity in this category also suggests that different

perceptual mechanisms may engage during subjective evaluation

of different streetscapes. As discussed before, the methods are still

quite limited in accounting for such mechanisms. A proper

implementation of perceptual related processes could improve

objective measures with higher and more stable performance

across different types of streetscapes.

Conclusion

The complexity perceived in streetscapes is known to influence

important elements in urban life such as the visual interest of

pedestrians and driving behavior. In this work, a methodology is

proposed for objectively measuring streetscape complexity based

on the statistics of local contrast and spatial frequency. The

proposed method exhibits higher correlations with subjective

perception in comparison to conventional measures of complexity.

Furthermore, it is found that this method is more effective and

robust for nighttime scenes.

The proposed method also revealed structural features in

streetscapes related to the perception of complexity. Specifically, it

is found that higher complexity is associated with the presence of

high contrast objects and image areas characterized by spatial

frequencies lower that the average in the environment.

Since complexity can be related to different features in

streetscapes, future studies will investigate the influence of different

image characteristics and the effect of implementing physiological

mechanisms related to human perception.
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