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BACKGROUND: Pathological atrial fibrosis is a major contributor to 
sustained atrial fibrillation. Currently, late gadolinium enhancement 
(LGE) scans provide the only noninvasive estimate of atrial fibrosis. 
However, widespread adoption of atrial LGE has been hindered partly by 
nonstandardized image processing techniques, which can be operator 
and algorithm dependent. Minimal validation and limited access to 
transparent software platforms have also exacerbated the problem. This 
study aims to estimate atrial fibrosis from cardiac magnetic resonance 
scans using a reproducible operator-independent fully automatic open-
source end-to-end pipeline.

METHODS: A multilabel convolutional neural network was designed 
to accurately delineate atrial structures including the blood pool, 
pulmonary veins, and mitral valve. The output from the network 
removed the operator dependent steps in a reproducible pipeline and 
allowed for automated estimation of atrial fibrosis from LGE-cardiac 
magnetic resonance scans. The pipeline results were compared against 
manual fibrosis burdens, calculated using published thresholds: image 
intensity ratio 0.97, image intensity ratio 1.61, and mean blood pool 
signal +3.3 SD.

RESULTS: We validated our methods on a large 3-dimensional LGE-
cardiac magnetic resonance data set from 207 labeled scans. Automatic 
atrial segmentation achieved a 91% Dice score, compared with the 
mutual agreement of 85% in Dice seen in the interobserver analysis of 
operators. Intraclass correlation coefficients of the automatic pipeline 
with manually generated results were excellent and better than or equal 
to interobserver correlations for all 3 thresholds: 0.94 versus 0.88, 0.99 
versus 0.99, 0.99 versus 0.96 for image intensity ratio 0.97, image 
intensity ratio 1.61, and +3.3 SD thresholds, respectively. Automatic 
analysis required 3 minutes per case on a standard workstation. The 
network and the analysis software are publicly available.

CONCLUSIONS: Our pipeline provides a fully automatic estimation 
of fibrosis burden from LGE-cardiac magnetic resonance scans that is 
comparable to manual analysis. This removes one key source of variability 
in the measurement of atrial fibrosis.
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Atrial fibrillation (AF) is the most common arrhyth-
mia. Guidelines recognize that AF is complex for 
clinicians to manage.1 Patients can be treated 

pharmacologically, by catheter ablation to isolate or re-
move aberrant atrial tissue, or by atrioventricular node 
ablation coupled with pacemaker implantation. Unfor-
tunately, pharmacological treatments have profound 
side effects, AF may recur in 50% of AF ablation cases, 
and pacemaker dependency has inherent risks. Each 
patient requires a treatment specific to their AF and se-
lecting the optimal treatment for each patient remains 
a daily clinical challenge.1

Precision cardiology requires accurate characterization 
of the disease phenotype for each patient.2 Pathological 
atrial fibrosis is a major contributor to sustaining AF and 
has been proposed as a biomarker to guide personalized 
treatment.3 Late gadolinium enhancement (LGE) cardiac 
magnetic resonance imaging (CMR) has been proposed 
as a method for estimating atrial fibrosis and the fibro-
sis burden estimated by LGE-CMR correlates with patient 

response to AF ablation. However, widespread adoption 
of LGR-CMR for informing clinical decisions has remained 
controversial. This is partly due to a lack of consensus on 
how best to process images, as well as unreliable image 
quality of scans, with only 17% to 40% of images being 
diagnostic at leading centers.4 Minimal validation and 
limited access to open-source software platforms have 
also exacerbated the problem.5

We recently proposed a pipeline for the reproduc-
ible processing of LGE-CMR scans.6 However, the pipe-
line still required the manual segmentation of the left 
atria (LA) and labeling of important anatomic struc-
tures, including the pulmonary veins (PV), mitral valve 
(MV), and left atrial appendage (LAA). This segmenta-
tion process is time consuming (15 minutes per case 
on average), requires significant expertise, and is prone 
to interobserver variability. Motivated by these factors, 
several prior studies have benchmarked automatic atrial 
segmentation methods7,8 but most previous attempts 
were single label methods, which focused on delineat-
ing the LA blood pool including its surrounding anato-
mies and not on measuring LGE fibrosis burden.9–12

PVs and MV have different tissue characteristics to 
the LA body and are more fibrotic.13 LAA is a trabecu-
lated structure with a variable wall thickness,14 which 
may bias the fibrosis analysis. Furthermore, there is a 
large variability in the morphology between patients. It 
is, therefore, desirable to restrict the assessment to the 
body of the LA. A multilabel segmentation approach 
can alleviate these issues.

In this article, we propose a novel end-to-end auto-
matic pipeline for estimation of atrial fibrosis from LGE-
CMR scans, including a convolutional neural network 
(CNN) for blood pool, PVs, LAA, and MV segmentation. 
We validated our methods on a large 3-dimensional 
(3D) CMR data set from 207 manually annotated scans. 
Furthermore, our pipeline was implemented as part of a 
user-friendly platform that provides validated, transpar-
ent, and reproducible estimation of atrial fibrosis from 
LGE-CMR in <3 minutes. This was achieved through a 
deep learning approach with potential applications in 
the diagnosis and stratification of patients with AF.

METHODS
Here, we first introduce the clinical data used, followed by 
the network proposed to segment LA structures. We then 
conclude with the sequence of processes used to automate 
analysis of fibrosis. Figure 1 displays the components of this 
pipeline. All the codes from this section have been made 
publicly available at the CemrgApp repository and can be 
accessed at http://www.cemrgapp.com.

Clinical Data
CMR imaging was performed on 1.5 T MR scanners (Ingenia, 
Philips Healthcare, Best, Netherlands and Magentom Aera, 
Siemens Leipzig, Germany). All patients underwent detailed 

CLINICAL PERSPECTIVE

Atrial late gadolinium enhancement cardiac 
magnetic resonance scans provide an estimate 
of fibrosis burden and a wide range of clini-
cal applications. Preablation scans, for instance, 
could be used to refine selection of patients for 
catheter ablation and to predict atrial fibrillation 
recurrence following intervention. The provided 
fibrosis characterization could conceivably inform 
personalized ablation strategy or enable patient-
specific modeling for predicting atrial fibrillation 
drivers. It could also be used as a factor in stroke 
risk. Each of these applications, however, is heav-
ily dependent on operator’s trust in a reproducible 
technique. Conventional late gadolinium enhance-
ment cardiac magnetic resonance image analysis 
techniques are performed on proprietary software 
and have manual components that are subjec-
tive and susceptible to intraoperator and interop-
erator variation. We developed and validated a 
transparent, reproducible, and objective workflow 
for estimating atrial fibrosis from late gadolinium 
enhancement cardiac magnetic resonance fully 
automatically. Our workflow reduces operator 
dependent variability and the number of patients 
required to power clinical studies. The workflow is 
open-source to provide other centers with the abil-
ity to estimate atrial fibrosis, and hopefully contrib-
ute to its further development, as the low number 
of centers using atrial cardiac magnetic resonance 
imaging is a limitation for open research in this 
area.
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assessment including LA volumes and function and 3D 
LGE assessment of LA fibrosis. An ECG-triggered, contrast 
enhanced magnetic resonance angiogram (CE-MRA) 3D data 
set was acquired to delineate the LA endocardial border 90 
seconds after gadolinium 0.2 mmol/kg (Gadovist, Bayer 
HealthCare Pharmaceuticals, Berlin, Germany) administration 
at a rate of 0.3 mL/s. LGE images were acquired using a 3D, 
inversion recovery, spoiled gradient echo acquisition, which 
was performed 20 minutes after administration of gadolinium 
with coverage to include the whole of the LA in axial orienta-
tion. Respiratory gating artefact was minimized by positioning 
the respiratory navigator as laterally as possible over the right 
posterior aspect of the diaphragm. The inversion time was 
determined from an inversion time mapping sequence per-
formed immediately before the LGE acquisition to ensure ade-
quate nulling of the ventricular myocardium. Control patients 
were recruited at the time of attendance to the rapid access 
chest pain clinic, and written consent was acquired, and ethical 
approval was granted by the Health Research Authority (18/
LO/1803). Preablation and postablation patients underwent 
CMR imaging on clinical grounds. Ethical approval was granted 
for the retrospective analysis of this anonymized data without 
explicit written patient consent (18/HRA/0083).

Five clinicians with experience in CMR manually analyzed 
207 of these atrial scans, where one of them processed 147 
scans and the other four the remaining 60 scans twice to test 
the interobserver reproducibility of the pipeline. The 60 scans 
included 20 preablation, 20 postablation, and a further 20 
non-AF control scans. Sequential patients documented to be 
in sinus rhythm at the time of the scan were chosen for inclu-
sion. Each of these 4 clinicians processed 10 scans from each 
category. All scans in our data set are from different patients. 
The data set scans contained between 64 and 150 slices. The 
individual 2-dimensional (2D) slices were between 250 and 
450 by 223 to 403 pixels. The resolution was between 0.92 
and 1.3 by 0.92 to 1.3 by 2 mm. As the in-plane scan size 
varied, each 2D slice was resampled by rescaling to 1 by 1 
mm isotropic resolution, with 320 by 320 pixels. Intensities of 
3D CE-MRA were also rescaled using minimum to maximum 
normalization to range between 0 and 1. The normalization 
makes the training of CNN robust in dealing with variable 
image contrasts.

Atrial Labels Generation
To develop a CNN for segmenting the LA and its surrounding 
structures, we first generated manually labeled data, detailed 
as follows.

Blood Pool Labels
A 3D segmentation of the LA endocardium was constructed 
using a region growing tool to define the blood pool from a 
CE-MRA scan. The LA has a very thin myocardial wall making 
it difficult to image even at the best resolutions available. 
CE-MRA scans allow confident identification of the endocardial 
surface. These manual labels provided the training samples for 
our automatic CNN approach of segmenting the blood pool.

Ostia Localization and Vein Labels
To prepare training samples for other anatomic labels, a 
reproducible tool to remove the PVs, LAA, and MV from 
the blood pool segmentation was required. However, due 
to lack of clear anatomic landmarks defining the boundary 
between the LA body and these structures was not trivial. 
We made use of a Voronoi diagram15 to localize these 
boundaries. Further details about localization algorithm can 
be found in the Data Supplement. Throughout our work, 
we used a single label for the PVs and LAA. These labels, as 
seen in Figure 2A, were used in preparing training samples 
for our CNN to automatically identify the veins and eradicate 
the need of user guided clippers.

MV Labels
To accurately delineate the MV, the 3D image was manipulated 
in a multiplanar reconstruction viewer. The view was aligned 
so that the typical 2-chamber and 4-chamber views were 
seen, and the MV was visible en-face at the level of the 
orifice. Three points were then placed on the border of the 
orifice. A sphere generated by these 3 points could then be 
viewed to ensure that the sphere intersects with the valve 
tissue, but the atrial wall was spared. The 3 points could be 
manipulated to change the size and location of the sphere to 
ensure optimal placement. The intersection of the sphere and 
blood pool labeled the MV tissue and was used in the training 
of our CNN model. The sphere and labeled atria can be seen 
in Figure 2B and 2C.

Figure 1. Fibrosis estimation pipeline.
A fully automatic pipeline for estimation of atrial fibrosis from cardiac magnetic resonance (CMR) scans. A convolutional neural network (CNN) makes segmenta-
tion of the left atria (LA) possible without user intervention. Deep learning components are in yellow. Blue represents conventional image processing techniques 
and red illustrates assessment of fibrosis using late gadolinium enhancement (LGE)-CMR. Quality control assessment is performed after every step in the pipeline. 
2D indicates two dimensional, CE-MRA,  contrast enhanced magnetic resonance angiogram; MV, mitral valve; and PV, pulmonary vein.
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Multilabel CNN
We developed our CNN in TensorFlow (https://www.
tensorflow.org). The network used is a specialization of U-Net 
proposed by.16 The input of our convolutional network is 
a 320×320 resampled CMR image and the labels are hot-
encoded with 3 channels for blood pool, PVs, and MV. The 
output is a probability map of the same size as the input 
for each label. The architecture of the network can be seen 
in Figure  3. Full details of the network architecture and its 
parameters can be found in the Data Supplement.

Network Training
The 207 3D CE-MRA data set was processed to generate 
20 723 2D slices. Data augmentation techniques were 
also used to artificially increase the number of 2D slices to 
1 068 427. The augmented data was used for training and 
not the evaluation of the network. Effective training requires 
a balanced set of all labels in the training data. Preliminary 
attempts at direct training on the entire 2D slices was 
ineffective as the PVs and MV pixels appeared in a subset 
of slices, and labels were sparse and unbalanced. To alleviate 
this, slices which contained at least 50 pixels for each of the 
blood pool, PVs, and MV labels were extracted from the 
training set. These were used to train the model initially before 
introducing the rest of the slices. This was done to prevent the 
network from receiving too many slices without the LA labels, 

which could potentially lead to an under segmentation of the 
anatomy. The 207 patients (not the 2D slices) were randomly 
split into a conventional 70% training, 10% validation, and 
20% testing sets. Full details of the data augmentation and 
training techniques are available in the Data Supplement.

Evaluation
The network provides a probabilistic estimate of the labels for 
each pixel. A threshold at 50% of estimated probabilities was 
applied to restrict the pixels to binary values for the labels. 
Unconnected labeled islands were removed automatically 
from the reconstructed 3D images by keeping only the largest 
connected tissue as the final LA segmentation. The labels 
generated by the network were then evaluated against the 
manually labeled data. To avoid potential biases introduced 
in different training sessions, all results are based on a 3-time 
repeated random sub-sampling cross validation method.

Fibrosis Estimation
The output from the segmentation network was used 
to automate the estimation of fibrosis by applying the 
following image processing steps from the pipeline. Once a 
segmentation is obtained from CE-MRA images, the fibrosis 
content is estimated by analyzing the maximum transmural 
image intensities from LGE-CMR scans.

Figure 2. Atrial labels generation.
A, Blood pool and pulmonary vein labels are generated to provide learning data for our multilabel convolutional neural network. B, The sphere used to remove 
mitral valve (MV) is illustrated in red. C, The MV label is shown in blue, together with the pulmonary veins label in green and left atrium body blood pool in red. 
LIPV indicates left inferior pulmonary vein; RIPV, right inferior pulmonary vein; and RSPV, right superior pulmonary vein.

Figure 3. Convolutional neural network.
General network architecture with 5 concatenations between contracting and expanding paths. The number of concatenations and number of feature maps in the 
output of the first convolution were hyperparameters during model selection (Data Supplement).
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Processing the Segmentation
The output labels from the network allowed us to isolate 
the body of atria and remove PVs and MV from the scans by 
setting the unwanted regions to a background value. Rigid 
body registration was then used to align the CE-MRA and 
LGE-CMR scans. Matching of the 2 images was performed 
by finding the rotations and translations that optimized the 
normalized mutual information as the similarity function of 
the 2 images. The displacement field obtained from the regis-
tration of 2 images was used to transform the segmentation 
image created from the network to the LGE-CMR space. An 
endocardial surface model was finally created from the seg-
mentation using the marching cubes algorithm. We used the 
Medical Image Registration ToolKit (https://mirtk.github.io)  
for these steps. MIRTK’s full registration parameters set can be 
found in the Data Supplement.

Detection of Fibrosis
Normals were taken, 3 mm externally and 1 mm internally, 
to the nodes of the surface mesh, and a maximum intensity 
projection technique was used to interrogate the LGE-CMR 
image. Three millimeter was chosen externally to align with 
approximate atrial wall thickness17 and the small, 1 mm, inter-
nal projection allowed a degree of registration error without 
incorporating respiratory navigator artifact. An assumption of 
3 mm is on the thicker side of atrial wall thickness measure-
ments.18 We, therefore, examined the effects of varying nor-
mal projections length on the estimated global fibrosis score to 
make sure that atrial fat did not significantly alter the results.

A 3-voxel size erosion of the LA blood pool was used to 
generate a blood pool segmentation from which the mean 
blood pool signal intensity and SD were calculated for use as 
a reference value for atrial wall assessment. Global fibrosis 
burdens were calculated using previously published thresh-
olds: image intensity ratio (IIR) of 0.97, IIR of 1.61,19 and mean 
blood pool signal +3.3 SD.20

Statistics
The Shapiro-Wilk test with a significance level of 0.05 was 
used to determine if patient demographic data were normally 

distributed. Normally distributed variables are presented as 
mean±SD, and non-normally distributed variables as median 
interquartile range.

Segmentation results were evaluated using the Dice 
coefficient, accuracy, sensitivity, specificity, and precision. 
The difference between automatically and manually cal-
culated atrial surface area, volume, and sphericity were 
evaluated by the mean absolute and relative errors of the 
measurements.

The predefined fibrosis thresholds were applied at a voxel 
level for each patient, and the percentage of surface elements 
that were above the threshold were reported, resulting in a 
continuous fibrosis burden variable between 0% to 100%. 
Automatic versus manual fibrosis estimations were compared 
with the intraclass correlation coefficients (ICC), using a one-
way random-effects model of interobserver reproducibility 
measurements with absolute agreement. ICC of 0.41 to 0.60 
was interpreted to represent moderate, 0.61 to 0.80 good, 
and above 0.80 as excellent agreement. The Pearson cor-
relation coefficient between automatic and manual fibrosis 
scores and the root mean square error between the 2 scores 
were also computed.

The association of automatic fibrosis burdens estimates 
with arrhythmia recurrence from a cohort of 89 patients were 
analyzed by binomial logistic regression, and the area under 
the curve values of receiver operator characteristic curves 
were reported. The fibrosis scores associated the recurrence 
and no recurrence groups were compared using a Student t 
test with a significance level of 0.05.

Multiple comparisons between groups with variable wall 
thickness were made by a one-way ANOVA and with a sig-
nificance level of 0.05. All statistical analyses were performed 
in MATLAB (Version: R2018a, Natick, Massachusetts: The 
MathWorks Inc).

RESULTS
In this section, we first evaluate the accuracy of our 
optimized CNN in segmenting LA structures. We then 

Table 1. Patient Demographics

Characteristics All patients (n=207) Control (n=20) Postablation (n=20)
Preablation 
(n=167)

Female 43% 50% 40% 43%

Age 56 (±9) 52 (±8) 63 (±12) 56 (±8)

Height, cm 174 (±12) 171 (±12) 174 (±10) 175 (±9)

Weight, kg 87 (±14) 82 (±16) 83 (±16) 90 (±13)

BMI 28 (±4) 28 (±5) 26 (±5) 29 (±4)

LVEF, % 58 (±8) 61 (±5) 60 (±6) 57 (±8)

LA Min Vol, mL 72 (±38) 44 (±13) 67 (±27) 76 (±42)

LA Max Vol, mL 111 (±32) 85 (±23) 106 (±27) 114 (±33)

CHA2DS2VASc 1 (IQR, 1–2) 1 (IQR, 1–2) 2 (IQR, 1–2.5) 1.5 (IQR, 1–2)

Paroxysmal AF 65% N/A 60% 70%

AF Duration, months 23 (IQR, 11–41) N/A 24.5 (IQR, 15–40) 13.5 (IQR, 5–54)

Mean (±SD) for normally and median (IQR) are displayed for non-normally distributed variables. AF indicates atrial fibrillation; 
BMI, body mass index; IQR, interquartile range; LA Min/Max Vol, left atrial minimum/maximum volume; and LVEF, left ventricular 
ejection fraction.



Circ Cardiovasc Imaging. 2020;13:e011512. DOI: 10.1161/CIRCIMAGING.120.011512 December 2020 6

Razeghi et al; Atrial Fibrosis Assessment Using a CNN

compare the reproducibility of the CNN segmentations 
compared with interobserver variability. Finally, 
we measure the accuracy and reproducibility of 
automatically calculated fibrosis burdens. The patient 
demographic characteristics are summarized in Table 1. 
The samples in our work are based on real world CMR 
scans acquired for routine patient care, hence a wide 
range of AF duration is present in the data set.

Automatic Segmentation Results
Following hyperparameter optimization (Table II in the 
Data Supplement), we evaluated the optimal network 
model using Dice, accuracy, sensitivity, specificity, and 
precision measurements for each of the blood pool, 
PVs, and MV labels. Table 2 summarizes these metrics. 
Table 3 lists the average manual and model predicted 
measurements for the LA surface area, volume, and 
sphericity. The mean absolute and relative errors of the 
measurements are also displayed for comparison.

Comparison of Automatic Results to 
Interobserver Reproducibility
Sixty out of 207 of the scans were analyzed twice 
by 2 independent trained operators to analyze 
interobserver reproducibility. The mutual agreement 
of operators assessed using the Dice score for blood 
pool, PVs (including LAA), and MV labels were 0.85, 
0.40, and 0.65, respectively. The CNN outperformed 
the interobserver reproducibility results for all 
anatomic labels. Due to multiple operators annotating 
different scans, we evaluated the effect of training 
and validating the network on data sets generated by 
different operators in the Data Supplement. Figure 4 
illustrates examples of delineated boundaries from 

network prediction compared with their manually 
annotated boundaries.

Automatic Fibrosis Estimation Results
Automatic versus manual fibrosis estimation results 
were evaluated using the ICC. The correlation with 
manually generated results using all 3 thresholds (IIR, 
0.97; IIR, 1.61; and mean blood pool, +3.3 SD) were 
excellent. Table  4 summarizes all 3 thresholds tested 
using ICC as well as other correlation measurements. 
Figure 5 displays the scatter and Bland-Altman plots for 
the fibrosis scores using 3 different thresholds.

Comparison of Automatic Results to 
Interobserver Reproducibility
Comparing the automatically obtained fibrosis score, 
ICC values to the interobserver ICC for the manual 
repeat segmentation data set shows the automatic 
method performed better than the interobserver scores 
for 2 of the thresholds: 0.94 (CI, 0.93–0.97) versus 0.88 
(CI, 0.80–0.93) and 0.99 (CI, 0.97–0.99) versus 0.96 
(CI, 0.90–0.97) for IIR 0.97 and +3.3 SD thresholds, 
respectively. The IIR 1.61 threshold yields fibrosis scores 
close to zero: 0.99 (CI, 0.99–0.99) versus 0.99 (CI, 
0.98–0.99). We report further details about examined 
permutations of training and testing sets based on dif-
ferent combinations of operators to test the robustness 
and fairness of fibrosis scores in the Data Supplement. 
Figure 6 displays examples of atrial meshes from test 
sets with their associated LGE-CMR intensities project-
ed on the surface. Results derived from both manual 
and automatic segmentations are presented.

Internal and Public Data Sets Validation 
Results
To confirm that automated fibrosis measurement can 
make clinically meaningful predictions, we applied 
our method to a previously reported data set of 89 
preprocedure LGE-CMR scans and paired outcomes.21 
Using preablation LGE-CMR images from patients 
receiving their first AF ablation, we tested if each of 
the 3 measures of fibrosis burden, considered here, 
were higher in patients whose AF recurred within 12 
months of the procedure. Mean fibrosis burden was 
significantly higher in the recurrence group, when 

Table 2. Average Segmentation Results Obtained From the CNN 
Network

Measurement Blood pool Pulmonary veins Mitral valve

Dice 0.91±0.02 0.61±0.08 0.73±0.08

Accuracy 0.99±0.00 0.99±0.00 0.99±0.00

Sensitivity 0.87±0.04 0.54±0.09 0.77±0.12

Specificity 0.99±0.00 0.99±0.00 0.99±0.00

Precision 0.95±0.02 0.76±0.12 0.74±0.16

The results are from an independent test set made out of random selection 
of annotations from the 5 operators. CNN indicates convolutional neural 
network.

Table 3. Comparison of Mean LA Area, Maximum Volume, and Sphericity Measurements Obtained From the 
Network and Manual Annotations on the Test Data Set

Measurement
Manual 
measurement

Model 
measurement Absolute error Relative error

LA area, cm2 120.48±21.26 113.36±22.07 8.50±5.75 5.98%

LA volume, cm3 111.59±27.65 107.25±28.99 6.72±4.88 4.13%

LA sphericity, % 79.71±03.33 80.65±03.09 1.15±1.12 1.20%

LA indicates left atria.
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measured using IIR, 0.97 (32.3 versus 47.8; P=0.003; 
area under curve (AUC)=0.692) and +3.3 SD (4.6 
versus 7.6; P=0.03; AUC=0.631) thresholds. However, 
the IIR 1.61 threshold, which is used to measure 
dense scar, did not result in a significant difference 
(4.4 versus 7.3; P=0.08; AUC=0.594) between the 
2 groups, consistent with these patients not having 
received a prior ablation. We also validated our 
segmentation network against the 2013 and 2018 
Atrial Segmentation Challenge data sets, achieving LA 
Dice scores of 0.90 and 0.89, respectively. Complete 
details are available in the Data Supplement.

DISCUSSION
Atrial fibrosis plays a central role in the AF substrate, 
having been identified histologically in patients with 
AF22 and patients with risk factors for AF.23,24 Despite this 
recognized role in AF, translating these key observations 
into clinical-applicable investigations or treatment 
pathways remains challenging.

Atrial LGE-CMR scans provide an estimate of fibrosis 
burden and a wide range of clinical applications. We, 
therefore, developed an open-source end-to-end 
automatic pipeline to facilitate the wider adoption of 
atrial LGE-CMR for estimating fibrosis measurements 
in research and clinical practice. Automatic fibrosis 
estimation from preablation scans, for instance, could be 
used to refine selection of patients for catheter ablation 
and to predict AF recurrence following intervention.25,26 
The provided fibrosis characterization could conceivably 
inform personalized ablation strategy27 or enable 
patient-specific modeling for predicting AF drivers.28 It 
could also be used as a factor in stroke risk.29 Given the 
broad clinical uses of atrial LGE-CMR, there are potential 
advantages of widespread access to an automatic 
pipeline, as each of these applications is heavily 
dependent on the operator’s trust in a reproducible 
technique and the low number of centers using atrial 
CMR imaging is a limitation for open research in the 
area.

We extensively validated our pipeline and con-
firmed our network’s ability to segment the atrial 
anatomy against internal and public data sets. We 
showed that our automated method replicates man-
ual assessment of fibrosis burden from LGE-CMR 
and demonstrated that the fibrosis measurements 
are significantly different in patients, who suffer AF 
recurrence following ablation. However, all methods 
for measuring fibrosis from LGE-CMR are limited by 
the lack of a generally accepted clinical groundtruth. 
Voltage mapping provides an assessment of structur-

Figure 4. Automatic and manual delineations.
The middle slice in each test image is shown, and images are ordered according to descending Dice scores from left to right. Blood pool is in red, mitral valve is in 
blue, and veins are shown in green. LA indicates left atrium; LIPV, left inferior pulmonary vein; MV, mitral valve; PV, pulmonary vein; RIPV, right inferior pulmonary 
vein; and RSPV, right superior pulmonary vein.

Table 4. Fibrosis Scores Calculated From Segmentations Generated 
Manually by 5 Operators and Automatically by Our CNN

Measurement IIR, 0.97 IIR, 1.61 Mean+3.3 SD

ICC 0.94 0.99 0.99

PCC 0.96 1.00 0.99

RMSE 3.71 0.07 0.34

CNN indicates convolutional neural network; ICC, intraclass correlation 
coefficient; IIR, image intensity ratio; PCC, Pearson correlation coefficient; and 
RMSE, root mean square error.
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al remodeling in the atria but can be influenced by 
activation rate and direction,30–32 which may limit its 
current capacity to provide a reference groundtruth 
for fibrosis. The use of automated pipeline, described 
here, removes a key subjective component from LGE-
CMR image analysis. This reduces variability and 
ensures reproducibility, which could facilitate its use 
for fibrosis burden estimates in clinical applications. 
For these reasons, we evaluated our automatic 
pipeline against an estimate of fibrosis determined 
manually by expert analysis of the scans.

In enabling other centers to deploy, and hopefully 
contribute to further development of our approach, 
a substantial barrier to atrial fibrosis imaging may be 
removed through use of our pipeline. Previous studies 
by us6 and others4,5,33 have described methods for 
measuring LGE-CMR atrial fibrosis burden. However, 
these methods have required manual steps performed 
by expert operators, which are invariably subject 
to intraobserver and interobserver errors. Here, we 
developed and validated a fully automated pipeline, 
which allows independent operators at independent 
centers to achieve the same fibrosis burden analysis, 

Figure 5. Fibrosis scores plots.
Scatter and Bland-Altman plots from automatic and manual fibrosis predictions are shown when using (A) image intensity ratio (IIR) 0.97, (B) IIR 1.61, and (C) 
mean+3.3 SD thresholds. Using the IIR 1.61 threshold results in a large number of points clustering around zero. Results are from the test set.
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when analyzing an equivalent scan, reducing 
interobserver dependent variability. The pipeline also 
reduces the need for expert operators and the average 
processing time of a data set from 15 to 3 minutes.

The former fibrosis scoring systems separated patients 
into groups with bands of burden as small as 5%34 or 
reported a cutoff of 10% for predicting AF recurrence.35 
To place patients within bins of this size, a precise 
measurement of fibrosis is required, as differences of 
2% to 3% could significantly decrease the accuracy 
of the classification. We have previously shown that 
manual segmentation of the fibrotic PV, LAA, and MV 
is variable.6 Mislabeling these highly fibrotic regions can 
cause a meaningful error in the fibrosis burden. Previous 
automated atrial segmentation algorithms used a single 
label approach,9–12 so were unable to identify the PV 
and MV. By using a multilabel network, we were able 
to both automate the segmentation of the atrial body 
and more importantly label the LAA, PV, and MV of the 
atria, ensuring a consistent and reproducible measure 
of fibrosis estimate across all cases. As changes in 
image acquisition parameters may affect robustness 
of our method, we additionally tested the pipeline on 
the Atrial Segmentation Challenge data sets. Details of 
these tests are available in the Data Supplement.

Limitations
Many groups only acquire an LGE-CMR scan. The 
proposed pipeline requires both CE-MRA and LGE-
CMR. This may increase the time required for the scan. 
While our approach shows that it is possible to have 
reproducible image analysis techniques, reproducible 
images are still required for atrial fibrosis measurements 
to be used for clinical decisions. In our study, the 

inversion time was determined from an inversion time 
mapping sequence performed immediately before the 
LGE-CMR acquisition to ensure adequate nulling of the 
ventricular myocardium and only images of diagnostic 
quality were included for analysis.

Previous studies have shown that atrial wall thickness 
ranges from 1.1 to 6.5 mm in the posterior LA14,36 
and, therefore, a reliable fibrosis assessment requires 
an accurate segmentation of the endocardial and 
epicardial wall. As fibrosis is presented after maximal 
intensity projection in our approach, information on the 
transmural distribution may be lost due to the variation 
in the thickness or failure of the segmentation network. 
We examined the effects of varying normal projections 
length from 1 to 6 mm to interrogate the LGE-CMR 
image. The results of a one-way ANOVA revealed no 
significant difference (P=0.06) in the fibrosis burdens 
calculated by considering the significance level as 0.05.

Conclusions
This work combines the strength of deep learning with 
conventional image processing techniques to improve 
the speed and reproducibility of fibrosis estimation 
from LGE-CMR. This addresses one of the crucial 
steps in developing reproducible CMR atrial fibrosis 
quantification, which is a prerequisite for its wider 
adoption as a noninvasive assessment tool in informing 
patient care.
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Figure 6. Automatic and manual projections.
Examples of atrial meshes from the test set with fibrosis projected on their surfaces. Late gadolinium enhancement (LGE) intensities were normalized using the 
mean blood pool intensity. The pulmonary veins are clipped and represented in black. More fibrotic regions are depicted in yellow. LAA indicates left atrial append-
age; LIPV, left inferior pulmonary vein; and RIPV, right inferior pulmonary vein.
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