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A B S T R A C T   

As an important ecological-economic development area in China, scientific understanding of the 
spatial and temporal changes in eco-environment quality (EEQ) and its drivers in the Yangtze 
River Basin (YRB) is crucial for the effective implementation of ecological protection projects in 
the YRB. To address the lack of large-scale EEQ assessment in the YRB, this paper uses the Google 
Earth Engine (GEE) platform and the Remote Sensing Ecological Index (RSEI) to investigate the 
spatial and temporal characteristics of EEQ in the YRB from 2000 to 2020, and to analyze the 
impact of various factors on the EEQ of the YRB. This study showed that: (1) The overall EEQ of 
YRB was at the ‘good’ grade over the past 20 years, showing an increasing trend, with the value 
changing from 0.70 to 0.77. (2) The YRB’s EEQ has positive spatial aggregation characteristics, 
with the northern part of the Jialing River basin and the Han River basin exhibiting a high-high 
aggregation type and the upper reaches exhibiting a low-low aggregation type. (3) In the past 20 
years, the human activities had a greater impact on the EEQ of the YRB; moreover, all factors had 
a greater impact on the EEQ than a single factor. The interaction between the biological abun-
dance index and population density had the most effect, with a q-value of 0.737 in 2020.   

1. Introduction 

Eco-environmental quality (EEQ) reflects the interaction degree between human activities and the natural environment [1]. It is a 
complex composition EEQ reflects the interaction degree between human activities and the natural environment [2]. It is a complex 
composite system including economy, society, and nature [3–5]. Based on the report issued by the United Nations in 2021, the global 
urban population is expected to reach 6.68 billion by 2050. However, accompanied by population accumulation, regional EEQ is 
facing higher pressure, which causes numerous ecological and environmental issues such as global warming [6–8], soil erosion [9], 
biodiversity loss [10], air pollution, and water pollution [11]. As a result, safeguarding regional EEQ is critical to improving human life 
quality and achieving regional sustainable development goals. In 2017, the Chinese government implemented the Regional Coordi-
nated Development Strategy realize the purposes of regional sustainable development. Till now, China has paid increasingly more 
attention to dealing with eco-environmental issues by establishing EEQ standards, evaluating regional EEQ regularly, establishing 
nature reserves, and enacting legal documents. The level of regional EEQ could reflect the grade of regional ecological status. The 
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assessment of the EEQ is the key step for creating countermeasures for the protection of the eco-environment and ensuring that 
relevant departments and the general public understand the significance of environmental protection, and the urgency and scale of 
environmental pollution problems [12]. The Yangtze River Basin (YRB) is an important watershed ecosystem in China, and monitoring 
the long-term trend of its EEQ and identifying areas where significant changes in EEQ have occurred, especially those where EEQ has 
deteriorated as well as those where it has improved, is an important task for the ecological protection of the YRB. At present, research 
on the assessment of the EEQ of the YRB mainly focuses on the middle and upper reaches or metropolitan areas, and a thorough and 
holistic assessment of the EEQ of the YRB is urgently needed. 

Numerous studies have been conducted so far to analyze regional EEQ at various sizes using various variables. A single ecological 
indicator, such as vegetation coverage [13], a normalized difference vegetation index [14,15], a normalized building index [16], or 
land surface temperature, was frequently used to assess regional EEQ [17]. However, it is challenging to accurately describe the diverse 
EEQ’s characteristics with one single indicator. In recent years, EEQ evaluation indicators have evolved from single indicators to 
composite indicators, considering the complexity of the eco-environment. To date, three models have been frequently applied to 
evaluate regional EEQ, namely: 1) the EEQ evaluating index; 2) the pressure-state-response model (PSR) [18,19]; and 3) the integrated 
assessment of ecological services and trade-offs [20,21]. The EEQ evaluating index can indicate the regional overall EEQ status but not 
reflect the regional EEQ status at any location. The two remaining models are difficult to compute and incapable of providing a quick 
assessment of the EEQ in a given region due to the difficulty of data acquisition. In response to these problems, Xu established a new 
remote sensing ecological index (RSEI) in 2013, which can be used to assess the regional EEQ by four main ecological aspects, namely 
greenness, wetness, heat, and dryness. Till now, this index has been used to assess the EEQ in different landscapes, such as urban [22], 
wetland [23], and basin [24]. To date, its effectiveness has been proven by numerous studies [25–28]. 

With the advantages of wide coverage, long-term monitoring, and multiple bands, remote sensing images have been a useful 
dataset for regional EEQ evaluation. Existing studies used Landsat images to construct the RSEI index and assess regional EEQ at 
various scales [29]. Landsat’s surface coverage, however, is limited, making it challenging to evaluate large-scale EEQ. Compared with 
Landsat images, MODIS images could be used to evaluate the EEQ over a vast area due to their wide surface coverage. Rich remote 
sensing datasets have become easily accessible owing to Google’s Google Earth Engine platform in recent years. The enormous cloud 
storage also reduces the time of downloading and processing data. This allows researchers to overcome the limitations of data 
acquisition, data storage, and low efficiency in processing traditional remote sensing analysis methods [30–32]. 

Currently, the water quality improvement of the Yangtze River is not reliable. The pollution in the coastal areas near the Yangtze 
River Delta (YRD) is still significant and extensive. The state of safeguarding and repairing the shorelines of the Yangtze River is still 
critical [33–35]. Most scholars, both at home and abroad, have analyzed and evaluated the EEQ of the YRB, but less attention has been 
paid to the driving factors affecting regional EEQ, and studies that use Point of Interest (POI) data as a driving factor to analyze EEQ are 
relatively rare [36] [–] [38]. At the same time, one of the study’s breakthroughs is the combination of land cover status and RSEI 
analysis. In order to assess the distribution and trend of remote sensing ecological indexes in the YRB over the past 20 years, this study 
first utilized the GEE platform to preprocess the MODIS series image datasets from 2000 to 2020 for the YRB. The processing steps 
included the calculations of humidity, greenness, dryness, and heat index. Next, each index is rescaled to 0–1, and the RSEI is estimated 
using spatial principal component analysis (SPCA). Finally, potential indicators affecting the EEQ of the YRB were chosen, and the 
GeoDetector model is used to examine the key variables affecting regional EEQ. This study is structured as follows: Section materials 
and techniques describe the research topic, data source, and methodologies. Section results present the key findings from three 
perspectives: the section discussion presents the validation, implications, and limits; and the section conclusion presents the main 
findings of this study. 

2. Materials and methods 

In this study, a complete workflow diagram was created. First, we created five RSEI maps for 2000, 2005, 2010, 2015, and 2020 
using the GEE platform MODIS data series. Second, the regional and temporal fluctuations, as well as the spatial correlations, of EEQ in 
the YRB were investigated. Finally, the RSEI was examined in conjunction with land cover status, and nine drivers influencing EEQ 

Fig. 1. The location map of the YRB.  
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were chosen, and the degree of effect of each driver on the watershed’s EEQ was assessed using the GeoDetector. 

2.1. Study area 

The YRB, with a total area of 1.8 million square kilometers and accounting for 18.8 % of China’s land area, is located between 
90◦33′-122◦25′E longitude and 24◦30′-35◦45′N latitude (see Fig. 1). The Yangtze River has a mainstream of more than 6300 km and 
several tributaries; its lakes cover a total area of 15,200 square kilometers, accounting for about one-fifth of the country’s total lake 
area. The average annual temperature of the YRB shows a distribution tendency of high in the east and low in the west, high in the 
south and low in the north. Most of the middle and lower reaches of the river have an average annual temperature of 16–18 ◦C, while 
the headwaters have an exceptionally low average annual temperature of − 4 ◦C up and down. The YRB has an average annual rainfall 
of 1067 mm, while the annual rainfall in the headwaters of the river is less than 400 mm, which belongs to the desert zone, and most of 
the basin is between 800 and 1600 mm, which belongs to the humid zone. 

The basin contains a quarter of the country’s forests, and over 100 nature reserves have been established with a variety of con-
servation objectives. The area of lakes along the middle and lower reaches of the Yangtze River is 14,073 square kilometers, accounting 
for about 93 % of the total area of lakes in the YRB. Sichuan, Yunnan, Hubei and Jiangxi have the most forested areas, while nature 
reserves are mostly concentrated in the middle and lower reaches. The increase in glacial meltwater in the headwaters and upper 
reaches of the Yangtze River, influenced by climate warming, may lead to the shrinking or even extinction of lakes in the upper reaches 
of the Yangtze River, as well as the progressive degradation of the natural environment. Compared with the plateau glaciers in the 
upper reaches, the middle and lower reaches have more natural resources, more stable ecosystems and higher EEQ. 

2.2. Data 

The YRB’s MODIS series of 2000, 2005, 2010, 2015, and 2020 from 1st May to 31st October, was the primary data source for this 
study. Because of the vast scope of this investigation and the huge unit of analysis, the MODIS series of remote sensing images was 
employed instead of Landsat imagery. These datasets included MOD11A2, and MOD09A1, which were used to derive essential 
characteristics including the normalized vegetation index, land surface temperature, and land surface reflectance. These datasets were 
obtained from the GEE cloud platform database. The Chinese Academy of Sciences’ Resource and Environment Science and Data 
Center (https://www.resdc.cn/) offered elevation data, soil data, GDP and population spatial distribution, and data on land use remote 
sensing monitoring. The inverse distance weighting approach was employed to extrapolate the data. Meteorological data is based on 
the latitude and longitude of the weather stations, as well as the day-by-day data of the weather stations, which are interpolated by the 
inverse distance weighting method to obtain the day-by-day raster map of meteorological data on a nationwide scale, so as to compute 
the annual average temperature and precipitation data. The nighttime lighting data was acquired from Wu’s findings [39]. 

2.3. Methods 

2.3.1. Remote sensing ecological index (RSEI) 
The creation of the remote sensing ecological index requires the use of four indicators: the greenness index (NDVI), humidity index 

(WET), dryness index (NDBSI), and heat index (LST) [40].  

1. Greenness index (NDVI) 

Using remote sensing data, calculate the difference between data from the near-infrared and red light bands. The Normalized 
Difference Vegetation Index (NDVI) is generally recognized as a good indicator of terrestrial vegetation productivity [41]. The 
calculation formula is shown in Equation (1): 

NDVI =
ρnir − ρred

ρnir + ρred
(1)  

where ρnir and ρred indicate the reflectance of the NIR and red band respectively.  

2. Humidity index (WET) 

To reflect the moisture state of water bodies, topsoil, and vegetation, the moisture component calculated by the remote sensing 
tassel cap is utilized as a moisture indicator. The extraction of moisture components is possible using the following conversion co-
efficients for the MODIS data. The calculation formula is shown in Equation (2): 

WETMODIS= 0.2408ρblue+0.3132ρgreen+0.1147ρred+0.2489ρNIR− 0.6416ρSWIR1− 0.5087ρSWIR2 (2)  

where ρgreen, ρblue, ρSWIR1, and ρSWIR2 indicate the reflectance of the green band, blue band, mid-infrared 1 band, and mid-infrared 2 
bands.  

3. Dryness index (NDBSI) 

Z. Liu et al.                                                                                                                                                                                                              
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The Normalized Difference Built-up and Soil Index (NDBSI), which is calculated by averaging the Index-Based Built-up Index (IBI) 
and Soil Index (SI), is used to monitor dryness. The calculation formula is shown in Equations (3)–(5): 

NDBSI =
(SI + IBI)

2
(3)  

SI =
(ρSWIR1 + ρred) − (ρblue − ρNIR)

(ρSWIR1 + ρred) + (ρblue + ρNIR)
(4)  

IBI =
2 ρSWIR1

(ρSWIR1+ρNIR)
−

[

ρNIR
(ρred+ρNIR)

+
ρgreen

(ρSWIR1+ρgreen)

]

2 ρSWIR1
(ρSWIR1+ρNIR)

+

[

ρNIR
(ρred+ρNIR)

+
ρgreen

(ρSWIR1+ρgreen)

] (5)  

where ρred, ρgreen, ρblue, ρnir, and ρSWIR1 indicate the reflectance in the red, green, blue, near-infrared, and mid-infrared1 bands.  

4. Heat index (LST) 

The heat index uses the LST_Day_1 km band of the MOD11A2 product. The MOD11A2 product provides an average 8-day land 
surface temperature (LST) in a 1200 × 1200-km grid. Each pixel value in MOD11A2 is a simple average of all the corresponding 
MOD11A1 LST pixels collected within that 8-day period. The 8-day compositing period was chosen because twice that period is the 
exact ground track repeat period of the Terra and Aqua platforms. 

These four components are first normalized, and the normalization formula is presented in the equation, in accordance with the 
RSEI calculation method suggested by Xu [40]. The normalization formula is shown in Equation (6). Following normalization, these 
four components are then subjected to principal component transformation on the GEE platform. Principal component analysis may 
efficiently recombine variables such as greenness, humidity, heat, and dryness that have specific relationships into multiple compo-
nents in order to accomplish data dimensionality reduction and noise isolation. The maximum information of each variable is included 
in the first principal component (PC1), and the information of the first principal component is retrieved as the information source of 
RSEI, which is expressed by RSEI0, and ultimately, the normalization of RSEI0 is RSEI. 

Ni =
Ii − Imin

Imax − Imin
(6)  

where Ni is the value of each indicator after normalization; Ii is the value of the indicator before normalization; Imin and Imax are the 
minimum and maximum values of the indicator before normalization, respectively. 

2.3.2. Spatial autocorrelation analysis 
Spatial autocorrelation, which consists of the two components global spatial autocorrelation and local spatial autocorrelation, 

quantifies the degree of connection between behavior in one area and the same phenomena in surrounding regional units. The global 
Moran’s index (Global Moran’s I) can demonstrate how the EEQ is geographically organized overall. The Moran’s I values ranged from 
− 1 and 1. When the values range from 0 to 1, there is a positive relationship between the geographical components. The closer the 
value is to 1 and -1, the higher the positive and negative correlation, respectively [42]. The following formula is the expression for 
Global Moran’s I: 

Global Moran′s I =
n
∑n

i=1

∑n

j=1
Wij(xi − x)

(
xj − x

)

(
∑n

i=1

∑n

j=1
Wij

)
∑n

i=1
(xi − x)2

(7)  

Local spatial autocorrelation analysis was performed using Local Moran’s I LISA to further reveal the aggregation of EEQ in the 
research region and understand the EEQ’s local geographical distribution features. The following formula is the expression for Local 
Moran’s I: 

Local Moran′s I =
n(xi − x)

∑n

j=1
Wij
(
xj − x

)

∑n

i=1
(xi − x)2

(8)  

2.3.3. Biological abundance index (BAI) 
Because land cover data is qualitative, while all other data is quantifiable, the BAI was employed as a driver rather than land cover 

data. The BAI is calculated depending on the area of each land cover type. The following formula is the expression for BAI: 
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BAI =Abio ×
0.35 × x1+0.21×x2+0.28×x3+0.11×x4+0.04×x5+0.01×x6

x7
(9)  

which x1-x7 denote forest land, grassland, water, cropland, built-up land, unused land and total area of the region, respectively, and 
Abio is the normalized index of biological abundance. 

2.3.4. Geodetector 
A technology called Geodetector is used to investigate spatially divergent geographic events. It has four detectors: ecological, 

interaction, factor, and risk detection [43]. Geodetector models could both identify spatial anisotropy and its causes. This approach has 
a beautiful form, no linearity presumptions, and a specific physical meaning, more importantly, it could detect the interaction degree 
of two or more factors, which had also been widely used [44–46]. Temperature, precipitation, elevation, population, GDP, type of soil, 
type of land use, and nighttime light data were chosen as independent variables in this study to quantify their influence on regional 
RSEI. 

The q-value measures the association between the quality of the ecological environment (Y) and the risk and factor detection 
assessment index (X). The calculation formula is shown in Equation (10): 

q= 1−

∑L

h=1
Nhσ2

h

Nσ2 = 1−
SSW
SST

(10)  

where h = 1, 2 …, L is the stratification of variable Y or factor X; N and Nh are the number of cells in the whole region and stratum h; σh
2 

and σ2 are the variance of Y values in stratum h and the whole region; SSW and SST are the sum of variance within the stratum and the 
total variance in the whole region. The more significant the value, the greater the influence of evaluation index X on evaluation index 
Y. 

There are times when the effects of the independent variables on the dependent variable are independent of one another, and 
interaction detects the interaction between various factors and assesses whether the interaction effect between the two independent 
variables increases or decreases the explanatory power of the dependent variable. 

Fig. 2. The workflow diagram.  
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2.4. Research flow chart 

The flowchart of the study is shown in Fig. 2. 

3. Results 

3.1. EEQ in the YRB 

The RSEI number, which goes from 0 to 1, represents the EEQ, from poor to good. The yearly RSEI value is further split into 5 grades 
with 0.2 as the division value, which are poor (0–0.2), fair (0.2–0.4), moderate (0.4–0.6), good (0.6–0.8), and excellent (0.8–1.0), in 
order to more thoroughly analyze the regional variation of the EEQ in the YRB. The YRB’s overall RSEI rating has been good for the 
past 20 years (Fig. 3(a–e)), and the EEQ in the center section of the basin is greater than in the upper and lower reaches, with the 
overall EEQ of the basin showing a constant improving trend. Most of the basin’s RSEI was raised by one level between 2000 and 2010. 
In 2010, the EEQ in Sichuan, Shaanxi, and Hubei provinces all improved to “excellent” compared to 2000. In 2015, EEQ decreased 
slightly in the YRB, and the number of locations with “moderate” RSEI levels increased in the Jinsha River Basin and the YRD. Most 
places in Sichuan, Shaanxi, Yunnan, Guizhou, and Hubei achieved “excellent” EEQ levels in 2020, and the EEQ of the lower Yangtze 
River improved compared to 2010. 

The proportion of places with RSEI ratings of “poor” and “fair” was the lowest in the research area for the 20-year period, both 
below 0.05 %. The share of the region with a “moderate” RSEI rating declined steadily from 11.57 % to 6.30 % between 2000 and 
2010. Although the percentage of RSEI “good” areas declined by 15.41 % in 2010 compared to 2000, the percentage of “excellent” 
areas climbed by 20.7 %. The overall EEQ of the watershed fell somewhat in 2015, but the fraction of RSEI “moderate” area more than 
quadrupled to 12.50 %. In 2020, the proportion of “excellent” grade area was the highest in the last 20 years, at 45.12 %, while the 
percentage of “moderate” grade area was the lowest, at 5.79 %. Despite a modest decline in the average value of RSEI in the YRB in 
2015, the general trend of RSEI in the YRB has been growing over the last 20 years, and the average value of RSEI in 2020 was the 

Fig. 3. Classification map of the EEQ in the YRB from 2000 to 2020. (a) 2000; (b) 2005; (c) 2010; (d) 2015; (e) 2020.  
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largest at 0.7719 (see Fig. 4). 

3.2. Changes of EEQ in the YRB 

To investigate the extent of changes in EEQ of the YRB from 2000 to 2020, EEQ was separated into two periods, 2000–2010 and 
2010–2020, with 2010 serving as the dividing line. It is separated into “decrease by more than 2 levels”, “decrease by 1 level”, “no 
change”, “increase by 1 level”, and “increase by more than 2 levels”, which correlate to “significantly worse”, “worse”, “unchanged”, 
“better” and “significantly better”. Table 1 displays the results. 

Between 2000 and 2010, 4.53 % of the area had deteriorating EEQ, and 29.83 % had improved EEQ. From 2010 to 2020, 7.72 % of 
total areas had considerably deteriorating or worsening EEQ, whereas 23.58 % had significantly improved or better EEQ. When we 
compare the changes in EEQ area share between the two eras, we can observe that EEQ in the YRB increased from 2000 to 2010, but 
then slowed from 2010 to 2020. From 2000 to 2020, the total percentage of significantly worse and worse EEQ was 2.52 %, while the 
total percentage of significantly better and better EEQ was 43.20 %, indicating an increase in the YRB’s overall EEQ. 

Fig. 5(a–c) depicts the changes in EEQ level of the YRB. From 2000 to 2010, the EEQ in Shaanxi and Hubei provinces improved 
greatly, whereas the regions with declining EEQ were mostly concentrated in the middle section of Sichuan province. Between 2010 
and 2020, regions with declining RSEI grades were mostly found in Henan and Hubei provinces, while EEQ increased by one grade in 
southern Sichuan and Yunnan provinces. Overall, the EEQ in most areas of the YRB has improved significantly, with most geographical 
RSEI grades upgraded from “good” to “excellent” in Gansu, Shaanxi, Guizhou, and Yunnan Province, but the natural environment in 
the YRD region is deteriorating. 

3.3. Spatial variation characteristics of EEQ in YRB 

3.3.1. Spatial characteristics based on the Global Moran’s I index 
Spatial autocorrelation analysis was done in ArcGIS. Due to the vast scope of the investigation and a limitation of computer 

memory, the remote sensing pictures were resampled using a fishing net technique to get 5500 sampling points and calculate the 
Global Moran’s I index during the research period in the YRB. This enabled the investigation of the geographical aspects of EEQ 
variations in YRB. The z-statistic of the Global Moran’s I index was determined to be positive, suggesting that the geographical dis-
tribution of EEQ changes in the research region was significantly aggregated rather than random. The five-period photos had indices of 
0.52, 0.46, 0.54, 0.64, and 0.66, respectively. 

3.3.2. Spatial characteristics based on the Local Moran’s I index 
Using high-low clustering analysis, the RSEI of the YRB was grouped and divided into five groups: insignificant, high-high clus-

tering (H–H), low-low clustering (L-L), high-low clustering (H-L), and low-high clustering (L-H). For the past 20 years, in the YRB, the 
spatial aggregation features of EEQ are mostly high-high clustering and low-low clustering. According to Fig. 6(a–e), from 2000 to 
2020, the overall high-high clusters with superior EEQ in the YRB are located in Shaanxi and Gansu provinces, while the low-low 
clusters with poor EEQ are dispersed in Qinghai province. It is worth noting that several types of agglomeration have emerged in 
western Sichuan over the past 20 years, indicating a more complicated distribution of EEQ in the region. The spatial distribution of 
EEQ in the YRB was relatively stable before 2015, and the expansion of high-high agglomeration area in Gansu, Shaanxi and western 
Sichuan after 2015 suggests that there is a trend of gradual improvement of EEQ in the region; the area of low-low agglomeration in the 
YRD has increased, and the EEQ has deteriorated. 

3.4. The relationship between land use change and RSEI 

The most fundamental and visible landscape characteristic representing the influence of human activities on the disruption of the 
Earth’s surface is land use change [47]. When compared to other socioeconomic indicators, it is the most vulnerable to change. It is 

Fig. 4. EEQ’s grade area and proportion of the YRB.  
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worth mentioning that the biological abundance index is generated from the land use type, and the effect of biological abundance on 
ecosystem quality is ranked third in the one-factor test with a q-value of 0.5. It suggests that land use has a significant impact on the 
watershed’s natural environment. As a result, the link between land use and RSEI has been thoroughly investigated. Combining the 
YRB land use map for the past 20 years (Table 2), it is clear that the YRB’s land use has changed dramatically between 2000 and 2020. 
Cropland, shrub, and grassland declined in extent, whereas forest, barren, and impervious surface grew. In 2020, the forest area had 
the maximum proportion of 46.52 %, compared to the lowest percentage of 45.41 % in 2000. The impervious surface consists mostly of 
urban and building areas in the YRD, Middle Yangtze River Plain, and Chengdu Plain. From 2000 to 2020, the impervious surface 
growth rate of 1.29 % was the highest among land use categories, negatively impacting RSEI. Among the land use classifications whose 
area dropped, cropland had the highest decrease rate, followed by grassland, with decrease rates of − 1.50 % and − 1.02 %, respec-
tively. The diminished farming and grassland area was mostly converted into forest and agricultural land. Finally, the area of barren 
land and water did not change considerably, confirming prior findings [48,49]. 

Fig. 7 shows the average RSEI values for different land use categories. The average RSEI values of each land use type varied, and the 
RSEI of each land use type generally increased from 2000 to 2020. In 2020, the RSEI values of forest and shrub exceeded 0.8; the 
average RSEI values for the study years were 0.768 and 0.752, both greater than 0.75; and the average RSEI values were the highest of 
all land use categories. The RSEI values for cropland and wetland were above 0.7, with 0.724 and 0.744 respectively. Barren is the most 
environmentally vulnerable land use class [50], having the lowest average RSEI value of 0.53. 

3.5. Factors influencing the EEQ of the YRB 

3.5.1. Diversity and factor detection 
To examine the influencing elements of EEQ in the research region, soil sand content, biological abundance index, annual pre-

cipitation, average annual temperature, elevation, population density, GDP, night lighting, and point-of-interest data were chosen as 
independent variables (influencing factors). Fig. 8 depicts the results of the factor detector. In 2020, the following are the degrees of 
effect of each detection factor on the regional distribution of the EEQ: Population density > GDP > biological abundance index > night 
lighting > point-of-interest > elevation >average annual temperature > soil sand content > annual precipitation. Population density, 
GDP, night lighting, and points of interest were four of the top five socioeconomic factors. This suggests that human activities had a 
stronger influence on the region’s ecological quality. The biological abundance index and elevation had explanatory powers of 0.50 
and 0.39, respectively, whereas the other natural determinants had explanatory powers of less than 0.2. 

Table 1 
Changes in ecologic conditions in the YRB from 2000 to 2020.  

Year 2000–2010 2010–2020 2000–2020 

Change Area (km2) Percent (%) Area (km2) Percent (%) Area (km2) Percent (%) 
Significantly worse 2819.92 0.16 % 1691.46 0.10 % 648.87 0.04 % 
Worse 77741.28 4.37 % 135439.90 7.62 % 44022.01 2.48 % 
Unchanged 1167345.98 65.64 % 1221534.43 68.70 % 965367.46 54.29 % 
Better 515304.72 28.98 % 408293.15 22.96 % 737110.71 41.45 % 
Significantly better 15165.77 0.85 % 10987.14 0.62 % 31035.51 1.75 %  

Fig. 5. Changes in ecologic conditions in the YRB from 2000 to 2020. (a) 2000–2010; (b) 2010-242 2020; (c) 2000–2020.  
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3.5.2. Interaction detection 
Interaction detection is carried out on the elements that have been chosen to examine the extent of influence on the EEQ when any 

two factors work together. To better understand how different components interact, interaction detection can also provide the di-
rection, strength, and linearity of an interaction. Fig. 9 displays the outcomes of the factor interaction detection in this study. All of the 
results of the factor interaction detection demonstrate a two-factor increased or non-linear enhanced effect, indicating that the impact 
on the EEQ is better explained by the two-factor interaction than by the single factor. 

With a q-value of 0.737 in 2020, the interaction between the biological abundance index and population density had the most 
effect, followed by the interaction between the biological abundance index and GDP with a q-value of 0.733. As seen in Fig. 9, the 
interaction of each driver with the biological abundance index resulted in a considerable rise in q values. Although annual precipi-
tation and average annual temperatures had a minor impact on the ecological environment of the YRB in the univariate analysis, the q- 
value of the interaction between the two and the biological abundance index increased significantly under the interaction detection. 

Fig. 6. LISA aggregation in the YRB from 2000 to 2020. (a) 2000; (b) 2005; (c) 2010; (d) 2015; (e) 2020.  

Table 2 
Statistical results of different land types in the YRB from 2000 to 2020.  

Land use types Proportion of the Corresponding Area Range of variation 

2000 2005 2010 2015 2020 

Cropland 30.19 % 29.76 % 29.47 % 29.13 % 28.69 % − 1.50 % 
Forest 45.41 % 45.76 % 45.89 % 45.94 % 46.52 % 1.11 % 
Shrub 0.69 % 0.70 % 0.69 % 0.57 % 0.53 % − 0.17 % 
Grassland 19.35 % 19.09 % 18.82 % 18.77 % 18.33 % − 1.02 % 
Water 2.01 % 2.06 % 2.12 % 2.17 % 2.07 % 0.06 % 
Snow/Ice 0.17 % 0.17 % 0.20 % 0.17 % 0.14 % − 0.03 % 
Barren 0.99 % 1.03 % 1.02 % 1.08 % 1.25 % 0.25 % 
Impervious 1.19 % 1.43 % 1.78 % 2.17 % 2.48 % 1.29 % 
Wetland 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %  
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Fig. 7. Mean RSEI values of each land use types.  

Fig. 8. Results of factor detector. ×1: point-of-interest; ×2: annual precipitation; ×3: average annual temperature; ×4: GDP; ×5: elevation; ×6: 
night lighting; ×7: population density; ×8: biological abundance index; ×9: soil sand content. 

Fig. 9. Interaction detection results. ×1: point-of-interest; ×2: annual precipitation; ×3: average annual temperature; ×4: GDP; ×5: elevation; ×6: 
night lighting; ×7: population density; ×8: biological abundance index; ×9: soil sand content. 
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4. Discussion 

4.1. Comparison with existing results 

The YRB’s EEQ is the consequence of a combination of natural and human made causes, and the study’s findings demonstrate that 
the YRB’s summer RSEI has shown a tendency of growing, then falling, and then increasing during the last 20 years. Overall, the EEQ of 
the YRB is improving, which is consistent with the findings of Yang et al. [36]. The EEQ of the lower Yangtze River is generally high 
and has increased steadily from 2000 to 2015, which is consistent with the findings of He [51] and Zheng [52]. The EEQ in the higher 
parts of the Yangtze River improved before deteriorating somewhat, which was consistent with Zhang’s findings [1]. The government 
must address this issue and provide ecological restoration methods as quickly as possible. This is especially evident when considering 
the Chengdu-Chongqing urban agglomeration’s poor biological environment downstream of the Jialing River [53]. The EEQ in the 
Yangtze River’s middle reaches revealed an overall improving trend, which was consistent with Tian’s findings [54]. 

This paper chooses driving factors such as climate factor, elevation, soil, nighttime light index, and POI data to quantitatively 
analyze the driving mechanisms of natural conditions and human activities on EEQ changes via GeoDetector based on the analysis of 
spatial and temporal changes in EEQ. The driving elements chosen in this work are more thorough, scientific, and suited for exploring 
the driving mechanisms of EEQ changes than Yang et al.’s livestock stocking quantity and topographic features [36]. Human activities 
are the primary cause of ecological changes in the watershed, according to an analysis of the influence of various drivers on ecological 
flows. The socio-economic factors that have the greatest impact on the ecology of the watershed are GDP, population density, and the 
biological abundance index, while elevation is the natural factor that has the greatest impact on the EEQ [54,55]. 

4.2. Discussion of spatial correlation features 

Various types of agglomeration have emerged in western Sichuan in the past 20 years, showing that the distribution of EEQ in the 
region is complicated, which may be related to the region’s vast topographic relief and complex ecological conditions. Before 2015, the 
geographical distribution of EEQ in the YRB was generally stable, and the development of the high-altitude agglomeration area in 
Gansu, Shaanxi and western Sichuan after 2015 means that the region’s EEQ is gradually improving. The implementation of key 
national ecological protection initiatives, such as the “Three-North” protective forest system project, the natural forest protection 
project and the farmland-to-forest-to-grassland project, has begun to bear fruit. Since 2010, the YRD region has been confronted with 
the degradation of the EEQ, which is related to the rapid growth of the YRD. Human activities have a greater impact on the region’s 
biological environment than natural forces. Although the original EEQ of the YRD region was quite acceptable, a number of envi-
ronmental problems such as water and air pollution caused by urbanization and development have led to a decline in the EEQ of the 
YRD region. 

4.3. Relationship between land-use types and EEQ 

Several studies have shown that vegetation can successfully prevent soil erosion, thereby increasing the resilience and carrying 
capacity of the ecological environment [51]. From 2000 to 2020, the area of forest increased by 1.11%, mainly in Gansu and Shaanxi 
provinces, where the ecological situation has improved significantly. Human activities and social growth have exacerbated land cover 
changes, and pollution from industrial expansion has damaged the surrounding ecology. In order to meet the demand for land for 
economic growth, a considerable amount of arable land in the YRD region has been occupied and the area of impervious surface has 
increased dramatically, which is consistent with the deteriorating trend in the EEQ of the YRD region. Therefore, for the long-term 
growth of the regional ecological environment, it is necessary to strengthen the conservation of forests, grasslands and other vege-
tation in the study area, as well as scientific and reasonable land use planning. 

4.4. Response of RSEI to natural factors 

Elevation, annual precipitation, and average annual temperature were the three categories of natural elements that were chosen for 
the study. According to the findings of the geographic probing study, elevation is the natural component that has the greatest impact on 
the YRB’s EEQ. The YRB’s topography follows a pattern of high in the west and low in the east across the three main terrains of Chinese 
topography. According to Yang’s findings [36], high-altitude regions with large topographic relief and slope, complex terrain, rela-
tively homogeneous vegetation types, and extremely fragile ecological environments that are vulnerable to degradation include the 
Hengduan Mountains in the Jinsha River Basin and the Minto River Basin. The Yangtze River’s source and upstream regions, where 
natural forces are the primary driving force, should pay sufficient attention to ecological engineering buildings [56]. The EEQ in the 
southern Jialing River Basin, Dongting Lake Basin, Poyang Lake Basin, and YRD is “good” and “excellent” since these regions are low in 
elevation, primarily plain and hilly, and have a climate that supports the growth of plants [37]. 

4.5. Response of RSEI to socioeconomic factors 

Although the region’s EEQ has remained stable as a result of many policies, including the establishment of the Sanjiangyuan Nature 
Reserve and the implementation of the grassland ecological protection compensation policy, human activities in the Jinsha River 
Basin’s Heng-duan Mountains, such as grazing and excessive lawn development, have contributed to the degradation of the EEQ to 
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some extent [57]. In the middle and lower portions of the YRB, rising urbanization has caused an annual increase in population density 
since 1990, affecting local land use and vegetation change [58,59]. The ecological environment is under stress as a result of urban-
ization, population growth, industrial concentration, resource and energy use, and geographic expansion [60–63]. According to the 
findings [64], urban growth reduced the amount of productive land in the YRB, which resulted in an increase in construction land, a 
decrease in plant diversity, and a reduction in vegetation cover, particularly in the Chengdu-Chongqing urban agglomeration and the 
YRD, which is in line with Qu’s findings [65]. 

4.6. Limitations and uncertainties 

This study provides a strong scientific framework for quick evaluation of EEQ in the YRB and other watersheds, although the RSEI 
calculation and driving mechanism analysis in this paper are still lacking. The principal component analysis computation of RSEI is 
unstable and cannot guarantee a large contribution [66]. In subsequent research, the computation of RSEI may be improved by 
employing the entropy value approach to address the issue of insufficient data consumption. For the past 20 years, the article has 
examined the regional and temporal changes in EEQ in the YRB. Due to the large amount of data and time-consuming processing, the 
five data periods from 2000, 2005, 2010, 2015, and 2020 were chosen for the study based on systematic and holistic as well as sci-
entific considerations, and the results lacked precision when compared to the data analysis results of 20 consecutive years, so relevant 
studies can be conducted later using continuous time series. 

5. Conclusions 

The RSEI was employed in this study to measure the YRB’s total EEQ based on the GEE platform. The findings of the analysis 
revealed:  

5. The YRB’s mean RSEI varied from 0.70 to 0.77 for the five monitoring years from 2000 to 2020. The overall EEQ was mostly good; 
there is significant spatial heterogeneity of RSEI in the YRB, and the EEQ in most areas of Qinghai Province has always been 
medium, while it has always been good in the YRD. The EEQ of Shaanxi, Gansu, Yunnan, and western Sichuan provinces has 
improved dramatically since 2000.  

6. According to the spatial correlation analysis, the type of EEQ aggregation in Gansu and Shaanxi provinces has been high-high 
aggregation, and the area of aggregation has been expanding, indicating that the region’s EEQ has been improving. The low- 
aggregation regions are concentrated in Qinghai Province and the YRD, the former because of natural factors restricting the 
delicate biological environment and the latter because of urbanization.  

7. Population density, GDP and the bio abundance index all had q-values greater than 0.5, indicating that these three factors had the 
greatest effect on regional EEQ. With the q-value of 0.737, the bio abundance index interacted with population density to have the 
largest effect on regional EEQ. This study investigated the impact of different factors on the EEQ of the YRB, which means that more 
attention should be paid to the environmental impact of human activities in the ecological management process of the YRB. 
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