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Despite the significant clinical advances with the use of immune checkpoint

inhibitors (ICIs) in a wide range of cancer patients, response rates to the therapy

are variable and do not always result in long-term tumor regression. The

development of ICI-resistant disease is one of the pressing issue in clinical

oncology, and the identification of new targets and combination therapies is a

crucial point to improve response rates and duration. Antigen processing and

presentation (APP) pathway is a key element for an efficient response to ICI

therapy. Indeed, malignancies that do not express tumor antigens are typically

poor infiltrated by T cells and unresponsive to ICIs. Therefore, improving tumor

immunogenicity potentially increases the success rate of ICI therapy. In this

review, we provide an overview of the key elements of the APP machinery that

can be exploited to enhance tumor immunogenicity and increase the efficacy

of ICI-based immunotherapy.

KEYWORDS
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Introduction

The impressive clinical results achieved with immunotherapy in terms of remission

and improved survival have given new optimism for treating patients with cancer (1, 2).

However, the number of patients in whom the benefict of treatment are lasting and

resolving is limited.
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Identifying the mechanisms adopted by the tumor to escape

immunologic surveillance becomes of paramount importance to

improve the efficacy of immunotherapy. The cancer immune

cycle describes the sequence of events by which an antitumor

immune response results in the effective killing of cancer cells

(3). In the first step, tumor antigens present in the tumor

microenvironment are captured by antigen-presenting cells

(APC), such as dendritic cells (DCs), which migrate to

draining lymph nodes to present antigens to naïve T

lymphocytes via MHC class I and MHC class II molecules.

This results in the activation of immature T cells into effector T

cells which subsequently reach the tumor site through the

bloodstream to specifically recognize and eliminate tumor cells

(3). Because each step of the cycle contributes to tumor cell

killing, inhibition of one or more of these processes may cause

attenuation of antitumor responses or immune escape (4). In

this regard, failure of ICI therapy could also result from a defect

in any of the above-mentioned steps, i.e., insufficient generation

of antitumor T cells, inadequate function of tumor-specific T

cells (5, 6), or impaired T-cell memory formation (7, 8).
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Recently, it has been shown that impaired migration of DCs

from tumor tissues to the regional lymph nodes caused defective

antigen presentation and priming of T cells, leading to

uncontrolled tumor development and resistance to ICIs in

several cancer types (9–12). Mechanisms related to immune

escape in the cancer immune cycle as well as therapies to

overcome immune escape and resistance to ICI therapies have

been widely addressed (8, 13, 14).

ICI-based immunotherapy acts by blocking the inhibitory

action of immune checkpoints and restoring the function of

tumor-infiltrating immune cells (15). CD8+ T cells are one of the

main immune cell populations targeted by ICI-based therapy.

These cells continuously scrutinize the integrity of the proteome

by scanning peptides presented on the cell surface bound to HLA

class I molecules (Figure 1). The integrity of this process, called

antigen processing and presentation (APP) pathway, is critical to

ensure generation of effective CD8+ T cells to fight cancer (16).

The APP pathway includes several closely related proteins,

whose level of expression has been shown to influence

quantitatively and qualitatively the repertoire of tumor
FIGURE 1

Antigen processing and presentation pathway. The ubiquitinated proteins are degraded (1) by the catalytic subunits of the constitutive
proteasome (cP) or immunoproteasome (iP) into peptides. The peptides generated are translocated (2) through the transporter associated with
antigen processing (TAP1 and TAP2) complex into the endoplasmic reticulum (ER), where they can be further trimmed (3) by the ER
aminopeptidases ERAP1 and ERAP2. Loading onto the HLA class I heavy chain-associated b2-microglobulin (b2m) (4) is a multistep process
facilitated by the peptide loading complex (PLC), composed of TAP, ERp57, and the chaperones tapasin and calreticulin (CRT). Binding of high-
affinity peptide induces dissociation of the HLA class I complex from PLC, its stabilization by interaction with TAP-binding protein related
(TAPBPR) (5), and subsequent trafficking (6) to the cell surface to be presented to cytotoxic CD8+ T cells and NK cells (7).
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antigens presented to the immune system. Changes in the

expression of individual components of the APP machinery

have been associated with the lack or reduced presentation of

tumor antigens, as well as variation in the level of tumor-

infiltrating CD8+ T cells and response to ICI-based therapy

(17–19). Recently, Maggs and colleagues (20) provided a detailed

overview of the structural and nonstructural mechanisms

underlying HLA class I APP defects in malignant cells. In this

review, we deepen the contribution of APP machinery to the

cancer immunopeptidome, with a focus on how they can be

exploited to enhance tumor immunogenicity.
Antigen processing and presentation
machinery

Tumor antigens are small pieces of protein able to provoke

an immune attack against cancer. They can be derived from

mutated or unmutated cellular proteins and are referred to as

tumor-specific antigens or tumor-associated antigens,

respectively (21). Several lines of evidence indicate that

potential sources of tumor antigens could also arise from the

translation of presumably non-coding transcripts, such as

introns, untranslated regions, intergenic sequences, or out-of-

frame exons (22–25). In general, peptides presented by HLA

class I molecules are not necessarily derived from the most

highly expressed proteins, such as housekeeping proteins

(histones, ribosomal proteins, metabolic enzymes, and

cytoskeletal proteins) (22, 23, 26). Indeed, unstable proteins,

i.e., those that are rapidly degraded by the proteosome, are also

represented in the immunopeptidome. Such proteins, although

hardly detectable by mass spectrometry analysis, are in fact able

to generate immunogenic peptides (22, 23, 26). Regardless of

their origin, peptides compete with each other for presentation

by HLA class I molecules (22, 26, 27). It has been estimated that

the immunopeptidome, composed of thousands of short peptide

antigens of 8-12 amino acids, contains at most 1% of the peptide

sequences found in individual cells.

The intracellular antigen processing pathway almost

exclusively deals with the ubiquitinin proteasome system

(UPS) activity, by which endogenous proteins are first

ubiquitinated and subsequently degraded by the proteasome, a

large cytosolic proteolytic complex which digests unneeded or

damaged proteins (Figure 1) (28). Proteasome complex consists

of 14 structural subunits and 2 copies of 3 catalytic subunits b1,
b2, and b5 (29). Following stimulation with interferon-g (IFNg),
due to cellular stress and inflammation, the constitutive

proteasome is converted in the immunoproteasome, which

differs in the catalytic subunits b1i (LMP2 or Psmb9), b2i
(MECL1 or Psmb10) and b5i (LMP7 or Psmb8) (30). The

immunoproteasome shows increased peptide cleavage activity

after basic or hydrofobic residues, allowing the production of

peptides with higher affinity for HLA class I molecules (31–33).
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A fraction of these peptides are transported into the lumen of the

endoplasmic reticulum (ER) by the transporter associated with

antigen processing (TAP), a heterodimeric complex belonging to

the ABC transporter superfamily. TAP is composed of two

subunits (TAP1/TAP2), both consisting of a transmembrane

region, a substrate binding site, and an ATP-binding domain,

and preferentially interacts with peptides (one at a time) ranging

from 8 to 16 amino acids in length (34). These properties give

TAP the ability to perform an initial selection of peptides

available for HLA class I binding. It has been estimated that

about 25% of antigenic peptides reaching the cell surface bound

to HLA class I molecules are shortened at the N-terminal end by

ER aminopetidases ERAP1 and ERAP2 (ERAAP in mouse),

which are known to generate and destroy peptides (35–37).

Peptides with the correct length and sequence to bind HLA class

I alleles are loaded onto b2m-associated HLA class I heavy chain

dimers with the help of the peptide-loading complex (PLC) that

consists of TAP, ER resident protein 57 (ERp57), and chaperone

molecules calreticulin and tapasin. The peptide-HLA class I-

b2m complex formed is further stabilized by the binding with

the tapasin-binding protein related (TAPBPR), the newest

member of the APP machinery (Figure 1) (38). Tapasin and

TAPBPR work together sequentially, with tapasin involved in

loading the peptide into the HLA class I-b2m dimer within the

PLC in the ER, and TAPBPR assigned to control the stability of

the peptide-HLA class I-b2m complex in the Golgi during its

transport across the plasma membrane (39). The resulting

trimeric complex travels to the plasma membrane to be

presented to cytotoxic CD8+ T cells and NK cells.
Defective expression of APP components has detected in

most of the tumors. Many evidence indicates that impaired

functionality of the APP machinery in tumor cells, in addition to

causing a change in the repertoire of antigens presented on the

cell surface, results in a change in the level of tumor-infiltrating

CD8+ T cells and the response to ICI-based therapy.
Contribution of the antigen
processing and presentation
machinery to the cancer
immunopeptidome

Immunoproteasome

Several studies have shown that mice lacking the single

catalytic subunits of the immunoproteasome have relatively

modest changes in the immunopeptidome (40–42). However,

mice completely lacking immunoproteasome had defects in the

presentation of several MHC class I epitopes with an

immunopeptidome 50% difference from wild type mice (43).

These differences were sufficient to stimulate robust rejection of

wild type splenocytes transplanted in triple knock-out mice (43),

thus suggesting that the immunoproteasome plays a primary role
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in antigen presentation. Based on its ability to modulate the

expression of pro-tumorigenic cytokines and chemokines or

increase the presentat ion of tumor ant igens , the

immunoproteasome shows both pro- and anti-tumor properties,

respectively (44). The pro-tumoral role of the immunoproteasome

is evident in the case of colitis-associated carcinogenesis, where

increased expression of b5i/LMP7 and b1i/LMP2 has been

observed in cronically inflamed colons (45). As a result, b5i/
LMP7-deficient mice show reduced tumor formation and

production of pro-tumor chemokines (e.g. CXCL1, CXCL2, and

CXCL3) (45). In contrast to the inflammatory environment of the

gut, increased expression of b5i/LMP7 and b1i/LMP2 subunits in

melanoma cells resulted in an altered immunopeptidome which

correlated with increased reactivity of tumor-infiltrating CD8+ T

cells, improved survival and response to ICIs (46). Indeed,

increased immunoproteasome expression has been attributed to

IFNg secretion by tumor-infiltrating CD8+ T cells in several tumor

types, including melanoma, colorectal cancer, gastric cancer, and

breast cancer (46–50). Similarly, in non-small cell lung cancer

(NSCLC), high immunoproteasome expression was correlated

with good prognosis (51). In this scenario, induction of

immunoproteasome expression could be an interesting

approach to improve the effect of ICI-based therapy in specific

tumor settings.
TAP

Several viruses and tumors exploit the down-regulation or

inhibition of TAP as a strategy to evade CD8+ T-cell control (52).

In this context, it has been observed that TAP-deficient cells

display a severe reduction of HLA class I surface expression, but

still sufficient to have a partial antigen presentation and functional

T-cell recognition through alternative processing pathways (53).

In TAP-deficient tumor cells, although the presentation of

conventional tumor-specific antigens may decrease, an

alternative class of non-mutated antigens emerges within the

immunopeptidome. These novel antigens, called T cell epitopes

associated with impaired peptide processing (TEIPPs), derive

from normal housekeeping proteins and are not loaded on HLA

class I molecules in healthy cells. Accordingly, in mouse and

human models, CD8+ T cells of healthy individuals specific for

some TEIPP antigens reside in the naïve state, indicating that they

are not triggered during an immune response (53, 54). Conversely,

as demonstrated by a number of studies, TEIPPs are efficient in

elicit a functional antitumor CD8+ T cell response (53, 55, 56).

Marijt and colleagues identified a human HLA-A2-binding TEIPP

derived from the LDL Receptor Related Protein Associated

Protein 1 (LRPAP1) signal sequence (LRPAP121-30) common to

different type of tumors, including melanoma, lymphoma, colon

and renal cell carcinoma (53). The authors demonstrated that

LRPAP121-30-specific CD8+ T cells selectively recognized TAP-

defective cancers, but not the TAP-expressing counterparts on
Frontiers in Immunology 04
healthy tissue (53). More recently, the same research group

designed a synthetic long peptide vaccine by optimizing a

peptide sequence based on the previously identified LRPAP1-

derived TEIPP (57). The resulting vaccine was able to induce

CD8+ T-cell immunity and cross-presentation by monocyte-

derived DC, resulting in tumor control (57). Interestingly,

Garrido and colleagues used a clinical applicable method to

increase the antigenicity of tumor cells by downregulating TAP

expression in situ. The authors demonstrated that administration

of TAP siRNA conjugated to a broad-spectrum tumor-targeting

nucleolin aptamer resulted in: i) inhibition of tumor growth in

multiple transplanted, orthotopic and autochthonous mouse

tumor models of different origin and genetic background

without measurable toxicity, ii) enhancement of the antitumor

effect of PD-1 antibody, and iii) induction of TAP-independent

peptide presentation in human tumor cells (55). Thus, treatment

with the siRNA-conjugated nucleolin-TAP aptamer represents a

widely applicable approach to increase the antigenicity of tumor

lesions and improve the efficacy of ICI-based therapies. These

studies offer different strategies to exploit TAP inhibition as an

approach to make tumor cells responsive to ICI-based therapy. If

in the first case, a TAP-deficient tumor proves to be more sensitive

to a therapy based on TEIPP targeting, in the second one the

alteration of antigen processing is used as a novel therapeutic

approach to target tumor cells.
TAPBPR

Silencing of TAPBPR in HeLa cells causes an increase in the

overall number of peptides presented on the cell surface by HLA

class I molecules compared with control cells (39). This suggests

that inhibition of TAPBPR, by reducing affinity requirements for

peptide binding to HLA class I molecules, could expand the

repertoire of antigens presented on the cell surface, thereby

eliciting an immune response. Recently, Ilca and colleagues

demonstrated that the plasma membrane-targeted or

recombinant soluble form of TAPBPR retain their peptide-

editing capacities (58). Addition of recombinant TAPBPR to

the extracellular environment promotes the exchange of

peptides bound to HLA class I molecules directly at the

plasma membrane. The authors suggest that a similar

approach could be useful to enrich tumor cells with highly

immunogenic peptides, inducing immune recognition of

tumors and thus potentially improving immunotherapy (58).

It is now clear that, as with other components of the APP, the

binding affinity of TAPBPR varies among HLA class I allotypes

with a strong preference for HLA-A (59). This implies that

patients with different HLA class I typing might be susceptible to

TAPBPR chaperone-mediated peptide editing to different

degrees. This could play a role in disease susceptibility, but

also influence patients’ response to possible TAPBPR-mediated

therapy (60).
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ERAP1 and ERAP2

The first evidence that loss of ERAP1 function causes a

profound alteration of the immunopeptidome able of eliciting

potent immune responses comes from pioneering studies in

mouse models of Shastri and other groups (61–64). The authors

demonstrated that wild-type mice respond vigorously to the

injected ERAAP-/- splenocytes by activating the response of CD8+

T cells that specifically recognize peptides normally destroyed by

ERAAP (61). Given the key role of ER aminopeptidases in the

generation of the cancer immunopeptidome, several studies have

explored the possibility of targeting ER aminopeptidases for

generating protective anticancer responses. The first evidence

comes from Cifaldi and colleagues, who demostrate that ERAAP

silencing leads to rejection of murine RMA T-cell lymphoma in

syngeneic mice (65). This tumor rejection was due to both T cells

and NK cells, and was dependent on the repertoire of peptides

bound to MHC class I molecules. Indeed, replacement of

endogenous peptides with high-affinity peptides was sufficient to

restore a protective effect through recognition of the stable peptide-

MHC class I complex by NK cell inhibitory receptors (65).

Similarly, inhibition of human ERAP1 was also able to regulate

NK cell activity by controlling the interaction of peptide-HLA class I

complexes with NK cell inhibitory receptors (66, 67). James and

colleagues assessed the role of ERAAP expression in a syngeneic

model of colorectal cancer and demonstrated that the

immunodominant peptide GSW11 is trimmed and destroyed by

ERAAP (Table 1). As expected, inhibition of ERAAP by either gene

silencing or drug treatment, caused an increase of GSW11

presentation and reduced tumor growth in syngeneic mice (68).

The involvement of ERAP1 in the generation and

destruction of tumor antigens has been endorsed by many

other studies. Keller and colleagues demonstrated that

constitutive expression of ERAP1 and proteasome activator 28

(PA28) were sufficient to inhibit generation of the MART-126-35
epitope (69) (Table 1). The authors show that both genetic and

pharmacological inhibition of ERAP1 strongly increase MART-

126-35 presentation in human melanoma cells and IFN-g release
by MART-126-35-specific CD8

+ T cells (69). Textoris-Taube and

colleagues demonstrate that ERAP1, but not ERAP2, is involved

in the generation of the glycoprotein 100 (gp100)209-217
Frontiers in Immunology 05
immunogenic epitope derived from melanoma differentiation

antigen (gp100)PMEL17, and promotes the activation of gp100209-

217-specific CD8+ T cells by melanoma cells (Table 1) (70).

Administration of the gp100 peptide combined with

ipilimumab, the CTLA-4 antagonist, showed no improvement

in disease progression in a proportion of patients with metastatic

melanoma compared with those treated with ipilimumab alone,

most likely due to insufficient epitope presentation (71, 72). It is

possible that the allelic status of ERAP1 known to affect its

enzymatic activity and ability to generate and/or destroy

antigenic peptides, may contribute to the variability of

immune responses between individuals. Indeed, Reeves and

colleagues demonstrated that the functional activity of

different ERAP1 allotypes is positively correlated with the

amount of tumour-infiltrating CD8+ T cells in HPV+

oropharyngeal squamous cell carcinomas (OPSCC) through

the generation of HPV E6/E7 epitopes (73). This is the first

evidence that different ERAP1 allotypes affect the HPV-16

epitope presentation and anti-HPV T-cell responses

(Table 1) (73).

These studies collectively suggest that inhibition of ERAP1

activity, by resulting in a novel immunopeptidome, could

represent a viable therapeutic strategy to enhance protective

anti-tumor immune responses. Consistently, Koumantou and

colleagues demonstrated that pharmacological inhibition of

ERAP1 in a melanoma cell line induced profound changes in

both the quality and quantity of one half of the peptides

presented, specifically increasing the presentation of peptides

with high binding affinity for HLA class I molecules (74).

Moreover, inhibition of ERAAP by nucleolin-targeted siRNA

was able to elicit an efficient antitumor response by sensitizing

transplantable 4T1 breast carcer cell model to anti-PD-1

immunotherapy (55).

Proteomic studies revealed that ERAP2, when expressed, also

contributes to the immunopeptidome (75). In the tumor contest,

Temponeras and colleagues showed that pharmacological

inhibition of ERAP2 alters the immunopeptidome in the

MOLT-4 human leukemia cell line, with more than 20% of

peptides detected as novel, or significantly up-regulated (76).

Most of these peptides were 9mers with sequence motifs

consistent with optimal binding motifs for at least one of the
TABLE 1 Tumor antigens affected by ERAAP/ERAP1.

Peptide Sequence MHC class I Origin ERAP1 effect Tumor Ref.

GSW11 GGPESFYCASW H-2Dd gp90 destroyed CRC* (56)

MART-126-35 EAAGIGILTV HLA-A*02:01 MART-1 destroyed MEL (57)

HPV E782-90 LLMGTLGIV HLA-A*02:01 HPV E7 generated OPSCC (61)

gp100209-217 ITDQVPFSV HLA-A*02:01 gp100 generated MEL (58)
frontiersi
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HLA class I alleles carried by MOLT-4 (76). Such peptides might

be able to induce novel cytotoxic CD8+ T-cell responses against

tumor cells and synergize with ICI-based therapy.
Discussion

The immunopeptidome is the representation on the cell

surface of what is actively translated and degraded within the

cell, i.e., the element through which immune cells are able to

detect and eliminate cancer cells (77–79). Indeed, loss of

expression of HLA class I and APP components is one of the

best-known mechanisms exploited by tumors to evade immune

surveillance. The resulting reduced tumor antigen presentation

has been associated with resistance to ICI therapy (20). However,

there is a small percentage of patients in which ICI can still work

despite of APP alterations, suggesting that, especially for tumors

with high mutation burden, antigen presentation is not

completely abolished and can represent an Achilles’ heel of the

tumour (80).

Nevertheless, alterations in components of the APP

machinery in tumors can potentially change the repertoire of

peptides presented by HLA class I complexes. Accordingly,

preclinical studies suggest that cells with an altered

immunopeptidome due to ERAP1 or TAP deficiency still elicit

strong T cell responses (55, 61). These observations indicate that

a similar alteration of the immunopeptidome, by promoting the

presentation of novel tumor antigens, could increase tumor

immunogenicity making anticancer therapeutic protocols more
Frontiers in Immunology 06
effective (Figure 2). In this regard, there is much evidence in

favor of the hypothesis that functional alteration of any

component of the APP that can result in a novel

immunopeptidome, could increase reactivity of tumor-

infiltrating CD8+ T cells and sensitize tumors to ICI therapy

(Figure 2). Interestingly, two recent in vivo CRISPR-Cas9

genome editing studies have demonstrated that deletion of

APP-related genes is able to increase the efficacy of ICI-based

immunotherapy in melanoma and renal carcinoma (81, 82). The

influence of APP components on cancer cell sensitivity to

immune pressure differs between the two cancer models, with

ERAP1, calreticulin and TAPBPR more relevant in melanoma,

and b2m in renal carcinoma (81, 82). The ability of APP

component depletions to sensitize two tumor models to ICI

immunotherapy (81, 82), strengthens the idea that their

pharmacological inhibition may have therapeutic value in

these tumors. In melanoma, it has been shown that about 12%

of tumor-infiltrating T cells recognise non-mutated tumour

antigens, i.e. peptides encoded by canonical exons (83).

Perturbation of APP in tumors may represent a strategy to

elicit the presentation of both non-mutated tumor antigens with

strong antitumor potential, as demonstrated by TEIPPs, and

immunogenic epitopes usually destroyed by ERAP1 (53, 55, 57,

68, 69). This subset of peptides, considered as ‘altered self’,

represents a very interesting category, as it is potentially shared

by several tumors genetically or pharmacologically inhibited for

APP components (55, 84).

Overall, it is clear that APP perturbation, by increasing

tumor immunogenicity and widening the range of tumor
FIGURE 2

Targeting antigen processing and presentation machinery immunosensitizes ICI-resistent tumors. Downmodulation of APP components causes
both an increase in tumor immunogenicity and the recall of functional effector CD8+ T cells and NK cells into the tumor microenvironment,
thus making tumors sensitive to ICI-based immunotherapy. APP, antigen processing and presentation; ICI, Immune checkpoint inhibitor; KIR,
killer inhibitory receptor; KAR, killer activating receptor.
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antigens presented could provide an excellent opportunity to

stimulate the immune response and increase the efficacy of to

ICI therapy. Thus, future investigations and additional pre-

clinical studies in this area are needed to reveal new and

exciting anticancer therapeutic opportunities.
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