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A B S T R A C T   

COVID-19 is a multi-faceted disease ranging from asymptomatic to severely ill condition that primarily affects 
the lungs and could advance to other organs as well. It's causing factor, SARS-CoV-2 is recognized to develop 
robust cell-mediated immunity that responsible to either control or exaggerate the infection. As an important cell 
subset that control immune responses and are significantly dysregulated in COVID-19, Tregs is proposed to be 
considered for COVID-19 management. Among its hallmark, TNFR2 is recently recognized to play important role 
in the function and survival of Tregs. This review gathers available TNFR2 agonists to directly target Tregs as a 
potential approach to overcome immune dysregulation that affect the severity in COVID-19. Furthermore, this 
review performs a rigid body docking of TNF-TNFR2 interaction and such interaction with TNFR2 agonist to 
predict the optimal targeting approach.   

Invited review article 

1. Introduction 

Since declared a pandemic in January 2020, coronavirus disease 
2019 (COVID-19) continued to cause thousands of new infection cases 
daily and more than two million deaths worldwide till March 2021 [1]. 
Its causative agent, severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), causes infection that produces a wide spectrum of man-
ifestations, ranging from no symptoms to viral pneumonia leading to 
acute respiratory distress syndrome (ARDS) [2]. Hence, management of 
COVID-19 is based on symptoms experienced by patients, and not until 
recently, several vaccines have been approved to curb this pandemic 
[3]. 

SARS-CoV-2 enters host cells through binding of its spike (S) protein 
with host receptor angiotensin converting enzyme 2 (ACE2) which is 
abundant in lungs, and use human proteases such as transmembrane 
serine protease 2 (TMPRSS2) to activate the entry [4]. This feature is 
similar to entry of previous SARS-CoV that contribute to the rapid spread 
and wide range of symptoms and severity [5]. Upon entry and activation 
of SARS-CoV-2 infection, a cascade of immune responses involving both 

innate and adaptive immunity is induced, and the imbalanced of these 
responses dictate the extent of the COVID-19 development [6,7]. 
Available data demonstrated that infection of SARS-CoV-2 induces 
abnormally high activation of immune responses, which is non-effective 
in antiviral protection but instead lead to detrimental immunopatho-
genesis [8–11]. Thus, immune cells such as regulatory T cells (Tregs) 
that suppose to control these excessive immune responses should be 
highly considered in COVID-19 management. 

This review proposes another appealing marker of Tregs, which is 
tumor necrosis factor receptor 2 (TNFR2), to be targeted in Tregs-based 
therapies for management of COVID-19. Furthermore, this review out-
lined the existing TNFR2 agonists as well as a potential approach to 
utilize them in overcoming cytokine storm, and thus reducing the 
severity of COVID-19. Furthermore, we performed rigid body docking of 
the interactions of TNFR2 agonists with TNFR2. A systematic search of a 
uniform sample of docked protein poses and uses an internal scoring 
algorithm to predict the optimal interactions. The following steps were 
performed: calculating docked protein poses, filtering docked protein 
poses for poses with specific residues at the binding interface, re-ranking 
docked protein poses with ZRank, as well as clustering docked protein 
poses and calculate density [12–14]. 
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2. Regulation of Tregs in COVID-19 

As a new disease, COVID-19 prompt progression into a severe state in 
a portion of patients continues to challenge its management and increase 
its morbidity and mortality. Later, it is recognized that the progression 
occurred in patients with existing immune dysregulation that developed 
into a condition known as ‘cytokine storm’ [15,16]. Cytokine storm 
involves a high accumulation of cytokines that mediate hyper-
inflammation causing acute lung injury as well as multi-organ failure 
[17]. The major pro-inflammatory cytokines in this inflammatory re-
action include interleukin-6 (IL-6), IL-1β, tumor necrosis factor (TNF-α) 
and interferon (IFN)-γ [18]. In principle, our body defense towards 
uncontrolled inflammation is provided by a population of cells known as 
Tregs. Tregs function by suppressing these excessive effects of other cells 
in order to maintain immune homeostasis. Current shreds of evidence 
have demonstrated that Tregs is generally reduced in COVID-19 pa-
tients, particularly in severely ill patients [19–23]. Furthermore, dys-
regulation of Tregs displays a prominent identification that could serve 
as a prognostic marker in severely-ill patients [24]. 

However, there are several conflicting observations in the regulation 
of Tregs in COVID-19 (Table 1). Chen et al. [29] reports an increased in 
Tregs and one of its meditator, IL-10, in the peripheral blood of COVID- 
19 patients. Tregs is demonstrated to be amplified in both mild and 
severe cases, while IL-10 is elevated in severe cases only. This trend is 
similar to the immune profile in children with COVID-19, which was 
reported to show mild symptoms and had a better prognosis than adult 
counterpart [19]. Another study reported that Tregs is increased 
whereas Th1, Th2 and Th17 cells are decreased in patients with COVID- 
19 compared to healthy individuals [26]. A preprint also demonstrated 
an increase of Tregs number and its fork head box P3 (FoxP3) marker in 
COVID-19 patients, which directly correlates with poor patient out-
comes [27]. Accordingly, these Tregs over-expressed both suppressive 
and pro-inflammatory effectors, suggesting to the faulty role of Tregs in 
the progression of COVID-19. It is noted that these increased of Tregs is 
accompanied by the decrease of T cells. Another study observed an 
increased pool of Tregs, associated with non-survivor severe cases is 
SARS-CoV-2-specific, which hindered the proliferation of effector T cells 
(Teffs) that contribute to recovery from COVID-19 [28]. This observa-
tion supports the idea of suppressive function of Tregs that inhibit the 
protection responses triggered when the immune system is alerted 
during viral infection, suggesting that initiation of Tregs in the early 
phase of infection would further deteriorate the defense thus explain the 
poor prognosis in these portion of patients. Nevertheless, a study in 
severe COVID-19 patients using single-cell analysis found that T cells in 
these patients are hyperactivated and differentiated into multiple helper 
T cells, particularly with Th1 and Th2 phenotypes [30]. Despite being 
hyperactivated by CD25 and other immunoregulatory receptors, these T 
cells distinctly have a downregulation of Foxp3 expression, the func-
tional marker for Tregs. Taken together, these observations suggest that 

regulation of Tregs is severely impaired and directly influences the 
severity of COVID-19 infection (Fig. 1). 

Previously, Stephen-Victor et al. [31] had reviewed the potential of 
Tregs-based therapies in the management of COVID-19. Besides adop-
tive transfer of ex vivo Tregs, they outline several other strategies to 
enhance Tregs through its stimulatory markers including CD25 and 
cytotoxic T-lymphocyte antigen-4 (CTLA-4). Based on the clinical ben-
efits of these strategies in autoimmune and inflammatory diseases, they 
appear to be attractive to overcome hyperinflammation in severe cases 
of COVID-19. However, the disparities of Tregs among patients with 
COVID-19 demand for careful evaluation of Tregs phenotype, thus exact 
targeting of this cell subset could be applied. 

3. Role of TNFR2 on Tregs 

Tumor necrosis factor (TNF) is considered an essential pleiotropic 
cytokine in orchestrating various immune reactions, development of 
diseases as well as cell survival and proliferation. TNF triggers a rapid 
and robust immune response in host defense against pathogens, while 
limiting the extension of the inflammatory response when the invasion is 
subsided or resolved [32]. It stimulates the production of pro- 
inflammatory cytokines such as IL-6, IL-8, chemokines and even itself 
[33]. TNF-α exerts its pro-inflammatory function by recruiting immune 
cells including lymphocytes, monocytes, and neutrophils to the sites of 
inflammation [34]. In addition to apoptosis, TNF can also induce 
necrotic cell death under specific conditions [35]. 

Macrophages and monocytes are major producer of TNF and 
intriguingly, these cells are highly responsive to this cytokine. TNF is 
produced at low level by other cells, including several subsets of T cells, 
natural killer cells, dendritic cells, B cells, and astrocyte [36]. TNF is a 
type II transmembrane protein, a stable form of 233 amino acid homo-
trimers [37]. This cytokine primarily generated in a form of membrane- 
integrated protein (mTNF) with relative molecular weight at 26 kDa. 
From this bounded protein, the homotrimeric TNF is processed and 
released in a 17 kDa trimeric soluble form (sTNF) via the proteolytic 
activity of metalloprotease TNF alpha converting enzyme (TACE) [38]. 
Both forms of TNF are biologically active non-covalent bonded homo-
trimers. Despite of that, the nature of specific functions of mTNF and 
sTNF remains unclear. 

TNF execute its functions through interaction with two distinct 
transmembrane receptors; TNFR1 (CD120a; p55/60, 55 kDa) and 
TNFR2 (CD120b; p75/80, 75 kDa) [39]. Each receptor has an extra-
cellular binding region, a transmembrane segment, and intracellular 
region. Both TNFRs have similar multiple cysteine-rich motif in the 
extracellular region and are active in form of homodimers [40]. As the 
main receptor to the mTNF, TNFR2 forms a tight trimer and binds 
stronger than to sTNF [40]. The specific binding pattern between TNF 
and TNFR2 has been only revealed recently by Mukai's group [41]. The 
interaction between TNF and TNFR2 has been identified to potentially 

Table 1 
Regulation of Tregs in patients with COVID-19.  

Regulation Study Sample (n) Stage Definition of Tregs 

Downregulated [25] PB (30) NR CD4+CD25+Foxp3+

[24] PB (19) Severe CD3+CD4+CD25+CD127−

[20] PB (109) Mild CD25+Foxp3+

[23] PBMC (40) Severe CD4+CD25+CD127−

Gene expression of Foxp3, IL-10, TGF-β 
[19] PB (15) Extremely severe CD4+CD25+CD127− CD45RO+

Upregulated [26] PB (57) Recovery CD127− Foxp3+

[27] PB (57) Severe CD25+Foxp3+

[11] PB (6) Extremely severe NR 
[28] PBMC (33) Severe CD45RO+CD45RA− CD25+CD125low 

[29] PB (80) Mild CD4+CD25+CD127−

(22) Severe 
[19] PB (19) NR CD4+CD25+CD127−

NR, not reported; PB, peripheral blood; PBMC, peripheral blood mononuclear cells. 
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occur in two TNF-binding regions of TNFR2 monomer, namely, region 3 
and 4 (Fig. 2). To better understand the respective view of the two 
binding regions to the overall binding, we performed a molecular dy-
namic simulation of the TNF–TNFR2 interaction using Discovery Studio 
(PDB ID 3alq). The molecular surface of region 3 of TNFR2 is a highly 
negatively charged, made up by three acidic residues such as Asp54, 
Glu57, and Glu70. Meanwhile, region 4, conversely, contains three basic 
residues, such as Arg77, Lys108, and Arg113, which together create 
highly positively charged molecular surface [42]. The binding strength 
of TNF in region 3 is relatively weaker than that of in region 4. This 
could lead to more competitive ligand binds against TNF on TNFR2, 
hence it may be more viable for small molecule inhibitor targeting re-
gion 3, although the inhibitory effect could be negligible. Targeting 
region 4 with small molecules inhibitor should potentially have higher 
inhibitory effect, however, since TNF binding to this region is stronger, 
the challenge in finding suitable molecules could also be greater [43]. 

3.1. TNF-TNFR2 interaction and its signaling pathways 

Interaction of TNF with TNFR2 is illustrated in Fig. 2. Initially, 
TNFR2 was suggested to exist as the supporter to enhance TNFR1- 

induced cell death by a process called “ligand passing” [44]. However, 
recent investigations by engaging mutant forms of TNF or agonistic 
antibodies exclusively to TNFR1 or TNFR2 have further characterized 
that these receptors are receptor-specific ligands, suggesting the two 
TNFRs primarily activated via distinct signaling pathways. The binding 
of TNF to TNFR2 is extremely important for cell survival and prolifer-
ation [45]. Through binding to TNFR2, TNF triggers the intracellular 
domains of the receptor to recruit existing cytoplasmic TNF receptor- 
associated factor-2 (TRAF-2)- complex inhibitors of apoptosis proteins 
1 (cIAP-1)- cIAP-2 complexes [46]. The ubiquitin-ligase activity of cIAP 
can suppress the pro-apoptotic activity by binding to the caspases and 
other apoptosis-inducing factors [36]. This leads to the activation of 
nuclear factor kappa B (NF-κB) which regulate the transcriptions of 
genes including those responsible for cell survival and anti-apoptotic 
gene pathways [46]. Other than NF-κB, in the same context, TNF- 
TNFR2 interaction stimulates a reciprocal PI3K/Akt pathway [47]. 
Moreover, the interaction recruits Etk, an endothelial/epithelial tyro-
sine kinase, to form the TNFR2–Etk–vascular endothelial growth factor 
receptor 2 (VEGFR2) complex that has been implicated in cell adhesion, 
migration and proliferation [48,49]. Of note, TNFR2 lacks a death 
domain. Unlike TNFR1 which mediates death signaling, TNFR2 interacts 
directly via its intracellular region with the adaptor protein TRAF-2 
under certain conditions like stress or when the exhaustion of the cIAP 
pool, as such initiates the apoptosis pathway [50]. 

Previously, TNF is shown to be upregulated along with other pro- 
inflammatory cytokines (IL-1β, IL-6, IFN-γ) in patients with COVID-19. 
Hence, the potential of anti-TNF therapies ought to be considered, and 
yet there are concerns regarding this approach, particularly its safety 
[51]. Anti-TNF is usually indicated in autoimmune diseases and effec-
tively resolves the symptoms but there are several adverse effects such as 
severe infections are reported [52]. Thus, the use of this therapy needs to 
be approached with caution because it may increase viral replication or 
bacterial infection. Unlike its established pro-inflammatory activity in 
disease, TNF is also shown to modulate anti-inflammatory responses to 
viral infections and other infectious agents, through its interaction with 
Tregs [53,54]. These studies have sought to define the prominent role of 
TNFR2 in the potent immunosuppressive effects of Tregs. TNFR2 can 
only be efficiently activated by binding to mTNF [55]. Because of the 
higher affinity in binding, the bond is too stable to dissociate than sTNF 
[56]. While TNFR1 is predominantly expressed in nearly all cell types, 

Fig. 1. Regulation of Tregs in COVID- 
19. SARS-CoV-2 infection increases 
the expression of key mediator pro-
teins (cytokines) that are recognized 
by antigen-presenting cells such as 
dendritic cells and macrophages, 
trigger the production of inflamma-
tory cytokines (IL-6, IL-1β, IL-8, TNF- 
α and IFN-γ). Secretion of these me-
diators recruits inflammatory mono-
cytes, neutrophils, natural killer cells, 
CD4+ and CD8+ T cells, and their 
regulation is controlled by Tregs, 
which is compromised in COVID-19 
infection. The diminished number 
and function of Tregs established a 
pro-inflammatory feedback loop, 
portrayed as hyperinflammation 
while overexpression of this cell sub-
set inhibits viral immune protection 
against SARS-CoV-2. Created with 
BioRender.com.   

Fig. 2. Interaction of TNF with TNFR2. (A) Side vertical view of TNF-TNFR2 
interaction (PDB ID 3alq). The TNF trimer is in green and the TNFR2 trimer 
is in red. (B) The binding regions (regions 3 and 4) of TNFR2 monomer are 
annotated, with the main binding residues in these regions are shown in CPK. 
3D models were created using Discovery Studio (version 2.5.5, Biovia, San 
Diego, CA, USA). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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TNFR2 is strictly expressed on myeloid and lymphoid cell lineages, 
particularly on Tregs, and other non-immune cells (e.g. endothelial cells 
and neural cells) [50,57,58]. Due to these exclusive expressions, TNFR2 
is responsible for mediating proliferation and maintenance of function in 
Tregs as well as Teffs [59,60]. Interestingly, preferential expression of 
TNFR2 on Tregs and its interaction with TNF directly dampen the in-
flammatory responses, as such, leads to high immunosuppressive effi-
ciency and cell survival [38]. 

In detail, the interaction of TNF with TNFR2 generates co- 
stimulatory signals that able to enhance cell proliferation and survival 
in T cells [61]. Meanwhile, in the subpopulation of T cells, it has been 
established that TNFR2 signaling is directly associated with the 
phenotype and functional properties of Tregs, which predominantly 
expressed both in mice [62] and humans Tregs [63]. In TNFR2 deficient 
mice, thymic and peripheral Tregs populations were reduced [64] and 
inflammatory responses in vivo were dysregulated [62]. In human, 
thymic Tregs expressed a markedly higher level of TNFR2 compared to 
thymic Teffs [63]. Interestingly, TNF-TNFR2 ligation on Tregs exhibited 
the most potent suppressive capacity [64,65]. Furthermore, under 
pathological condition, TNF-TNFR2 interaction was found to down-
regulate FoxP3, which is later blocked and restored by TNF antagonist 
[66,67]. Foxp3 is a transcription marker specifically required for 
CD4+CD25+ Tregs development and function [68]. Both murine 
TNFR2+ and TNFR2− CD4+CD25+ T cells expressed a comparable high 
abundance of FoxP3 [62]. However, FoxP3 alone is intrinsically weak to 
activate the suppressive function in TNFR2− CD4+CD25+ T cells [62]. 
Unlike FoxP3, TNFR2 does not stimulate CD4+CD25+Foxp3− T cells to 
become suppressive [68]. In contrast, TNFR2 in CD4+Foxp3− T cells 
exhibit higher resistance to suppression by CD4+CD25+ Tregs. Previ-
ously, a subpopulation of CD4+ T cells expressing CD25, the IL-2R alpha 
subunit, was suggested as an essential for functional programming of 

Tregs [69]. However, CD4+CD25− TNFR2+ cells were shown to have 
greater suppressive capacity compared to CD4+CD25+TNFR2− cells, 
despite the cells expressed lesser FoxP3+ population than the latter, 
suggesting that expression of TNFR2 is considered to be more significant 
to suppressive phenotype in Tregs than CD25 [70]. Additionally, more 
functional suppressive Foxp3+ Tregs in human can be identified in co- 
expression of TNFR2 with CD25 [70]. It has also been reported that 
TNFR2+ Tregs preferentially accumulate in tumor more than in the 
periphery and this subset has shown to have more potent suppressive 
capacity [62]. The interaction of TNF-TNFR2 promotes both Tregs and 
Teffs proliferation; however, TNFR2 expressed on Tregs has shown to 
resist the inhibition of suppression of TNFR2+ Teffs [71]. Fig. 3 sum-
marized signaling cascades upon interaction of TNF with TNFR2 and 
their preferential expression on Tregs that lead to its crucial role on this 
cell subset. 

Other than CD4+ Tregs, CD8+ Tregs expansion is induced specifically 
via TNFR2 signaling by interaction with mTNF expressed by activated 
CD8+ T cells [72]. While CD4+ Tregs co-expression of CD25 and TNFR2 
are notably recognized as a potent subpopulation of Tregs, CD8+ Tregs 
exhibits TNFR2 as the more important marker than CD25 [60,73]. From 
the latter, it seems that TNFR2 expression is the prominent checkmark of 
potent subpopulation of Tregs. Despite of that, TNF-TNFR2 axis has been 
demonstrated to diminish the functional suppressor activity of Tregs, 
one of them is through the activation of NF-κB signaling pathway, 
preferentially activated by pro-inflammatory TNFR1 [74]. This raised 
question of TNF-TNFR2 axis on the function of Tregs could be associated 
with the crosstalk of TNFR2 with TNFR1 [75]. Under certain conditions 
including prolonged cell stress in disease condition, TNFR2 can be 
shifted to TNFR1 apoptotic signaling, lead to the opposite of Tregs 
function [75]. Even though the crosstalk relationship between TNFR1 
and TNFR2 has attracted conflicting findings and interpretations, 

Fig. 3. Signaling cascade of TNFR2. Activation of mTNF and TNFR2 triggers TRAF-cIAP complexes that initiate both NF-κB and MAPK signaling pathways. NF-κB 
pathway activates IL-2 proliferation and reciprocal PI3K/Akt that inhibit Th17 differentiation and increased the phosphorylation of STAT5. The release of IL-10 and 
TGF-β along with IL-2 are associated with cell survival and proliferation as well as its function. Since TNFR2 is preferentially expressed on Tregs compared to other 
cells, activities from this signaling are prominently exhibit on this cell. Created with BioRender.com. 
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TNFR2 remains a part of the anti-inflammatory feedback mechanism 
that promotes Tregs activity. This provides us a novel approach to 
regulate immune tolerance, thus prevent aberrant or excessive immune 
responses within the inflammatory environment. Likewise, it could be 
highly beneficial to use TNFR2 expressing Tregs as a therapeutic target 
in the management of COVID-19 patients. 

4. Potential of targeting TNFR2 in COVID-19 

Modulation of the TNF-TNFR2 axis emerged as a promising immu-
notherapeutic approach in several diseases or conditions that involve 
inflammatory reactions, including cancer, allergy, and microbial in-
fections [76–81]. Previously, it is demonstrated that soluble TNFR2, 
along with TNFR1, is increased in COVID-19 patients and directly cor-
relates with mortality for COVID-19 [82]. It is also observed that pa-
tients who recovered had a lower level of TNFR2 at hospital admission 
compared to those who ultimately died. Under inflammatory condition 
such as mycobacteria infection, shedding of soluble TNFR2 would 
occurred and neutralize TNF, in which would inhibit IL-6 production 
[83]. In a clinical trial of umbilical cord mesenchymal stem cell (UC- 
MSC) treatment in COVID-19 patients with ARDS, increased soluble 
TNFR2 is associated as the mechanistic role of reduced TNF and 
improved clinical outcomes of these patients [84]. Interestingly, this 
shedding into soluble TNFR2 is IL-10-dependent and in COVID-19, both 
IL-10 and IL-6 are significantly high [85]. In experimental coronavirus 
retinopathy, the same trend is observed when serum TNF and both of its 
receptors are increased. Furthermore, the upregulation of TNFR2 is 
accompanied by the decrease of nitric oxide [86]. In the same study, it is 
recognized that TNFR2 release from monocyte downregulates the nitric 
oxide. Nitric oxide is established as a mediator in anti-microbial and 
anti-inflammatory activities and its potential in COVID-19 is currently 
under clinical evaluations [87]. Furthermore, an in silico study has 
demonstrated that polymorphisms of TNFR2 gene in COVID-19 were 
determined to affect several miRNAs binding sites that play important 
role in immune regulation and lung damage repair [88]. Thus, it is 
assured enough to propose that the TNFR2 in COVID-19 is dysregulated 
and induces a cascade of devastating effects including increase of 
monocytes which are also increased in COVID-19, and downregulation 
of nitric oxide, further worsen the severity of patients in COVID-19. 
Wang et al. [89] and Zou et al. [90] had thoroughly compiled evi-
dences that demonstrated the effectiveness of targeting Tregs and 
TNFR2, respectively, using pharmacological agents such as dexameth-
asone, hydroxychloroquine, vitamin D3, adalimumab, thalidomide an-
alogs and cyclophosphamide to modulate the number and function of 
Tregs in the treatment of major diseases. Therefore, TNFR2 agonist 
serves as the answer to directly control Tregs that play an important role 
in the pathogenesis of COVID-19 (Fig. 4). 

4.1. TNFR2 agonists 

TNFR2 agonists are used to activate the TNF-TNFR2 signaling 
pathways by mimicking the activity of mTNF, and thus promoting 
cellular cascades that involve in controlling cell death and anti- 
inflammatory responses [91,92]. The first fully human TNFR2 
(hTNFR2) agonist was developed by Fischer et al. [93] to ameliorate 
neurodegenerative processes in vitro. This genetically engineered 
agonist was developed based on a TNFR2-selective mutein in the single- 
chain TNFR2 (scTNFR2), fused to the trimerization domain tenascin C 
(TNC), and thus it is known as TNC–scTNFR2 [93]. The potential ther-
apeutic effect of TNC–scTNFR2 was also studied in autoimmune and 
demyelinating diseases using human peripheral blood mononuclear 
cells (PBMCs) primary astrocytes [94]. It is reported that TNC-scTNFR2 
induced T cell activation through the increased IL-2-dependent IFN-γ 
production, while Tregs count was increased in PBMCs culture, thus 
suggested a potential role in the downregulation of T cell immune re-
sponses [94]. The ciliary neurotrophic factor, which enhances the 

formation of myelin, was also induced, rescuing differentiated neuron 
cells from cell death induced by hydrogen peroxide [94]. Using a 
hTNFR2-transgenic mouse model, pharmacokinetic behavior and po-
tential systemic responses of TNC-scTNFR2 were studied in vivo. TNC- 
scTNFR2 showed a greatly extended plasma half-life with no signs of 
systemic toxicity, indicating that it is well tolerated even at higher doses 
above the maximally tolerated dose in wild-type [94]. 

Later, Dong et al. [91] have developed a similar hTNFR2 agonist 
based on the Eps15-homology domain-containing protein 2 (known as 
EHD2-scTNFR2) to study the protective role of TNFR2 in neuro-
degeneration. EHD2-scTNFR2 was utilized to discover the involvement 
of TNFR2 signaling in controlling autoimmune and inflammatory dis-
eases in vivo and in vitro [92]. Administration of EHD2-scTNFR2 to mice 
with collagen-induced arthritis resulted in an increased expansion of 
their Tregs, inducing anti-inflammatory responses that relieve the 
arthritis [92]. Furthermore, an in vitro study on mouse T cells with 
EHD2-scTNFR2 and/or IL-2 showed that Tregs were most efficiently 
expanded in the presence of EHD2 -scTNFR2 [92]. In another study, 
treatment of experimental autoimmune encephalomyelitis (EAE), an 
animal model of multiple sclerosis (MS), with EHD2-scTNFR2 is 
demonstrated to alleviate the sensory and motor deficits [95]. This in-
dicates that EHD2-scTNFR2 primarily promotes suppression of both 
demyelination and autoimmune reactions as TNFR2-dependent re-
sponses [95]. Fig. 5 illustrates the structural interaction of both EHD2- 
scTNFR2 and TNC-scTNFR2 to TNFR2. 

Although TNFR2 agonists emerged as promising therapeutics to treat 
a variety of diseases, limited studies have used them so far. After more 
than 7 years of experiments, the production of TNFR2 agonistic antibody 
was successfully achieved by Faustmans' group, using BALB/c mice 
immunized with fragments of hTNFR2 protein [96]. Their in vitro studies 
showed that this type of antibody has the potential to increase the 
expression of TNFR2, thereby expanding Tregs and suppressing Teffs 
[96,97]. Thus, it could be beneficial to target this axis in order to 
modulate various inflammatory diseases. However, several challenges in 
the development process arise in such immune agonist therapies [98]. 
There are no approved agonistic antibodies as yet for clinical use, or 
even have entered phase III trials. This could be due to the absence of 
specific biophysical characters that can reproducibly predict that an 
antibody has agonist properties. While the full functional characteriza-
tion is the only confident process to confirm that, this means a longer 
time of investigation is needed. 

Fig. 4. Targeting TNFR2 in COVID-19. Agonism or antagonism of TNFR2 
would either promote or reduce Tregs, respectively, and could be utilized to 
tackle the disparities of Tregs regulation in COVID-19. Created with BioR 
ender.com. 

S. Ahmad et al.                                                                                                                                                                                                                                  

http://BioRender.com
http://BioRender.com


Life Sciences 286 (2021) 120063

6

5. Conclusion 

Tregs is established as the main suppressor cell that helps to maintain 
immune homeostasis in our body, while in COVID-19, Tregs is severely 
dysregulated and contributes to the pathogenesis of this emerging in-
fectious disease. Expression of TNFR2 on Tregs that identifies as the 
most suppressive and proliferative Tregs subset could be an attractive 
target to manipulate Tregs in COVID-19, specifically using TNFR2 
agonist. Although the development of such TNFR2 agonists is still new 
and lacking, the available data by several research groups provide 
promising remarks in inflammatory diseases, thus such targeting in 
COVID-19 should be highly foresee. 
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