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Abstract: Sustainable concrete is gaining in popularity as a result of research into waste materials,
such as recycled aggregate (RA). This strategy not only protects the environment, but also meets the
demand for concrete materials. Using advanced artificial intelligence (AI) approaches, this study
anticipates the split tensile strength (STS) of concrete samples incorporating RA. Three machine-
learning techniques, artificial neural network (ANN), decision tree (DT), and random forest (RF),
were examined for the specified database. The results suggest that the RF model shows high precision
compared with the DT and ANN models at predicting the STS of RA-based concrete. The high
value of the coefficient of determination and the low error values of the mean absolute error (MAE),
mean square error (MSE), and root mean square error (RMSE) provided significant evidence for the
accuracy and precision of the RF model. Furthermore, statistical tests and the k-fold cross-validation
technique were used to validate the models. The importance of the input parameters and their
contribution levels was also investigated using sensitivity analysis and SHAP analysis.

Keywords: sustainable concrete; recycled aggregate; machine learning; decision tree; artificial neural
network; random forest

1. Introduction

Due to the building industry’s increasing demand, the production and application of
ecologically friendly concrete manufactured from waste materials have increased quickly over
the past few decades [1–3]. Concrete production currently averages around 1 t per person per
year [4]. However, the considerable amount of concrete produced meets building industry
requirements and has a detrimental influence on environmental circumstances [5–8]. The
manufacturing of concrete and aggregates results in the generation of carbon dioxide
(CO2), dust, and other hazardous gases, which cause environmental damage [9–14]. Re-
cently, the application of RA in concrete has acquired prominence in research, since it
produces environmentally friendly concrete that also performs well in terms of mechanical
properties [15–18]. Globally, the need for this type of concrete is increasing as a result
of uncontrollable circumstances, such as earthquakes, resulting in major environmental
challenges [19–24]. RA-based concrete is one of the potential options for lowering the
rate of natural resource consumption [19,25–27]. RA takes various forms, such as tiles,
different types of concrete marbles, asphalt, and brick aggregates. RA concrete refers
to aggregates that are commonly refined by the parent or recycled crushing of concrete,
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such as waste-crushed concrete [28]. An illustrative diagram of the recycling operation is
depicted in Figure 1. The concept of recycling RA from concrete containing waste materials
has been used in Europe since World War II. Currently, RA concrete is employed as a
sub-base material for unbound pavements. It is also employed in structural concrete [29,30].
Moreover, the concrete’s fine fraction from construction and demolishing (C&D) waste
can be utilized as a partial replacement of cement [31]. This results in the reduction in
cement demand, and the problems raised from the production and use of cement are
controlled. The positive effects of recycling C&D waste for use in construction materials are
self-evident, as it results in environmentally beneficial construction. While the application
of this type of waste in concrete is limited because of its limited strength, low Young’s
modulus, and higher deformation, the desired strength can be attained by applying an
appropriate mix design [32].
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The application of the RA in concrete can considerably enhance the characteristics
of the material if additional suitable components are used. Recent years have seen a
surge in the popularity of new approaches to AI for predicting the required outcomes
in the area of material testing [33]. For the investigation of the strength (compressive
or tensile) of concrete, since it typically takes a number of days to reach the necessary
strength, without wasting time or money, AI approaches may be employed to anticipate
the strength properties of concrete. Typically, AI algorithms, such as neuro-fuzzy, decision
trees (DT), neural networks, bagging regressors, boosting regressors, AdaBoost, support
vector machines (SVM), and gradient boosting are employed to anticipate the strength of
concrete. De-Cheng et al. [34] anticipated the CS of concrete using an adaptive boosting
technique using 1030 data points, achieving a 98 percent accuracy rate compared to the real
results. Dong et al. [35] forecasted the performance of concrete using an ANN model and
Monte Carlo simulation. Muhammad et al. [36]’s research was based on the anticipation
of concrete strength with bagasse ash; the projected accuracy was over 80%, showing
superior performance. Aliakbar et al. [37] used GEP to develop a novel formulation for
the properties of RA concrete. They used data from the literature to find the CS, flexural
strength, STS, and elastic modulus. Taihao et al. [38]’s study described the application of
various ML techniques for the estimation of the Young’s modulus of concrete containing
RA. Random forest (RF) and SVM were used to predict the outcome, which demonstrates
the accuracy of the prediction.

In this research, the DT, ANN, and random forest (RF) techniques from AI were
used to predict concrete STS containing RA. The employed models in the study were
applied and compared to determine whether the model performed better in terms of
result prediction. The coefficient of determination (R2) value was used to determine the
precision level between the real and anticipated outcome, with a larger value indicating
the model’s superior performance. Statistical checks for examining various errors (RMSE,
MAE, and MSE) in the data were also employed to verify each model’s actual performance
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in predicting the STS of the RA-based concrete. In addition, K-fold cross-validation (CV)
was used in the study to test the model’s performance. Furthermore, sensitivity and SHAP
analyses were performed to determine the percentage contribution of all the variables and
the interaction of the raw materials utilized to predict the STS for the RA-based concrete.
The aim of the study was to investigate the individual and ensemble type of ML algorithms
using Anaconda Navigator software for predicting the strength of selected concrete. The
employed models were run on the basis of Python coding to forecast the splitting tensile
strength of recycled aggregate-based (RAC) concrete. This study is also novel in that
it investigated this important property using both individual (DT, ANN) and ensemble
(RF) ML techniques. In the ensemble ML approach (RF), the optimization was performed
by according the 20-sub models the strongest and most precise outcome. Moreover, a
comparative study was also conducted between the employed algorithms for further use
in predicting the STS of concrete. This study would also be useful for the area of material
testing, which would not only minimize the physical effort in the laboratory but also reduce
the cost and time of the project.

2. Methods and Database Description

The models’ performance was determined by their variables and the database required
to run them. The data utilized to run the models for predicting the STS of concrete in this
study were obtained from prior research [39–57]. The data were arranged in such a way that
the model could realize both input and output parameters. A number of parameters were
kept in the category of input, such as water (WA), cement (CE), fine aggregate (FA), natural
coarse aggregate (NACA), recycled coarse aggregate (RECA), superplasticizers (SPS), the
maximum size of RA (SRA), the density of RA (DRA), and water absorption of RA (WARA),
with one output parameter (STS) used to run the models. However, the Python coding
was configured in such a way that it automatically split the data into 60% for training, 20%
for testing, and 20% for validation of the model. Figure 2 is the reflection of the variables’
frequency dispersal. Table 1 displays the expressive statistical analysis of the parameters,
as well as the numerous mathematical descriptions that are included. Additionally, the
complete adopted methodology of this study is offered in the graphical representation, as
can be seen in Figure 3, which offers information on the study’s sequential methodology.

Table 1. Expressive inspection of the input variables.

Parameters WA CE FA NACA RECA SPS SRA DRA WARA

Mean values 180.38 364.42 688.47 382.02 656.69 1.11 18.29 2081.07 4.56
Standard error 1.41 5.49 17.68 30.72 29.34 0.15 0.29 62.64 0.22
Median value 180.00 372.00 715.00 395.50 577.50 0.00 20.00 2360.00 5.30
Mode value 180.00 380.00 0.00 0.00 1135.40 0.00 20.00 2320.00 5.30

Standard deviation 18.17 70.73 227.85 395.77 377.99 1.88 3.80 807.11 2.87
Sample variance 330.11 5003.37 51,917.40 156,630.68 142,876.62 3.55 14.41 651,425.17 8.23

Range 88.00 442.00 1010.00 1168.00 1517.30 7.80 15.00 2661.00 10.90
Lower values 137.00 158.00 0.00 0.00 57.00 0.00 10.00 0.00 0.00
High values 225.00 600.00 1010.00 1168.00 1574.30 7.80 25.00 2661.00 10.90

Total sum 29,942.99 60,493.00 114,285.63 63,414.57 109,011.35 183.49 3036.00 345,457.00 757.10
Count 166.00 166.00 166.00 166.00 166.00 166.00 166.00 166.00 166.00
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2.1. Random Forest (RF)

The RF approach is immensely useful as a general-purpose classification and retro-
gration tool. The strategy is used to handle two distinct groups of problems: developing
a prediction rule in a supervised learning problem and evaluating and ranking variables
based on their predictive power. Moreover, it is flexible for larger-scale issues and adaptable
to a range of ad hoc learning tasks, and it returns calculations of different levels of signifi-
cance. The strategy, which aggregates the predictions of numerous randomized decision
trees, outperforms other techniques when the number of variables exceeds the number of
observations. There is a wide variety of RF strategies, which are defined by (1) the method
employed to build each individual tree, (2) the process adopted to generate the altered
data sets employed to assemble each individual tree, and (3) the process incorporated to
aggregate the projections of each individual tree to create a unique consensus forecast.
Additionally, it is adaptive to challenges on a big scale, capable of performing a variety of
ad hoc learning tasks, and delivers measures of varying relevance. The execution method
of the RF approach is shown in Figure 4.
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Figure 4. Execution process of the RF model for the required outcome.

2.2. Neural Network (NN)

NN alludes to ensuring the type of system that is stimulated by the neural networks in
biology that strengthen the brain. ANN is built on a platform of connected units or nodes,
referred to as artificial neurons. Neurons’ function and structure are exact replicas of the
brain. Prior to processing, these neurons receive a signal and can communicate with the
neuron to which they are attached. The initial value denotes a “signal” at a joint, while
each neuron’s outputs are expressed by a variety of non-linear parameters of the total
sum of its inputs. As with neurons, edges often have a weight that changes as the learner
develops. The weight is modified in accordance with the link’s signal strength. Suppose a
neuron receives an aggregate message because of the possibility of the entry point, such as a
previous frequency response. Neurons are typically structured in the form of layers. Every
layer’s outputs serve a distinct purpose. These stages facilitate the transfer of signals from
the first (input layer) to the last (output layer). The artificial neural network is a scalable
system that employs a wholly distinct methodology from conventional AI and instruction
processing technologies. It helps to reduce the limitations of previous logic-based AI in
dealing with intuition and large datasets and offers the benefits of adaptive, self-organizing,
and real-time learning. Figure 5 illustrates the architecture of an NN.
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2.3. Decision Tree (DT)

In comparison to other categorization approaches, decision trees can be generated
very quickly. These trees may simply be translated to SQL queries that can be used to access
databases effectively. When compared to other classification approaches, decision-tree
classifiers achieve comparable, if not superior, accuracy. The decision-tree algorithm can be
applied serially or in parallel, depending on the volume of data, the amount of memory
available on the computer resource, and the algorithm’s adaptability. DT classifiers have
not been as widely adopted as analytical or neural/connectionist approaches in the remote
sensing sector. Among the obvious benefits of decision trees are their capacity to maintain
data measured on a variety of scales, their lack of suppositions about the summary statistics
of the data in each class, and their resilience, specifically, and capacity to deal with non-
linear interactions between characteristics and classes. The primary advantage is their
capacity to select the most skewed aspect and improve its comprehensibility. Additionally,
they are easily classifiable and interpretable. Furthermore, they are applicable to both
continuous and discrete data sets. Figure 6 depicts a schematic illustration of the DT model
in more detail.
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3. Result and Discussion
3.1. ANN Model Outcome

Figure 7 illustrates the numerical calculation of the actual and potential data for the
STS of the concrete material by employing the ANN model. The NN technique shows
reasonably accurate outcomes, with less variation among the results collected from the
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laboratory work and the projected outputs from the model. With an R2 score of 0.86, the
selected model precision is reasonably acceptable in predicting the required result. Figure 8
shows the scattering of the results obtained from the experimental approach (targeted),
predictions, and error results for the ANN model. For the data set, the high, low, and
average output were noted as 1.10, 0.080, and 0.320 MPa, respectively. Although 2.94% of
these scores were between 0.10 and 0.30 MPa, 52.95% of the erroneous values fell between
0.10 and 0.30 MPa, and 40.11% outpaced 0.31 MPa.
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3.2. DT Model Outcome

The forecasted results captured from the DT model for the strength of the concrete and
the statistical assessment of the experimental and projected values are depicted in Figure 9.
The DT approach produces good precision, with only a minor variation between the
predicted and examined values. According to R2, the model is able to precisely determine
the outcomes of a given experiment. The experiment aimed at expected results and the
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resulting data on the difference between them for the model can be seen in Figure 10. It was
found that the test set’s highest and mean data were 0.8 and 0.30 MPa, respectively. While
8.82 percent of these values were up to 0.1 MPa, 28.4% were between 0.10 and 0.30 MPa,
and 61.76% outpaced 0.30 MPa.
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Figure 9. DT model results comparison between the results from laboratory work and predictions.
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3.3. Random-Forest Model Outcome

The results from the RF model are shown in Figures 11 and 12. As shown in Figure 11,
the RF model surpasses both the DT and the ANN model in terms of outcome accuracy,
with an R2 value of 0.97. Figure 12 depicts the dispersal of the experimental results, the
anticipated results, and the difference between them for the RF model. The maximum,
minimum, and average values of the testing set were 0.30, 0, and 0.14 MPa, respectively.
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However, 83.33% of these results were lower than 0.1 MPa, and 70.58% were between 0.1
and 0.3 MPa. When compared to the DT and ANN models, the RF model’s strong reliability
is further confirmed by the low values of the errors, which were significantly lower than
those of the other models.
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Figure 11. RF model result comparison between the results from laboratory work and predictions.
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4. Cross-Validation (CV) of K-Fold

During the operation of the model, the effectiveness of the model was decided using
the k-fold cross-validation (CV) approach. The k-fold CV technique is normally introduced
for model validation; the procedure adopts the data selection and is spread randomly to
divide the data into the ten groups. Nine sets must always be assigned for training, and
one group should be assigned for validation purposes. In addition, the process must be
reproduced 10 times in order to reach an average output result. CV’s lengthy process
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ensures the models’ high level of accuracy. In the meantime, statistical checks such as
RMSE, MSE, and MAE were performed, as listed in Table 2. The evaluation was undertaken
using Equations (1)–(3)):

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(1)

MAE =
∑n

i=1|exi − moi|
n

(2)

R =
∑n

i=1(exi − exi)(moi −moi)√
∑n

i=1(exi − exi)
2 ∑n

i=1(moi −moi)
2

(3)

where exi, moi, exi, moi, and n are the practical, anticipated, mean practical, and mean
anticipated values and sample size, respectively.

Table 2. Results of the CV of k-fold for the employed models.

DT RF ANN
K-Fold MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 0.91 0.95 0.91 0.49 0.67 0.37 0.92 1.15 0.08
2 0.80 0.88 0.75 0.71 0.88 0.65 0.83 1.09 0.62
3 0.51 0.65 0.26 0.63 0.59 0.96 0.48 0.73 0.77
4 0.79 1.20 0.39 0.74 1.04 0.98 0.91 1.19 0.93
5 0.19 0.15 0.76 0.63 0.34 0.86 0.14 0.17 0.94
6 0.42 0.49 0.95 1.02 0.38 0.74 0.40 0.55 0.05
7 1.10 1.14 0.97 0.83 0.73 0.72 1.19 1.20 0.24
8 0.69 1.07 0.37 0.63 0.81 0.26 0.78 1.11 0.57
9 0.83 0.79 0.17 0.52 0.66 0.55 0.87 0.87 0.88

10 0.18 0.47 0.55 0.98 0.99 0.77 0.28 0.50 0.90

In order to compare the CV of each selected model with their outcomes, as shown in
Table 2, the RMSE, R2, and MAE were evaluated. As demonstrated in Table 1, an increased
error value in the RF model results in a higher coefficient of determination (R2) value,
demonstrating that the RF technique is more precise than both the DT and ANN models.
Table 3 shows the details of the analysis used in the CV procedure. Statistical checks were
also applied to the DT, ANN, and RF approaches, as shown in Table 3. The lesser error
value suggests a stronger correlation coefficient (R2). Several coefficients, including the
RMSE, R2, MAE, and MSE, were explored for use in the evaluation of the k-fold CV and
the distributions of these correlations for the DT, ANN, and RF models. The RF algorithm
with the lowest error value and the highest R2 value demonstrated significant precision in
outcome prediction. The greatest, minimum, and average R2 values for the DT algorithm
were 0.97, 0.17, and 0.61, respectively. The RF model’s maximum, minimum, and average
R2 values were 0.98, 0.26, and 0.69, respectively, while the equivalent values for the ANN
model were 0.94, 0.05, and 0.60, respectively.

Table 3. Results of the employed checks.

ML Approaches RMSE (MPa) MAE (MPa) MSE (MPa)

DT 0.365 0.308 0.133
RF 0.166 0.143 0.028

ANN 0.375 0.315 0.141

5. SHAP Analysis for the Effect of Raw Materials

Typically, the best description of a basic model, such as linear regression, is the model
itself. However, it is challenging to describe how complicated models, such as machine-
learning models, function, and how input values affect key parameters. By using the
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Shapley value, the SHAP, which is focused on game theory and local explanations, can
explain the relationship between inputs and targets. The random forest method produced
the most accurate prediction model for the STS of the concrete, including recycled aggregate.
Consequently, the model interpretation for the STS of the RCA concrete was developed
using SHAP analysis.

Figure 13 depicts the feature interactions for the STS of the RCA concrete. Figure 13a
illustrates the cement feature interaction. As shown in Figure 13a, the cement interacted
positively with the STS of the concrete. The plot shows that increasing the cement content
resulted in a higher STS of the RCA concrete. Figure 13b depicts the negative interaction of
the water with the STS of the concrete. It is a clear fact that an increase in water results in
a decrease in concrete’s strength. Similarly, Figure 13c shows the interaction of the sand
with the STS of the selected concrete. It was noted from the distribution that the increase
in the amount of sand showed a positive direct relation to the concrete’s strength in the
range of 600 kg/m3 to 100 kg/m3. Figure 13d indicates the interaction of the natural coarse
aggregate with the STS of the concrete, showing the linear trend toward and positive direct
relation with the strength of the concrete. However, Figure 13e,f shows the interaction
of the recycled coarse aggregate and the maximum size of the recycled coarse aggregate
with the strength of concrete. Both of the plots demonstrate the negative impact on the
output. This was because of the high porosity of the recycled aggregate, which affected
the strength of concrete. Moreover, as the density of the RCA increased, it showed a direct
positive relation to the STS of the concrete, as can be seen in Figure 13g. This was due to
the fact that, as the density increased, the material became less porous, which reduced
the absorption of the water, leading to higher strength. However, Figure 13h also shows
both the positive and the negative interactions. On the plot, water absorption of up to 4%
indicates the increment towards the STS of the concrete, while beyond 4%, a decrease in
the trend towards the STS of the concrete can be seen. This was because if the recycled
aggregate absorbed more water from the mix, the amount of water required for cement
hydration decreased, which affected the strength of the concrete material.
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6. Sensitivity Analysis

In this strategy, Figure 14 shows how different factors affect the prediction of the STS
of RA concrete. According to the report, the cement was the highest contributor to the
predictions, with 32.5 percent, followed by NCA, with 23.6 percent, and RA, with 17.1
percent. The prediction of the STS of the RA-based concrete was least affected by the fine
aggregate, water, superplasticizers, coarse aggregate size, RCA density, and RCA water
absorption.
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7. Discussion

This study demonstrates the utility of AI approaches for estimating the STS of recycled
aggregate concrete (RCA). Due to the low tensile strength and brittle character of concrete
material, it is typically not assumed that concrete can sustain direct tension. The STS of
concrete is one of the most fundamental and significant qualities that significantly influence
the extent and size of structural cracks. The split-cylinder test is an indirect method of
determining the tensile strength of concrete. The STS was selected for investigation in this
study because of its importance and the relative lack of research on it, as opposed to the
compressive and flexural strength of concrete.

The incorporation of RA into concrete is crucial for developing sustainable concrete.
This strategy contributes not only to the minimization of waste on the planet but also
to a robust economy, the protection of natural resources, and the decrease in energy
consumption. Figure 15 depicts a graphical depiction of several sustainability-related
criteria.
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RF is utilized in supervised learning to eliminate both bias and variance. The theory
is based on the notion that individuals develop sequentially. Except for the initial learner,
all succeeding learners are developed from prior learners. In a sense, learners become
powerful. For its part, replacement sampling, RF is an approach used to randomly select
data from a set, with the added feature that the same data point might be taken more than
once. Using a variety of data samples, these weak models were trained separately and
based on the task at hand (regression or classification, for example); the average or majority
of the projections result in a more accurate assessment. This was performed in order to
establish which algorithm performed better in terms of forecasting performance than all
others. The RF model’s output was more valuable, with an R2 value of 0.97 compared to
0.85 for the DT model and 0.86 for the ANN model, indicating a higher level of precision. In
comparison, Yuan et al. [58] also predicted the compressive and flexural strength of recycled
aggregate concrete. Their results were also within the acceptable range and confirmed that
these techniques can be successfully employed to investigate the mechanical properties
of concrete. In addition, we analyzed the performance of the DT, ANN, and RF models
by a statistical approach and the CV method, which we found to be effective. When the
error levels are low, the model’s performance is satisfactory. However, evaluating and
recommending the optimal machine-learning regression model for calculating probability
over a broad range of topics is challenging due to the fact that the model’s performance is
highly dependent on its input parameters and data points. Fortunately, there is a solution.
Ensemble machine-learning methods, on the other hand, frequently take advantage of
weak learners by creating sub-models that can be trained on data and optimized for the
maximum R2 value. Figure 16 depicts the distribution of the R2 values for RF sub-models
based on their frequency. Furthermore, according to the research, RF models surpass other
machine-learning techniques in terms of accuracy and precision. In addition, we performed
a sensitivity analysis to examine the impact of each input parameter on the expected STS
(see Additional Resources). The input parameter values, and the number of data points
used in the model can both have an impact on the model’s performance and accuracy.
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8. Conclusions

This study aimed to illustrate how the soft-computing algorithms from machine
learning can be utilized to predict the strength (STS) of recycled aggregate concrete. The
DT, ANN, and RF methods were applied to anticipate the STS of the RA-based concrete.
The following inferences were drawn:

• The RF model outpaced both the DT and the ANN techniques in terms of prediction
accuracy, as demonstrated by a higher coefficient of determination (R2) and lower
error values. The DT, ANN, and RF models were found to have R2 values of 0.85, 0.86,
and 0.97, respectively.

• In addition, the statistical analysis and the k-fold cross-validation method demon-
strated that all of the applied approaches (GEP, ANN, and RF) functioned adequately.
In addition, these tests indicated that the RF model performed better than the DT and
ANN models.

• The analysis of the sensitivity showed that the most influential component (cement)
effectively (32.50 percent) anticipated the required output, as opposed to the other
variables used as input parameters.

• AI approaches can be successfully utilized to investigate the properties of materials
based on the given variables in a limited time period.

• AI approaches enable more accurate predictions of material properties’ attributes
without requiring sample production or experimental testing [59].

Moreover, it is further suggested that the data points can be increased to check the
performance of selected algorithms. In addition, the input parameters, such as temperature,
humidity, and size of the material, can also be increased to investigate the precision levels
of the models.
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