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Radiotherapy has been used for the treatment of cancer for over a century. Throughout

this period, the therapeutic benefit of radiotherapy has continuously progressed due to

technical developments and increased insight in the biological mechanisms underlying

the cellular responses to irradiation. In order to further improve radiotherapy efficacy,

there is a mounting interest in combining radiotherapy with other forms of therapy

such as anti-angiogenic therapy or immunotherapy. These strategies provide different

opportunities and challenges, especially with regard to dose scheduling and timing.

Addressing these issues requires insight in the interaction between the different treatment

modalities. In the current review, we describe the basic principles of the effects of

radiotherapy on tumor vascularization and tumor immunity and vice versa. We discuss

themain strategies to combine these treatment modalities and the hurdles that have to be

overcome in order to maximize therapeutic effectivity. Finally, we evaluate the outstanding

questions and present future prospects of a therapeutic triad for cancer.

Keywords: radiation, immune response, angiogenesis, therapy, combination treatment, clinical trials, tumor

microenvironment, cancer

INTRODUCTION

Radiotherapy has been an integral part of cancer treatment for over a century. More than half of
all cancer patients undergo radiotherapy at some stage during treatment, either with curative
intent, or in a palliative setting once the possibility for cure has been lost (1, 2). Radiotherapy was
introduced shortly after the discovery of X-rays and gamma-rays in the late nineteenth century.
Patients with different types of cancer were treated with radiotherapy, resulting in a paradigm shift
in cancer therapy (3, 4). Since then, the clinical benefit of radiotherapy continuously improved,
both by technical advancements and by increased insight in the biology behind the radiation
response. For example, optimized treatment planning and more precise delivery techniques have
made it possible to safely increase the tumor-targeted radiation dose while sparing the surrounding
normal tissues. In addition, research into the cellular effects of ionizing radiation has provided
detailed understanding of e.g., the cell cycle, apoptosis and DNA repair. This has offered insight
in optimal dose-scheduling of radiotherapy (3). For example, the advantages of delivering a
high dose of irradiation in multiple smaller fractions was already recognized in the 1930’s (5).
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Further research has resulted in the definition of “the five Rs of
radiobiology” which represent five different cellular aspects that
affect the efficacy of fractionated irradiation and that later have
been exploited to develop combination therapies (6, 7) (Box 1).

Initially, radiobiology research was mainly focused on the
cancer cells without appreciating the role of the tumor
microenvironment. However, over the past decades it has become
clear that components within the tumor microenvironment
such as the tumor vascular bed and tumor infiltrating immune
cells have a pivotal impact on radiotherapy efficacy (5). For
instance, radiotherapy can exert opposing effects on tumor
vascularization and perfusion depending on dose-scheduling
(8, 9). In addition, the abscopal effect, i.e. the observation that
local tumor irradiation can also lead to regression of distant
tumor masses, has been linked to the immune system (10).
Consequently, both anti-angiogenic therapy and immunotherapy
are evaluated in combination with radiotherapy. In the current
review, we describe the basic concepts of the interactions between
radiotherapy and the tumor vasculature as well as between
radiotherapy and the tumor immune microenvironment. In
addition, we discuss how both anti-angiogenic therapy and
immunotherapy can influence the efficacy of radiotherapy and
how a therapeutic triad might emerge as a powerful anti-cancer
treatment modality.

RADIOTHERAPY AND THE TUMOR
VASCULATURE

The relation between radiotherapy and tumor vascularization
has become apparent when it became clear that the effects of
ionizing radiation largely depend on the generation of reactive
oxygen species (ROS) (11). These highly reactive oxygen radicals
can induce irreparable DNA damage that eventually leads to
cancer cell death. As the generation of ROS depends on oxygen
availability, well-vascularized and perfused tumor tissues are
more susceptible to ionizing radiation. Thus, radiation damage
is positively correlated with oxygen availability and while lack
of oxygen, e.g., in hypoxic tumors, hampers treatment efficiency
(11, 12). Indeed, a clinical study in patients with head and
neck squamous cell carcinoma (HNSCC) comparing tumors
with a median oxygen tension below and above 10 mmHg,
reported disease free survival rates after radiotherapy of 22
vs. 78%, respectively (13). Furthermore, the uptake of hypoxia
PET tracers has been reported to be of prognostic value for
response evaluation (14). In line with this, it has been shown that
tumor perfusion is a predictive factor for radiotherapy efficacy.
Measuring blood flow and blood volume using either perfusion
CT or the apparent diffusion coefficient with diffusion weighted
MRI, has been found to predict the response to radiotherapy
in patients with HNSCC (15, 16). Similar results were reported
in patients with rectal cancer or cervical cancer (17, 18).
These findings indicate that monitoring tumor perfusion and/or
oxygenation prior to radiotherapy can be of value for setting up
a proper treatment plan. This requires robust and reproducible
imaging protocols as well as validated imaging biomarkers (14,
19).Modern PET/CT radiotherapy simulators already offer FDG-
PET and dynamic contrast-enhanced CT imaging for a combined

volumetric assessment of tumor metabolism and perfusion (14).
With the current advances of MRI-guided adaptive radiotherapy,
real time evaluation of tumor perfusion for predicting and
monitoring treatment response might also become available. To
what extent the clinical implementation of such techniques is
feasible awaits further studies.

Apart from predicting treatment outcome, measuring tumor
perfusion and oxygenation might also be of value to monitor
the response during radiotherapy. Especially since perfusion not
only affects radiotherapy, but radiotherapy also affects perfusion.
The latter is related to the effects of radiotherapy on the
vasculature, which are complex and appear to be dependent on
the dose and scheduling of radiotherapy. Based on a literature
review, Park et al. concluded that high dose irradiation, i.e.,
a dose above 10Gy, induces acute vascular damage leading
to deterioration of the tumor microenvironment and indirect
cancer cell death (9). This was recently confirmed in a study
showing that irradiation with a dose of 15–30Gy resulted in dose-
dependent secondary cell death. This was not observed after low-
dose radiotherapy and most likely caused by vascular damage
(20). Possibly, the vascular damage was caused by endothelial
cell apoptosis, which can be induced by the upregulation of acid
sphingomyelinase production in endothelial cells after high dose
irradiation (21, 22).

Interestingly, fractionated low dose radiotherapy, i.e., daily
fractions of up to 2Gy, appears to exert a positive effect
on the tumor vasculature and tissue perfusion (9, 23, 24) in
multiple tumor models (25–27) as well as in patients (28–
33). For example, an increased tumor blood volume during
treatment with chemoradiation (27 × 1.8Gy) was observed in
cervical cancer patients (34). Using dynamic contrast-enhanced
MRI and contrast-enhanced ultrasonography, we recently also
observed increased tumor perfusion following two weeks of
fractionated irradiation in a xenograft mouse tumor model. This
was accompanied by reduced intratumoral hypoxia and increased
tumor viability (35). Of note, increased tumor oxygenation
during radiotherapy has been linked to different mechanisms,
such as decreased oxygen consumption and vasorelaxation via
increased inflammation (36). In addition, fractionated low dose
irradiation can promote the growth of new blood vessels which
might also contribute to enhanced perfusion, as discussed in the
next section (23, 35, 37).

Collectively, there is clear evidence of a reciprocal relation
between radiotherapy and the tumor vasculature in which
an adequate tumor vascularization enhances radiotherapy
efficacy, while irradiation induces dose-dependent effects on the
vasculature (Summarized in Figure 1A). Exploiting this relation
for combination therapies with angioregulatory strategies
appears both feasible and challenging, especially with regard to
dose scheduling.

COMBINING RADIOTHERAPY AND
VASCULAR TARGETED THERAPY

As described previously, proper tumor oxygenation is an
important predictor of radiotherapy efficacy. Therefore,
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BOX 1 | The 5 Rs of radiotherapy.

The 5 Rs of radiotherapy represent a conceptual framework that form the rationale behind fractionation of radiotherapy. The 5 Rs are: Repair, Redistribution,

Reoxygenation, Repopulation, and Radiosensitivity. Repair is the one of the primary reasons to fractionate radiotherapy. By applying fractionated radiotherapy,

normal cells have the opportunity to repair sublethal DNA damage between each fraction while cancer cells are unable to sufficiently repair DNA damage due to

defective or suppressed repair pathways. Redistribution relates to the ability of cells to progress in the cell cycle. Cells in S-phase are typically radioresistant, while

cells in late G2 and M phase are relatively sensitive. Fractionated application of irradiation increases the chance that cells that were in a radioresistant phase at one

fraction have ’redistributed’ to a radiosensitive phase at the following fraction. Reoxygenation is related to the dynamic and changing hypoxic status of tumor tissue.

Fractionated radiotherapy increases the chance that all areas of the tumor tissue receive a dose of irradiation when oxygenation is improved. Repopulation refers to

the increase in cell division that is seen in normal and cancer cells after radiation. Cells that proliferate between fractions increases the number of cells that have to be

killed by radiotherapy. Consequently, repopulation is affected by the time between fractions. Radiosensitivity refers to the intrinsic radiosensitivity or radioresistance

of different cell types. It influences the total dose that is required for a given level of damage.

modification of tumor hypoxia and perfusion in order to
enhance the clinical benefit of radiotherapy has been explored
using different strategies. A straightforward approach to
counteract a hypoxic tumor environment involves the use of
hyperbaric oxygen or of hypoxic sensitizers like nitroimidazoles.
Both strategies can result in a treatment benefit, as shown in a
meta-analysis with HNSCC patients (38). Unfortunately, data
on other tumor types is scarce (11). Today, neither hyperbaric
oxygen nor nitroimidazoles have been implemented in routine
clinical practice due to the small benefit in relation to either
practical difficulties or toxicity. Accelerated radiotherapy
with carbogen and nicotinamide (ARCON) is a more recent
development, in which radiotherapy is combined with inhalation
of a hyperoxic gas and a vasoactive agent, thereby decreasing
both perfusion-limited hypoxia as well as diffusion-limited
hypoxia in the lungs (39). Although promising, results of clinical
trials are not conclusive with respect to local tumor control
(40, 41). Vasodilating agents, such as nitric oxide, calcium
antagonists and hydralazine, have also been studied as an
approach to improve tumor perfusion in order to enhance
radiotherapy efficacy, as reviewed by Sonveaux (42). However,
both variable effects on radiosensitivity as well as the mutual
systemic effects preclude their clinical use. To date, the most
effective method to improve tumor perfusion in a clinical setting
appears to be hyperthermia. While hyperthermia can promote
cell death via induction of apoptosis or mitotic catastrophy, it
has also been shown to improve the efficacy of radiotherapy by
inhibition of DNA damage repair pathways and enhancement of
tissue perfusion and oxygenation (43–45).

A somewhat unexpected method that was discovered to
improve tumor perfusion and oxygenation is anti-angiogenic
therapy. Anti-angiogenic therapy refers to treatment strategies
that aim to block or hamper angiogenesis, i.e., the growth of
new blood vessels of pre-existing capillaries (Box 2). It was
proposed as an effective anti-cancer therapy in the early 1970’s
by prof. J. Folkman after his discovery that the growth of
most solid tumors is dependent on angiogenesis (47). Initially,
it was anticipated that anti-angiogenic drugs would hamper
the effect of radiotherapy due to decreased perfusion and
oxygenation. However, multiple preclinical studies observed an
enhanced effect of the combinatorial approach (48–50). These
findings have been confirmed in multiple conducted clinical
trials investigating the combinatorial approach. For example, in

a phase I study in patients with locally advanced pancreatic
cancer, the vascular endothelial growth factor (VEGF) blocker
bevacizumab displayed acceptable toxicity in combination with
radiotherapy and capecitabine. Interestingly, only one of the
46 patients had progressive disease and median survival from
the start of the protocol was 11.6 months (51). Promising
results were also reported when bevacizumab was combined with
capecitabine, oxaliplatin and radiotherapy in patients with rectal
cancer (52). Thus far, the results from larger and more recent
clinical trials are less conclusive, reporting variable efficacy as
well as increasing toxicity [extensively reviewed by us previously
(53, 54)].

While the clinical observations warrant further investigation
regarding therapy optimization, the potential positive interaction
between radiotherapy and anti-angiogenic therapy has been
attributed to several distinct mechanisms, such as vessel
normalization and the vascular rebound effect. The concept
of vessel normalization was coined by prof. R. Jain to explain
the paradoxical observation that drugs aimed at vessel pruning
could in fact enhance the effect of therapies that rely on a
functional vasculature, including radiotherapy (55). Based on the
premise that the tumor vasculature is abnormally structured and
dysfunctional due to a continuous imbalance between pro- and
anti-angiogenic signaling, it was suggested that anti-angiogenic
therapy restores the angiogenic balance thereby improving
vessel function and tissue perfusion (55). Normalization of
the tumor vasculature would thus result in enhanced tumor
oxygenation and thereby increase the efficacy of radiation
therapy. Indeed, transient improvement of hypoxia and pericyte
coverage was reported in different tumor models treated with
either a VEGF-receptor 2 blocking antibody, or a VEGF-receptor
tyrosine kinase inhibitor (56, 57). Dings et al. (58) also studied
tumor oxygenation in multiple tumor models during treatment
with different anti-angiogenic drugs. Treatment with either
bevacizumab or the anti-angiogenic peptide anginex induced
elevated oxygenation levels and increased pericyte coverage in
the first 4 days (58). Moreover, the anti-tumor effect improved
when radiotherapy was applied within the window of increased
oxygenation (57, 58).

While the previous findings indicate that vascular
normalization could improve tumor perfusion, it has also
become clear that vascular normalization occurs only transiently
and that continuation of anti-angiogenic treatment eventually
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FIGURE 1 | The effects of radiotherapy on the vasculature and the immune response. (A) Schematic overview of the main effects that occur in the vasculature in

response to radiotherapy. A detailed description is provided in the main text. In brief, single high dose irradiation induces endothelial cell apoptosis and senescence via

increased ALK5 and Sphingomyelinase expression. This causes vessel regression and vascular collapse which is accompanied by reduced perfusion. This eventually

results in tissue hypoxia which leads to a vascular rebound effect by growth factor-induced vasculogenesis and angiogenesis. Fractionated low dose irradiation also

induces an increased expression of angiostimulatory growth factors like VEGF and bFGF. This promotes different endothelial cell functions that results in vascular

growth induction and enhanced tissue perfusion. Both the vascular rebound effect and vascular growth induction provide opportunities for therapeutic intervention in

combination with radiotherapy. (B) Schematic overview of the main effects that occur in the vasculature in response to radiotherapy. A detailed description is provided

in the main text. In brief, irradiation of tumor cells can induce expression of interferon beta (IFNβ) through cytosolic dsDNA/cGAS/STING signaling. This is dependent

on dosing, as high dose irradiation induces Trex1 which causes clearance of cytosolic dsDNA. Apart from IFNβ, radiotherapy induces the expression and release of

several chemokines, cytokines and growth factors that promote the recruitment of immune cells. This includes both suppressive and stimulatory immune cell subsets.

At the same time, irradiation promotes an immune response via the induction of immunogenic cell death. The release of damage-associated molecular patterns

(DAMPs) upon radiotherapy-induced cell death causes the activation of antigen presenting cells like dendritic cells through pattern recognition receptors (PPR). This

eventually results in the recruitment and priming of cytotoxic T cells. This is accompanied by the release of cytokines like interferon gamma (IFNγ) which exerts

diverging effects on the immune response. At one hand, IFNγ induces PD-L1 expression on tumor cells which is immunosuppressive. At the other hand, it stimulates

the expression of leukocyte adhesion molecules in the vessel wall which contributes to increased immune cell recruitment. Vessel regression induces hypoxia which

increases expression of growth factors and chemokines that affect immune cell recruitment and polarization. Finally, radiotherapy induces the expression of molecules

on the tumor cell surface like MHC-I and Fas, which increases tumor cell killing by immune cells. Targeting the immune suppressive mechanisms provide opportunities

for therapeutic intervention in combination with radiotherapy.

causes vessel regression and reduced tumor oxygenation (57–
60). This has important therapeutic consequences, especially
since the data on the exact occurrence and timing of the
vascular normalization window in patients is limited (61–63).
Characteristic features of vessel normalization like reduction
of immature vessels and increased pericyte coverage have
been observed in patient treated with bevacizumab (64).
Furthermore, improved perfusion has been reported in a
subset of glioblastoma multiforme (GBM) patients treated
with cediranib (a pan-VEGF TKI) or cediranib-containing

regimens, and was associated with survival benefit (61, 65).
Notwithstanding these latter observations, the temporary
character of vessel normalization in mice, i.e., a few days,
seems to be in contrast with the beneficial effects for patients
receiving anti-angiogenic drugs during several weeks of
fractionated irradiation. Moreover, anti-angiogenic therapy is
not only beneficial when applied prior to radiotherapy but also
when given during or after radiotherapy (54). Thus, although
vessel normalization might partially explain the beneficial
effects, other mechanisms might be equally relevant for the
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BOX 2 | Angiogenesis.

Angiogenesis is the growth of new blood vessels out of pre-existing capillaries. It is one of the hallmarks of cancer since most solid tumor cannot grow beyond a

few cubic millimeters if they are unable to induce angiogenesis. The key players in the angiogenic process are endothelial cells. These cells form the inner lining of

all blood vessels. Under hypoxic conditions, cancer cells undergo the so-called “angiogenic switch” which results in an elevated expression and secretion of soluble

factors like vascular endothelial growth factor (VEGF). Secreted VEGF binds to it receptors on surface of endothelial cells in a nearby capillary vessel. As a result, the

endothelial cells become activated and secrete proteases that degrade the capillary basement membrane as well as the underlying extracellular matrix. Subsequently

the activated endothelial cells to proliferate and migrate into the direction of the growth factor gradient, thereby forming novel vascular sprouts toward the tumor that

will eventually reassemble into a capillary bed. Due to an imbalance between angiostimulatory and angioinhibitory factors, the newly formed vasculature is abnormally

structured, dysfunctional and unable to adequately relief tumor hypoxia. As a consequence, the pro-angiogenic stimulus is maintained and endothelial cells lose

some of their typical functional features, including the expression of adhesion molecules that regulate the extravasation of leukocyte into the tumor tissue [For an

extensive review see (46)].

interaction between both radiotherapy and anti-angiogenic
therapy.

Another possible mechanism that could explain the benefit of
anti-angiogenic drugs involves the stimulation of angiogenesis
by irradiation, referred to as the vascular rebound effect. As
described previously, low dose irradiation has been found to
increase tumor perfusion and oxygenation. While this was linked
to mechanisms such as vasodilation by enhanced inflammation
and reduced oxygen consumption (36), we and others have
shown that low-dose irradiation can also influence angiogenesis
by inducing the expression of pro-angiogenesis growth factors
like VEGF by cancer cells or other cells that reside in the tumor
microenvironment (35, 66–68). For example, Sofia-Vala et al.
(23) showed that low dose irradiation induces VEGF signaling
in endothelial cells. Likewise, macrophages in the stromal tissue
have been shown to enhance their VEGF expression after
irradiation (69). We observed induction of VEGF and PlGF
after 2 weeks of fractionated irradiation (daily fractions of
2Gy) in cultured cancer cells as well as in xenograft tumor
tissues (37). The induction of VEGF coincided with increased
tumor perfusion, increased tissue viability and reduced hypoxia.
In addition, the levels of VEGF were sufficient to stimulate
endothelial cell migration and sprouting. Importantly, the
anti-angiogenic drug sunitinib, which blocks VEGF-dependent
signaling, could hamper these effects (37). These findings
suggest that ionizing radiation can enhance tumor perfusion
by induction of a pro-angiogenic response which can be
counteracted by anti-angiogenesis treatment (35). Interestingly,
when exploring the optimal dose-scheduling of fractionated
low-dose radiotherapy with sunitinib, a small molecule that
inhibits multiple tyrosine kinase receptors including VEGFR, we
observed that the beneficial effects of the combination treatment
could be obtained with a lower dose of anti-angiogenic drugs
than what is currently applied for cancer treatment (35, 54). A
similar observation was made by Wachsberger et al. (70) using
VEGFtrap, a soluble receptor that “traps” VEGF. These findings
are clinically relevant since the implementation of combination
therapy is currently restricted due to increased toxicity in
tumor types such as rectal cancer, nasopharyngeal cancer and
glioblastoma (53). Of note, high dose irradiation can also induce
a vascular rebound effect due to the vascular collapse and
subsequent tissue hypoxia. In addition, intermediate and high
dose irradiation have been suggested to trigger vasculogenesis,

i.e., the influx of endothelial progenitor cells from other parts
of the body or bone marrow to build vessels (71). This process
is mediated via various chemokines including CXCL12/SDF1.
Interfering in this process by blocking the CXCL12/SDF1
receptor (CXCR4) could be of interest in relation to radiotherapy
(72). Furthermore, recent research on the role of endothelial cell
metabolism in cancer have led to new insights and potential
targets for anti-angiogenesis therapy. For example, inhibition
of PFKFB3, which is a regulator of glycolysis, can promote
vessel normalization, albeit that this effect is dose-dependent
(73). Whether and to what extend such inhibitors synergize with
radiotherapy awaits further investigation.

Collectively, the findings described above point toward
the importance of proper dose-scheduling of both treatment
modalities to achieve optimal beneficial effects. On one side, the
dose-scheduling of anti-angiogenic drugs influences whether and
when vessel normalization occurs and whether and when the
angiogenic rebound effect is countered. On the other side, the
dose-scheduling of radiotherapy influences whether and when
tumor perfusion is affected and whether and when an angiogenic
(rebound) effect occurs. This complex relation illustrates the
challenges that accompany the combination of radiotherapy with
anti-angiogenic therapy. It also explains that, while a plethora
of pre-clinical evidence suggests a treatment benefit for the
combination of radiotherapy with anti-angiogenic therapy, the
clinical practice is less conclusive. The radiotherapy efficacy
might be strengthened by a pro-angiogenic response, enhancing
both tumor perfusion and oxygenation but this could at the
same time induce unwanted tumor growth. Thus, optimal
dose-scheduling of both treatment modalities is key to achieve
beneficial effects and limit toxicity of the combination therapy.

RADIOTHERAPY AND THE IMMUNE
SYSTEM

The link between radiotherapy and the immune system was
recognized already several decades before the role of the
tumor vasculature was uncovered. The first clear observation
that the host immune system contributes to radiotherapy
efficacy was presented in the late seventies of the previous
century. In a preclinical study it was shown that the effect of
radiotherapy is compromised in immunodeficient and CD8+ T
cell depleted mice (74). Prior to this, radiotherapy was more or
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less considered to be immunosuppressive (75, 76). Additional
evidence for a role of the immune system during radiotherapy
was obtained from preclinical research and multiple case studies
that reported on regression of (metastatic) tumor masses that
were distant from the irradiated site (77–79). This so-called
abscopal effect (Box 3) was already described in 1953, but it
took about 50 years to link this to a systemic anti-tumor
immune response initiated by radiotherapy (80, 81). Still, the
exact mechanisms behind the abscopal effect are not entirely
elucidated. Nevertheless, the clear link between radiotherapy
and the immune response, together with the breakthrough of
immunotherapy in recent years, has renewed the interest in
combining radiotherapy and immunotherapy. Similar as for
anti-angiogenic therapy, preclinical and clinical studies using
this combination therapy have made it clear that successful
implementation of radiotherapy combined with immunotherapy
relies on a proper understanding of the interaction between both
treatment modalities. In recent years, several mechanisms have
been proposed that explain how radiotherapy affects the tumor
immune response (82, 83) (Illustrated in Figure 1B).

A well-recognized mechanism by which radiotherapy can
enhance the anti-tumor immune response is the induction of
immunogenic cell death. Unlike normal cell death, immunogenic
cell death makes cancer cells visible to the immune system by the
release of damage-associated molecular patterns (DAMPs), such
as calreticulin, HMGB1 and ATP, along with the presentation
of neoantigens and tumor associated antigens (84–91). DAMPs
bind to pattern recognition receptors (PRRs) such as Toll-
like receptors (TLRs) on antigen presenting cells, including
dendritic cells (DCs). This leads to DC activation which
subsequently cross-present antigens and migrate to the tumor-
draining lymph node (92, 93), where they prime naive T cells and
B cells to initiate a systemic immune response (92–99). Recent
studies have identified the STING pathway, activated upon
recognition of double-stranded DNA (dsDNA) via cytosolic
DNA sensors, as an important regulator of this immunogenic
cell death response (100–105). Double-stranded DNA can be
transferred via exosomes from irradiated cancer cells to DCs.
Subsequently, STING-dependent activation of type-I interferons
and upregulation of co-stimulatory molecules is triggered (106).
Collectively, these findings show that radiotherapy can promote
an anti-tumor immune response via immunogenic cell death-
mediated activation of antigen presenting cells like DCs leading
to increased priming of tumor antigen-specific T cells.

Apart from enhanced T cell priming through immunogenic
cell death, radiotherapy can also promote the trafficking of
immune cells into the tumor. In fact, multiple mechanisms
contribute to this enhanced immune infiltration. Firstly,
radiotherapy can improve tumor perfusion (as described above)
which will increase the number of leukocytes passing through
the tumor tissue. Secondly, irradiation induces the endothelial
expression of leukocyte adhesion molecules like ICAM and
VCAM (93, 107–109). Consequently, leukocyte extravasation
from the circulation into the tumor tissue will be increased.
Thirdly, radiotherapy has been shown to increase the expression
of pro-inflammatory chemokines such as CXCL9, CXCL10, and
CXCL16 by cancer cells. This will help to attract leukocyte

populations like cytotoxic CD8+ T cells, Th1 cells, NK cells,
and NKT cells (108, 110, 111). Finally, radiation can induce
MHC-I expression on cancer cells, either by an accumulation of
damaged proteins and their break-down products (89, 97, 112),
or in response to a general increase of IFN gamma (IFNγ)
within the tumor microenvironment (108). Preclinical studies
have also shown that radiotherapy enhances the expression
of the death receptor Fas (CD95) on cancer cells, making
them more susceptible to Fas ligand mediated cell death (97,
113–116). Altogether, enhanced tumor perfusion, increased
leukocyte chemoattraction and extravasation, as well as increased
susceptibility to T cell-mediated cell death contribute to an
improved immune response during radiotherapy.

Unfortunately, there are some ifs and buts to the
immunostimulatory effect of radiotherapy. Similar as with
the angioregulatory response, the immunoregulatory response
to irradiation appears to be dose and schedule dependent. For
example, the induction of MHC-I (97, 112) and immunogenic
cell death (89) depend on the dose, and in preclinical models
moderate to high doses of radiotherapy seem to have most effect
(92, 117, 118). For instance, Filatenkov et al. showed in weakly
immunogenic CT26 and MC38 colon tumors that only a single
dose of 30Gy increased intratumoral CD8+ T cells, whereas
10 × 3Gy did not (118). On the other hand, radiotherapy
doses of ≥12Gy have been shown to attenuate radiotherapy-
induced tumor immunogenicity through the induction of DNA
exonuclease TREX1 (Three prime repair exonuclease 1), which
degrades cytosolic dsDNA, thereby preventing cGAS/STING
mediated induction of interferon beta (IFNβ) (119). With
regard to the abscopal effect, only a few comparative studies are
available, but a systematic review of 46 case reports revealed a
broad range in cumulative dose at which the effect was observed
(range 0.45–60.75Gy; median 31Gy) (77). With regard to
scheduling there is also no clear answer yet. It has been reported
that a single fraction is better than multiple fractions (93), that
there is no difference between single or multiple fractions (92),
or that multiple fractions are better (120, 121). From a tumor
perfusion perspective there is evidence that fractionated low
dose is preferred over single high dose as described previously.
At the same time, the induction of leukocyte adhesion molecule
expression appears to be dose-dependent (109, 122, 123). So, a
major future challenge will be to unravel at what dose-scheduling
regime an optimal immunostimulatory effect of radiotherapy
will occur.

Most likely, the overall effect of radiotherapy on the immune
response is not only dose-scheduling dependent but is also
determined by tumor type and the tumor microenvironment.
Regarding the latter, it has been shown that the efficacy
of radiotherapy is influenced by the composition of the
pretreatment tumor immune microenvironment (124). Thus,
it would be of interest to explore to what extent the pre-
treatment immunogenic profile in the tumor tissue can
predict the response to radiotherapy. This is also relevant
given the observation that radiotherapy can induce an
immunosuppressive microenvironment. After all, apart from
the induction of pro-inflammatory chemokines, as described
above, radiotherapy can also induce chemokines and cytokines
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BOX 3 | The abscopal effect.

The concept and term “abscopal” was proposed in 1953 by dr. R.H. Mole to describe effects of irradiation that occur distant from the site of irradiation, but within

the same organism (78). The term originates from the prefix ab- (away from) and Latin word scopus (mark or target). As such, it can be considered as a systemic

response following a local trigger. Today, the abscopal effect has been reported in a wide variety of both solid and hematologic tumor types. While the mechanism is

still not fully elucidated, it has been established the abscopal effect involves the immune system [For an extensive review see (80)].

that attract immunosuppressive cell populations such as Tregs
(97), myeloid derived suppressor cells (MDSCs) (125), M2
macrophages, and Th2-skewed CD4+ T cells (126) to the tumor
immune microenvironment (127). Multiple in vitro studies
demonstrated that unpolarized macrophages tend to acquire a
M1 phenotype after irradiation with 2–5Gy. Interestingly, Klug
et al. (128) showed in an in vivomodel reprogramming of TAMs
to a M1 phenotype after irradiation with 2Gy. Different dose-
effects of radiotherapy on TAMs, as well as mechanisms involved,
has been described in detail by Genard et al. (129). Blockade
of the macrophage chemoattractant CSF-1 and repolarization
of macrophages into a M1 tumor suppressive phenotype by
blocking interleukin-4 (IL-4) and IL-13 significantly improved
responses to radiotherapy in a mouse breast cancer model
(126, 130). In addition, IFN gamma expression within the
tumor immune microenvironment is an important driver of
PD-L1 expression on tumor and immune cell which leads
to impairment of T cell function (131–133). In fact, it were
these kind of observations that led to the hypothesis that the
combination of immunotherapy with radiotherapy might have
clinical benefit.

ENHANCEMENT OF IMMUNOTHERAPY
EFFICACY BY RADIOTHERAPY

One of the major breakthroughs in oncology in recent years
has been the development of drugs that enhance the potency of
the immune system. These drugs are predominantly inhibitors
of so-called immune checkpoint proteins (Box 4) and they are
able to re-activate T cells to attack cancer cells. Although we
are only starting to understand the effect of such immune
checkpoint inhibitors, it has become clear that these drugs are
most effective when the T cells that they activate are already
in the tumor microenvironment (134–136). However, many
tumors lack a proper lymphocyte infiltration. As described
above, radiotherapy can elicit an anti-tumor T cell response,
which has spurred the interest to apply radiotherapy in order
to augment the local and systemic effect of immunotherapy.
Evidence that radiotherapy can reliably and consistently achieve
this effect in cancer patients is currently not available but
multiple retrospective studies have shown that radiotherapy
can increase the response to immunotherapy. Several studies
[for overview see (137)] in predominantly melanoma and lung
cancer patients have shown that radiotherapy given during
the course of immunotherapy increases the median overall
survival compared to no radiotherapy (138, 139). Also in lung
cancer it has been shown that radiotherapy somewhere in the
course of the disease prior to the first cycle of PD-1 inhibitor
pembrolizumab significantly increased overall and progression

free survival (139). In metastatic non-small cell lung cancer
(NSCLC) preliminary results of an ongoing trial (NCT02492568)
with pembrolizumab preceded by stereotactic body radiation
therapy showed a doubling of the overall response rate (140).
However, other studies in melanoma and various solid tumors
evaluating the combination of radiotherapy with ipilimumab (98)
or pembrolizumab (141) showed disappointing results. The same
holds true for a large phase III trial testing radiotherapy followed
by ipilimumab or placebo in castration-resistant prostate cancer
patients (142).

Interestingly, there is also a variety of case reports describing
major systemic antitumor effects of palliative radiotherapy in
patients that had progressed on immunotherapy. For instance,
Postow et al. (94) showed, in a case report of a metastatic
melanoma patient that had progressed under ipilimumab, re-
induction of an anti-tumor immune response after palliative
radiotherapy. This response was accompanied by the expansion
of existing, and appearance of new anti-tumor antibodies (94).
Another retrospective analysis of 21 patients with advanced
melanoma who received radiotherapy after progression on
ipilimumab showed partial systemic response and stable disease
in 43% and 10% of cases, respectively (143). A beneficial effect of
radiotherapy following progression on checkpoint inhibition has
also been reported for a patient with NSCLC (144) and HNSCC
(145). Another study of patients with stage IV melanoma treated
with ipilimumab followed by palliative radiotherapy within the
first 5 days of treatment showed that around 50% of patients
experienced clinical benefit (146). Nevertheless, most clinical
success of combined radiotherapy with immunotherapy has
been shown in the adjuvant use of PD-1 pathway inhibitors.
The largest study among those is the PACIFIC study, a
multicenter randomized controlled trial comparing the use of
PD-L1 inhibitor durvalumab as consolidation therapy following
definitive chemoradiation in stage III NSCLC which showed
a median progression free survival of 16.8 months compared
to 5.6 months with placebo and an acceptable toxicity profile,
resulting in prompt FDA approval of the adjuvant use of
durvalumab for stage III NSCLC patients (147). Importantly, the
combination of radiotherapy and immunotherapy appears to be
safe and well tolerated without severe toxicities (138, 146–150).
Altogether, these studies suggest a bright future for combined
radiotherapy and immunotherapy for certain patients. Of note,
the high expectations might be somewhat hampered by clinical
studies that explored the concurrent use of immunotherapy
and radiotherapy to stimulate an anti-tumor immune response
by both modalities at the same time. Although the results of
such studies are still in early phase, a recent phase I trial in
patients with metastatic or locally advanced bladder cancer was
paused early due to intolerable in-field toxicities (151). Trials
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BOX 4 | Immune checkpoint proteins.

Immune checkpoints programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) are negative regulators of T cell responses

and act as a brake on the immune system. Although CTLA-4 and PD-1 have similar negative effects on T cells activity, the immune checkpoints operate on different

stages of an immune response. CTLA-4 expression is confined to T cells and functions mostly during the priming phase of T cell activation in lymph nodes. The PD-1

checkpoint is predominantly at play during the effector phase within peripheral tissues, where it interacts with its ligand PD-L1 which is broadly expressed on both

tumor and immune cells. Despite these differences, inhibitors of both PD-1/PD-L1 and CTLA-4 are able to (re-)activate T cells to attack cancer cells and have shown

unprecedented durable responses in many cancer types.

FIGURE 2 | The therapeutic triad. Diagram depicting the main components of

the ’therapeutic triad’ as pieces of a jigsaw puzzle, i.e. radiotherapy (RT),

anti-angiogenic therapy (AT), and immunotherapy (IT). Optimization of

dose-scheduling and timing of the three treatment modalities is the center

piece of the puzzle, for it is essential to achieve effective combination therapy

with minimal toxicities. The arrows reflect the interactions between the different

treatment modalities (see main text for more detailed information). In brief: (1)

Radiotherapy has dose-dependent effects on tumor vessels resulting a

vascular rebound effect due to either vascular collapse or direct induction of

angiogenesis. This provides an opportunity for anti-angiogenic therapy.

Anti-angiogenic therapy itself induces vessel normalization which improves

tumor perfusion and oxygenation; this in turn enhances the efficacy of

radiotherapy. (2) Radiotherapy induces immunogenic cell death which

enhances specific T cell priming. In addition, radiotherapy can induce the

expression of adhesion molecules on endothelial cell and chemokines by

cancer cells which both improve the extravasation of immune cells into the

tumor tissue. This enhances the efficacy of immunotherapy. In addition, the

tumor immune microenvironment itself affects the response to radiotherapy. (3)

Anti-angiogenic therapy induces vessel normalization which improves

extravasation of immune cells into the tumor tissue. Likewise, immunotherapy

might result in recruitment of immune subsets with angioregulatory activity

which can be targeted by anti-angiogenic therapy.

to test the safety and feasibility of neoadjuvant immunotherapy
with radiotherapy in NSCLC, HNSCC, and gastroesophageal
cancer (NCT03245177, NCT03383094, and NCT03044613,
respectively) amongst others are currently ongoing. Apparently,
and in line with the observations of anti-angiogenic therapy
combined with radiotherapy, the timing, dosing and scheduling
of both treatments is key in achieving optimal therapeutic
effects.

ALTERNATIVE COMBINED
RADIOTHERAPY-IMMUNOTHERAPY
APPROACHES

While currently most (pre)clinical research is mainly focused
on the combination of radiotherapy with immune checkpoint
inhibitors, several alternative immunomodulatory approaches
are also being explored. For example, the combination
of radiotherapy with immunostimulatory factors such as
interleukin-2 (IL-2) (152, 153), granulocyte-macrophage colony-
stimulation-factor (GM-CSF) (154), and agonists of the T cell
co-stimulatory receptor OX40 (155, 156) has yielded promising
responses in early phase clinical trials. Also strategies to trigger an
anti-tumor immune response by intratumoral injection of TLR9
agonists in combination with concurrent low-dose radiotherapy
on the injection site has shown promising results and excellent
safety and tolerability in different tumor types, including low-
grade B cell lymphomas (157), cutaneous T cell lymphoma (158)
and follicular lymphoma (159). A TLR3 agonist in combination
with concurrent fractionated radiotherapy was recently tested in
a single arm phase II trial in 30 patients with newly diagnosed
glioblastoma multiforme and was found to be well tolerated
(160). Others have performed studies in which radiotherapy
was combined with intratumoral injections of autologous
immature DCs after radiotherapy in hepatocellular carcinoma
(161) and soft tissue sarcoma (162). This treatment was also
well tolerated and based on the observed responses, future
phase II and III studies were recommended. Finally, efforts have
been made to combine radiotherapy with vaccination against
carcinoembryonic antigen (CEA) combined with GM-CSF in
colorectal cancer (163), or against prostate specific antigen
(PSA) combined with GM-CSF and IL-2 in patients with
prostate cancer (164, 165). Despite the clear rationale behind
these trials, both studies showed limited effectivity (163–165).
On the other hand, a phase I clinical trial in chemo-naïve
esophageal squamous cell carcinoma did show vaccine-specific
cellular and clinical responses (CT evaluation) after treatment
with a peptide vaccine containing five tumor-associated
peptides (TTK, URLC10, KOC1, VEGFR1, and VEGFR2) in
combination with chemoradiation (60Gy, cisplatin, 5-FU) (166).
All these studies exemplify the current interest and feasibility
to combine radiotherapy with immunostimulatory treatments.
Still, many questions have to be answered and challenges
have to be met, especially with regard to dosing, scheduling
and timing of both treatments. Nevertheless, the outlook for
radiotherapy in combination with immunotherapy appears
promising.
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FUTURE PERSPECTIVES – A
THERAPEUTIC TRIAD

Based on aforementioned interactions and synergy, a trimodal
approach combining radiotherapy with anti-angiogenic therapy
and immunotherapy is a promising therapeutic strategy. To our
best knowledge, no clinical trials have been published combining
all three treatment modalities. Radiotherapy with either anti-
angiogenic therapy or immunotherapy appears feasible, but
presents both researchers and clinicians with many challenges.

While this review focused on the interaction of radiotherapy
with either anti-angiogenic therapy or immunotherapy, there
is growing awareness that the latter two treatments are
also intrinsically interwoven. Indeed, the combination of
immunotherapy and anti-angiogenic therapy has recently
emerged as a novel therapeutic strategy (167). This is based on the
observation that anti-angiogenic therapy can enhance immune
effector cell trafficking to the tumor site. This would strengthen
the efficacy of immunotherapy since low immune cell infiltration
still represents a major obstacle for cancer immunotherapy
(168). A recent review on this subject by Fukumura et al.
(169) provides an up-do-date table of pre-clinical and clinical
trials. The improved recruitment of immune cells during anti-
angiogenic therapy is partly explained by vessel normalization.
In the tumor endothelium, the expression of adhesion molecules
that facilitate rolling, adhesion and extravasation of immune
cells is reduced due to exposure of endothelial cells to tumor-
derived angiogenic growth factors (170–172). This phenomenon
is referred to as endothelial cell anergy and it makes the
underlying tumor tissue invisible or at least less reachable to
the immune system (173). In addition, hypoxia due to impaired
perfusion results in the expression of several chemokines such
as stromal cell–derived factor 1 (SDF1-α), CC-chemokine ligand
22 (CCL22) and CCL28. These chemokines initiate a state of
tolerance by recruiting Tregs, MDSCs and M2-type TAMs to
induce an immunosuppressive microenvironment (174, 175).
Furthermore, hypoxia as well as VEGF can induce the expression
of immune checkpoint molecules on cancer cells and immune
cells (176, 177). Collectively, the hypoxic and pro-angiogenic
tumor microenvironment are generally immunosuppressive.
Thus, strategies that normalize the dysfunctional vasculature
can not only restore immune cell functions and facilitate
their antitumor activities, but also enhance immunotherapy
effects (8). As already described, anti-angiogenic therapy can
induce vascular normalization and reduce hypoxia. In line
with this, anti-angiogenic drugs have been shown to facilitate
tumor infiltration of CD8+ T lymphocytes and potentiate
cancer immunotherapy (178–181). This effect could thus add
up to the previously described induction of adhesion molecule
expression in endothelial cells by radiotherapy itself. While
anti-angiogenic therapy can influence the immune system,
evidence is emerging that immunotherapy also affects the tumor
vasculature. Interferon gamma is suggested to play an important
role in this process, as it is produced by activated T cells and,
upregulates ICAM-1 and induces T cell migration. Interestingly,
Th1 cell infiltration is reported to reciprocally promote blood

vessel normalization which would further contribute to an
immunostimulatory microenvironment, in a process that is also
dependent on IFNγ signaling. For example, in mice treated
with anti PD-1 antibodies, Th1-mediated vessel normalization
was improved (182). Thus, a mutual regulatory feedback loop
is identified in which vessel normalization and T lymphocyte
infiltration can amplify the positive effects conferred by each
individual effect. Possibly, this combinatorial approach could
lead to a more pronounced vessel normalization window which
could be exploited to enhance the effect of radiotherapy. In this
context it is noteworthy to mention that is has been shown in
melanomamodels that the improved immune response following
STING activation actually depends on the production of IFNβ

by endothelial cells (183). While this effect was observed after
STING activation by intratumoral injection of cyclic dinucleotide
GMP-AMP (cGAMP) and not by irradiation, it further indicates
that targeting endothelial cells to improve immunotherapy
could be of interest during radiotherapy. Thus, combining
the three treatment modalities as a “therapeutic triad” offers
an innovative and interesting approach to cancer treatment
(Figure 2), but will even present with additional challenges
regarding optimal dose-scheduling, timing and overcoming
potential toxicities as compared to the combination of two
treatments.

CONCLUDING REMARKS

Although combining radiotherapy with either anti-angiogenic
therapy or immunotherapy has been extensively studied the
last decade, phase III studies showing a clear benefit of
combinatorial approaches are scarce. This not only illustrates
the complex relationship between the cancer cells and the tumor
microenvironment, but it also emphasizes that many challenges
have to be overcome to make these combination therapies
effective. In particular, future studies should shed light upon
the optimal timing and dosing of the different treatments. In
addition, finding predictive and prognostic biomarkers could
help determine which cancer types and disease stages are
particularly suitable for combinatorial approaches. Interestingly,
radiotherapy, anti-angiogenic therapy and immunotherapy all
exert effects on both the tumor vasculature and the anti-tumor
immune response. Better understanding of their reciprocal
interactions in the tumor microenvironment is the main future
challenge to allow the development of a therapeutic triad that
combines the three treatment modalities for effective cancer
therapy.
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