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Abstract
The sudden emergence of severe acute respiratory syndrome (SARS) has boosted research on innate immune responses to coronaviruses. It

is now well established that the causative agent, a newly identified coronavirus termed SARS-CoV, employs multiple passive and active

mechanisms to avoid induction of the antiviral type I interferons in tissue cells. By contrast, chemokines such as IP-10 or IL-8 are strongly

upregulated. The imbalance in the IFN response is thought to contribute to the establishment of viremia early in infection, whereas the

production of chemokines by infected organs may be responsible for (i) massive immune cell infiltrations found in the lungs of SARS victims,

and (ii) the dysregulation of adaptive immunity. Here, we will review the most recent findings on the interaction of SARS-CoV and related

Coronaviridae members with the type I interferon and cytokine responses and discuss implications for pathogenesis and therapy.
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1. The Coronaviridae family

Coronaviruses are enveloped, positive-stranded RNA

viruses that can infect a variety of vertebrates and are mainly

associated with respiratory and enteric diseases. They have

long been recognized as important pathogens of livestock

and companion animals, and coronaviruses are a common

cause of respiratory tract infections in man [1,2]. In 2003, a
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coronavirus has been identified as the causative agent of a

new human disease, the severe acute respiratory syndrome

(SARS) [3–5]. The SARS coronavirus (SARS-CoV) spread

within few months to more than 30 countries and caused the

first epidemic of the new millennium. This event not only

highlighted the potential of coronaviruses to seriously affect

human health, but also gave a strong impetus on coronavirus

research. Since then, bats were identified as a possible

reservoir species of SARS-CoV [6], and a wealth of

knowledge about coronavirus replication and pathogenesis

has been gained [7–9].
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The family Coronaviridae comprise two genera, Cor-

onaviruses and Toroviruses, and is grouped together with

two other families, the Arteriviridae and the Roniviridae,

into the order Nidovirales [1,10]. Although Nidoviruses

differ in their genome sizes, structural proteins and

morphology, they share a common genome organization

and common mechanisms of RNA replication [1,8–11]. The

name Nidovirus (from the Latin ‘‘nido’’ - nest) refers to the

ability to transcribe a so-called ‘‘nested set’’ of subgenomic

mRNAs [12]. Coronaviruses have genomes of approxi-

mately 30,000 nt, a length that is unprecedented amongst

RNA viruses. The extreme genome size requires complex

and only incompletely understood mechanisms of RNA

replication, transcription, modification, and recombination,

which are conducted by a multi-enzyme complex encoded

by the replicase gene and the nucleocapsid gene [13–15]. It

is speculated that coronaviruses have evolved this complex

replication machinery to stably maintain their large genomic

RNA and to encode additional functions that impact on virus–

host interactions [10]. Furthermore, the unique transcription

strategy involves a discontinuous step during negative strand

RNA synthesis that mechanistically reflects similarity-

assisted RNA recombination. Thus, coronaviruses are well

equipped for high frequency RNA recombination which

facilitates rapid adaptation to new hosts.

Coronavirus particles are enveloped and display a typical

solar or crown-like (‘‘corona’’) appearance in electron

microscopy. Historically, the family has been divided into

three groups based on serological cross-reactivity. Later, this

grouping has been confirmed by phylogenetic analyses

based on genome sequencing data [8,10,16]. Soon after

SARS-CoV has been recognized as a coronavirus, phylo-

genetic analyses revealed a relationship to group 2

coronaviruses, for which the mouse hepatitis virus

(MHV) is the prototype. However, SARS-CoV also has

unique features, suggesting that SARS-CoV represents an

early split-off from the coronavirus group 2 lineage [8,16].
2. Diseases caused by coronaviruses

Coronaviruses can cause a variety of diseases in animals

and humans [2]. Of economical importance are corona-

viruses such as porcine transmissible gastroenteritis virus,

bovine coronavirus, feline infectious peritonitis virus, and

avian infectious bronchitis virus. MHV, a natural mouse

pathogen, has been extensively studied in the context of host

immune responses and pathogenesis [2,17,18]. There are

many different and well-characterized strains of MHV

which, depending on organ tropism, virulence and host

strain, can cause a wide array of diseases ranging from

hepatitis, respiratory symptoms and gastroenteritis to CNS

infection, demyelination, and acute meningitis [2,17,19–

23]. Therefore, by using appropriate combinations of virus

and mouse strains, MHV infections provide suitable models

for a number of diseases that are of medical importance,
such as encephalitis, immune-mediated demyelination (e.g.

multiple sclerosis), hepatitis and acute respiratory infections

(e.g. SARS).

Besides SARS-CoV, there are several human corona-

viruses (HCoVs) which cause mainly mild respiratory tract

infections (common cold; HCoV-229E, HCoV-OC43,

HCoV-NL63 and HCoV-HKU) and sometimes enteric

infections [2]. HCoV infections are prevalent in children,

but more severe symptoms have been observed in

immunocompromised individuals and occasionally in the

elderly [24,25]. Notably, HCoV-NL63 appears to cause

more severe respiratory symptoms and has been associated

with croup in children [26].
3. Innate immunity—the interferon system

The most efficient and rapid host response against viruses

consists of the production of type I IFNs (IFN-a/b), an

essential part of the antiviral innate immune system. As far

as it is known, all nucleated cells of the mammalian body are

able to synthesize and secrete type I IFNs. The mode of

induction and the type of IFN being secreted, however, can

differ among cell types. Secreted IFNs stimulate neighbour-

ing cells to express potent antiviral proteins [27–29].

Besides their role as direct antiviral messengers, IFNs posses

a wide range of other biological activities including

inhibition of cell proliferation, regulation of apoptosis,

and, importantly, immunomodulation [30,31]. Thus, the IFN

production triggered by the first contact with the viral

intruder slows down or even stops virus multiplication, buys

the organism time, and helps to establish an adaptive

immune response.

Type I IFNs are classified according to their amino acid

sequence and comprise a large number (at least 13) of IFN-a

subtypes and a single IFN-b [32], as well as some additional

family members [33–35]. Expression patterns, i.e. which

IFNs will be synthesized at which time point, mostly depend

on the particular cell type.

3.1. Interferon induction

Epithelial cells, fibroblasts and neurons mainly secrete

IFN-b as an initial response to infection but switch to IFN-a

during the subsequent amplification phase of the IFN

response [36,37]. By contrast, dendritic cells, which play an

important role in immunosurveillance and provide an

interface between innate and adaptive immunity, directly

produce high levels of IFN-a subtypes [38,39].

IFN induction in fibroblasts occurs mainly by an

intracellular pathway (Fig. 1A). Hallmark molecules of

RNA viruses such as double-stranded (ds) RNA and 50-
triphosphorylated single-stranded (ss) RNA trigger a

signaling chain which activates IFN-b gene expression

[40–43]. Two RNA helicases, RIG-I and MDA-5, are the

main intracellular receptors of viral RNA [44–47]. RIG-I
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Fig. 1. Parallel pathways of type I IFN induction by RNA viruses. (A) Intracellular pathway. Characteristic by-products of virus replication such as dsRNA or

50triphosphorylated ssRNA lead to activation of the transcription factor IRF-3. Cooperative action with NF-kB and AP-1 is required for full activation of the

IFN-b promoter. IRF-3 is phosphorylated by the kinases TBK-1 and IKKe (not shown) which in turn are activated by the RNA-sensing molecules RIG-I

(recognizing 50 triphosphorylated ssRNA) and MDA-5 (recognizing dsRNA). PKR, which also recognizes dsRNA, is important for activating NF-kB. AP-1 is

activated by the stress-responsive kinase Jun. (B) Endosomal pathway. TLR7/8 and TLR3 recognize viral ssRNA and dsRNA, respectively, and activate IFNa/b

transcription via the transcription factors IRF-7, IRF-3, and NF-kB. Only those parts of the pathways are depicted which are relevant for the discussion of

coronaviral interactions (see main text). For comprehensive representations see recent reviews [53,61,181].
and MDA-5 recognize different and non-overlapping sets of

viruses, suggesting a degree of specificity in RNA

recognition [45]. Indeed, it was recently found that RIG-I

has the unique ability to bind the triphosphate groups on the

50-end of uncapped viral ssRNA [40–42]. MDA-5, by

contrast, is apparently more dependent on dsRNA structures

since it is required for the IFN response against

picornaviruses which have genomic RNAs with a protein-

protected 50-end [45,48] and produce high levels of dsRNA

[43]. The binding of a viral RNA to RIG-I and MDA-5

induces a signaling chain which eventually results in the

phosphorylation of the transcription factor IRF-3 [49,50].

IRF-3 is a member of the IFN regulatory factor (IRF) family

[51,52] and plays a central role in the activation of the IFN-b

promoter [53]. Phosphorylated IRF-3 homo-dimerizes and

moves into the nucleus where it recruits the transcriptional

coactivators p300 and CREB-binding protein (CBP) to

initiate IFN-b mRNA synthesis. This first-wave IFN triggers

expression of a related factor, IRF-7, which in fibroblasts is

only present in low amounts [54]. IRF-7 can be activated the

same way as IRF-3 [55,56], leading to a positive-feedback

loop that initiates the synthesis of several IFN-a subtypes as

the second-wave IFNs [37,54]. In addition, the transcription

factors NF-kB (activated by RIG-I, MDA-5 and the dsRNA-

dependent kinase PKR) and AP-1 (activated by stress-

induced Jun kinase) are triggered by viral replication [57,58]

to enhance IFN-b gene expression.

Myeloid dendritic cells (mDCs) [39] and, most promi-

nently, plasmacytoid dendritic cells (pDCs) [38] are the

main IFN producers of the lymphatic system. mDCs can

sense dsRNA by the classic intracellular pathway [39] and,

in addition, by the endosomal toll-like receptor (TLR) 3

[59]. pDCs predominantly monitor RNA virus infections by
the endosomal TLR7 and TLR8 which recognize ssRNA

[60]. Activated TLRs signal through different intracellular

adaptor molecules to induce IRF- and NF-kB-dependent

IFN transcription [61] (Fig. 1B). Interestingly, in contrast to

other cell types, pDCs contain considerable amounts of

constitutively expressed IRF-7 [62,63]. IRF-7 is further

upregulated in response to IFN and generates a positive-

feedback loop for high IFN-a and IFN-b production [64,65].

In addition, TLR7 and TLR9 are retained in the endosomes

of pDCs to allow prolonged IFN induction signaling [66].

3.2. Interferon signaling

All IFN-a/b subtypes bind to and activate a common type

I IFN receptor which is present on virtually all host cells

[28,67]. Binding of IFN-a/b leads to conformational

changes in the intracellular parts of the receptor which

activate the so-called JAK-STAT signaling pathway. The

signal transducer and activator of transcription (STAT)

proteins are latent cytoplasmic transcription factors which

become phosphorylated by the Janus kinase (JAK) family

members JAK-1 and TYK-2 [68,69]. Phosphorylated STAT-

1 and STAT-2 recruit a third factor, IRF-9 (also called p48),

to form a complex known as IFN stimulated gene factor 3

(ISGF-3). The ISGF-3 heterotrimer translocates to the

nucleus and binds to IFN-stimulated response elements

(ISRE) in the promoter regions of IFN-stimulated genes

(ISGs), thereby inducing their transcription.

3.3. Interferon effector proteins

IFN-a/b activate the expression of more than 300 IFN-

stimulated genes (ISGs) which have antiviral, antiprolifera-
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tive, and immunomodulatory functions [70]. IFN-induced

proteins include enzymes, transcription factors, cell surface

glycoproteins, cytokines, chemokines and a large number of

factors with unknown function. Up to now, only a few proteins

with antiviral activity have been characterized in detail. These

are the Mx GTPases, the protein kinase R (PKR), the 20-50

oligoadenylate synthetases (2-5 OAS)/RNaseL system, the

RNA-specific adenosine deaminase 1 (ADAR 1), and the

products of the ISG56 (p56) and ISG20 genes. Mx proteins

belong to the superfamily of dynamin-like large GTPases and

have been discovered as mediators of genetic resistance

against orthomyxoviruses in mice. The human MxA protein

blocks replication of the infecting virus soon after cell entry

by targeting and missorting viral ribonucleoprotein particles

[71–74]. PKR, 2-5 OAS and ADAR are constitutively

expressed in a latent, inactive form. Basal mRNA levels are

upregulated by IFN-a/b and these enzymes need to be

activated by viral dsRNA. PKR is a serine-threonine kinase

that phosphorylates the alpha subunit of the eukaryotic

translation initiation factor eIF2 [75,76], thus blocking

translation of cellular and viral mRNAs. The 2-5 OAS

catalyses the synthesis of short 20-50 oligoadenylates [77] that

activate the latent endoribonuclease RNaseL which in turn

degrades both viral and cellular RNAs [78]. ADAR 1

catalyzes the deamination of adenosine on target dsRNAs to

yield inosine. As a result the secondary structure is

destabilized due to a change from an AU base pair to the

less stable IU base pair and mutations accumulate within the

viral genome [28]. P56 binds the eukaryotic initiation factor

3e (eIF3e) subunit of the eukaryotic translation initiation

factor eIF3. It functions as an inhibitor of translation initiation

at the level of eIF3 ternary complex formation and is likely to

suppress viral RNA translation [79,80]. ISG20 is an IFN-

induced 30-50 exonuclease that specifically degrades ssRNA in

vitro. In cell culture, expression of ISG20 leads to a reduction

of vesicular stomatitis virus (VSV), influenza virus and

retrovirus replication [81–83].
4. Coronaviruses: protective role of the
interferon system

MHVand several animal coronaviruses were shown to be

sensitive to the antiviral action of type I IFNs [20,84–86].

Growth of SARS-CoV can also be inhibited by exogenously

added IFN-a/b [87–91], and mice lacking STAT1 or the type

I IFN receptor are more prone to SARS-CoV- or MHV-

induced organ damages [92,93]. Direct IFN treatment of

experimentally infected mice or macaques has a protective

effect against SARS-CoV or MHV-1, respectively

[20,94,95]. IFNs may also alleviate symptoms in SARS

patients, but case numbers are too low for definite

conclusions [96,97]. In the animal models for SARS, IFNs

were most efficient if given before infection, but still have a

certain antiviral effect if given after exposure to virus

[94,95]. Thus, IFNs, which are an approved medication
against several viral and malignant diseases [28,98], may

offer the possibility both of prevention and treatment of

SARS with a licensed drug.

Although IFN treatment has clear beneficial effects, the

identification of the responsible effector protein(s) is still

out. The moderate inhibiting effect of IFN-g is most likely

caused by inducible NO synthetase [99], but which ISG

confers the much stronger effect of IFN-a/b is unknown. It

is however established that MxA plays no role as an anti-

SARS-CoV factor [89].
5. How do coronaviruses cope with the IFN system?

SARS-CoV, MHV, and a number of other coronaviruses

are highly pathogenic despite their sensitivity to IFN-a/b.

Moreover, SARS-CoV [43] as well as MHV [100] were

shown to generate substantial amounts of the IFN inducer

dsRNA during infection. This implies that coronaviruses

somehow avoid or inhibit the production of IFN in a manner

similar to other viruses [27,29,101]. Indeed, in fibroblasts

productively infected with SARS-CoV or MHV no

detectable induction of IFN-b occurs [102–104]. Human

macrophages, which become only non-productively infected

with SARS-CoV, are also unable to launch an IFN response

[105,106]. In fibroblasts, a lack of transcriptional induction

was also observed for IFN-a, IFN-l, RANTES and IL-6

[107], suggesting that SARS-CoV-infected tissue cells are

severely impaired in the production of a wide range of

cytokines. In line with this, we have recently shown that in

cells infected with SARS-CoV, no phosphorylation, dimer-

isation or CBP-binding of IRF-3 occur [102].

One possible mechanism that may at least in part account

for the absence of IRF-3 activation and type I IFN expression

is impaired sensing of coronaviruses by host cell-encoded

pathogen recognition receptors (PRRs), such as TLRs and

the intracellular RNA sensors. Cytoplasmic viral RNAs

could be recognized by RIG-I, MDA-5, or PKR (Fig. 2). As

RIG-I is triggered by 50-triphosphates on ssRNA, it might

not recognize the 50-capped genomic and subgenomic

mRNAs. However, like all positive stranded RNA viruses,

coronaviruses replicate their genome via negative-stranded

RNA intermediates containing (most likely) 50-triphosphate

ends. Moreover, the dsRNAs which are detectably formed

during virus replication [43,100] should be recognized

intracellularly by MDA-5 and PKR and extracellularly by

TLR-3. Coronaviruses may escape cellular RNA sensing by

creating a microenvironment that is not accessible to

cytoplasmic PRRs. Indeed, it has been shown that infection

induces formation of double membrane vesicles (DMV) at

perinuclear sites within the cytoplasm where RNA synthesis

takes place [108–111] (Fig. 2). It is tempting to speculate

that dsRNA replication intermediates containing 50-tripho-

sphorylated negative strands are located within DMVs and

therefore protected from PRR sensing. In line with this,

unimpeded IFN-b mRNA production is observed in co-
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Fig. 2. Coronavirus life cycle and RNA-specific pathogen recognition receptors. The coronavirus life cycle is illustrated together with PRRs with the potential

to sense viral RNA. Coronaviruses enter their host cells either on the plasma membrane or via endosomes where they could be recognized by TLR 3, 7, or 8. Note

that MHV is shown to be recognized by TLR7 in pDCs [92]. Upon uncoating the capped viral ssRNA is released into the host cell cytoplasm and could be sensed

by MDA-5 or PKR due to secondary structures containing dsRNA domains. Viral RNA synthesis takes place in or at double membrane vesicles (DMVs) and

involves the appearance of dsRNA [43], again potentially recognized by MDA-5 and PKR. The negative-sense RNAs arising as an intermediate of DMV-

associated genome replication and transcription are possibly 50-triphosphorylated and thus could be recognized by RIG-I. Finally, a nested set of viral mRNAs

are released into the cytoplasm (putative sensors: MDA-5 or PKR) where they are translated. The full-length genomic RNA can also be translated and is

eventually packaged into progeny virus particles which are released from the host cell via the exocytosis pathway.
infections with Sendai Virus (SeV) and MHVor SARS-CoV

[100,112]. Similar findings were reported for MHV-infected

cells treated with the IFN inducer poly I:C [104].

Apparently, the sensing of SeV RNA or poly I:C results

in the transcription of IFN-b mRNA, and coronaviruses are

unable to interrupt this process. Noteworthy, despite

significant IFN-b mRNA transcription, only markedly

reduced levels of IFN-b protein are secreted from in

SeV/MHV-infected cells [112]. This indicates that MHV

(and possibly other coronaviruses) counteract IFN-b mRNA

nuclear export and/or translation or affect downstream

events such as IFN-b protein stability and secretion.

In addition to those mechanisms, expression studies using

cDNA plasmids of SARS-CoV have shown that the proteins

encoded by ORF3b, ORF6 as well as the nucleocapsid (N)

protein are capable of inhibiting activation of IRF-3, and the

ORF3b and ORF6 gene products additionally inhibit IFN

signaling [113]. The mechanism of IFN signaling suppres-

sion by the SARS-CoV ORF6 gene product has been

characterized in detail and it was shown that it tethers

karyopherin alpha 2 and karyopherin beta 1 to the ER/Golgi

membrane to disrupt nuclear import of STAT1 [114].

Additionally, the ORF7a protein has been shown to inhibit
cellular protein synthesis [115], and the nsp 1 gene product

has been suggested to promote host cell mRNA degradation

[116]. The role of nsp1 in counteracting host innate immune

responses was further studied in the MHV system [117]. A

mutant virus containing a deletion in nsp1 was shown to

replicate like wild-type virus in vitro but was strongly

attenuated in mice, demonstrating that nsp1 is a major

pathogenicity factor. In type I IFN receptor-deficient mice,

however, replication of the nsp1 mutant virus was restored

almost to the level of wild-type virus. Detailed phenotypic

analysis revealed that nsp1 mutant replication was

particularly reduced in IFN-a-treated macrophages, indicat-

ing that nsp1 mainly affects IFN signaling or downstream

events of the type I IFN response.

Thus, the picture emerges that coronaviruses counter the

antiviral IFN response not by relying on one single IFN

antagonistic factor, as many other RNA viruses do

[27,29,101,118], but by using a multitude of passive and

active mechanisms. Passive mechanisms include the

induction of DMVs that may help to hide and protect

RNA replication intermediates from getting sensed by

intracellular PRRs. Active mechanisms include functions

provided by the ORF3b, ORF6, N, nsp1 and ORF7a gene
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products. Their combined effects may provide an explana-

tion for the absence of the IRF-3-dependent IFN-b and

RANTES expression and the STAT-dependent transcription

of the IFN-a genes in coronavirus-infected cells. Further-

more, on the effector side, the N protein of MHV was shown

to contribute to viral IFN resistance by interfering with the 2-

5 OAS pathway [119].

Interestingly, despite this multi-pronged IFN escape

strategy, the fact that superinfection with SeV unleashes a

strong transcriptional IFN response in SARS-CoV-infected

cells suggests an unexpectedly high degree of coronavirus-

specific inhibition of IRF-3 by ORF3b, ORF6 and N, which

may be explained by the strong compartimentalization of the

coronavirus factories in infected cells. Also, it has to be kept

in mind that viral IFN antagonism is usually not perfect and

serves to delay rather than completely suppress IFN

induction [27].

A notable exception from the general picture of an

impeded IFN response in coronavirus-infected cells is

provided by pDCs. Whereas mDCs infected with SARS-

CoV or MHV have no detectable IFN synthesis (similar to

fibroblasts), pDCs secrete substantial amounts of IFN in

response to these coronaviruses [92]. For MHV it was further

shown that this response was dependent on the presence of

TLR-7 and MyD88, which induce IFN-a expression via

constitutively expressed IRF-7. Apparently, in contrast to

the ubiquitous IRF-3 signaling chain, the pDC-restricted

TLR-7/IRF-7 pathway is not affected by the virus. TLR-7 is

located in endosomes of pDCs and may sense the viral

genome during virus entry, or sense viral RNA that has been

shuttled to endosomes by autophagosomes [120]. The TLR-

7-dependent activation of pDCs most probably provides an

important protective mechanism from coronavirus infection.

Indeed, depletion of pDCs in mice significantly reduced

serum IFN-a levels, and led to increased virus replication,

virus spread to multiple organs, and severe clinical signs of

disease [92]. Thus, a weak type I IFN response early during

coronavirus infection may explain why the prognosis for

SARS worsens with increasing age, and it is feasible to

suspect that the functionality and responsiveness of these

professional IFN producers plays an important role in the

protection from severe coronavirus-induced disease.

Interestingly, in an MHV-1-based in vivo model for

SARS, it was shown that a mouse strain which develops

severe SARS-like symptoms has little IFN production after

infection, whereas another mouse strain which was

protected from disease produces high amounts of type I

IFNs [20]. Moreover, it is well known that the virulence and

IFN resistance of MHV strains correlate [121]. In line with

this, a recent study using SARS patient materials suggests

the presence of high levels of type I IFNs which might be

responsible for the recovery of the majority of patients [122].

Thus, the degree of IFN escape by coronaviruses may be

host-specific as well as strain-specific and determine viral

pathogenesis in a manner similar to what was observed, for

e.g. Ebola virus [123,124].
6. Cytokines and chemokines induced by

SARS-CoV and MHV

IRF-3 is not only crucial for IFN induction, but also

participates in transactivation of the genes for RANTES

[125] and IP-10 [126]. It could therefore be expected that

coronaviruses also suppress production of these chemokines

(which are also termed CCL5 and CXCL10, respectively).

Recent data indicate that RANTES transcripts are indeed

absent in tissue cells productively infected with SARS-CoV

[107,127] or MHV [103]. IP-10 transcription, however, is

upregulated in some SARS-CoV-infected fibroblast cell

lines [107,127] and in macrophages [105]. Similarly, MHV

induces a strong IP-10 response in mouse brain [128], mDCs

and in pDCs [92], whereas type I IFNs are only produced in

pDCs [92]. This suggests that transcription of IP-10 is (i) less

dependent on IRF-3 than RANTES and IFN-b are, and (ii)

therefore largely unaffected by coronaviral inhibition

mechanisms. Transactivation of the IP-10 gene is not only

triggered by IRF-3, but also by the important transcription

factor NF-kB [126]. There are some reports that SARS-CoV

[127,129] and MHV [103,130] trigger an NF-kB response,

although other groups could not verify these finding in their

systems [104,131]. Moreover, the SARS-CoV N protein is a

strong antagonist of NF-kB [113] and the NF-kB-dependent

proinflammatory TNF-a is suspiciously absent in the SARS

cytokine profile (see below). Activation of NF-kB may

therefore not be the final explanation for the upregulation of

the IP-10 gene in SARS-CoV-infected cells. Indeed, recent

reports indicate that IRF-5 can be activated by virus infection

in a manner similar to IRF-3 [132], and that IRF-5 participates

in induction of proinflammatory cytokines rather than type I

IFNs [52,133]. It can be speculated that IRF-5 is involved in

the prominent upregulation of the IP-10 gene by SARS-CoV.

Some SARS-CoV-infected cell lines also produce

significant amounts of the chemokine IL-8 (CXCL8)

[107,127], an activity which was traced back to the viral

spike and nucleocapsid proteins [134,135]. Similarly, the

mouse counterpart of human IL-8, CXCL2, is upregulated in

fibroblasts after MHV infection [103]. Expression of IL-8 is

dependent on the transcription factor AP-1, and molecular

analyses revealed that SARS-CoV and MHV strongly

activate AP-1 [103,129,135]. Interestingly, human IL-8

was shown to inhibit the antiviral action of IFN [136].

Therefore, besides the direct inhibition of IFN induction by

viral proteins (see above), secreted human IL-8 (and

possibly mouse CXCL2 as well) might contribute to

diminish the IFN response in coronavirus infections.

Taken together, the in vitro cytokine profiles of SARS-

CoV and MHV infection appear to be mainly based on the

transcriptional activation of IP-10 and IL-8, possibly

mediated by NF-kB or IRF-5, and AP-1. IRF-3-depending

genes for antiviral cytokines such as type I IFNs, by contrast,

remain mostly silenced during the initial phase of infection.

IP-10 is a chemoattractant causing T cell infiltration into

coronavirus-infected organs [137]. Initially identified as an
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IFN-g-responsive gene, it was later shown to be induced by

IFN-a/b [138] and virus infections including those with

SARS-CoV [129,139]. Interestingly, IP-10 is an excellent

prognostic marker for SARS disease progression [140–142].

This implicates that the findings in cell culture reflect the in

vivo situation to a considerable extent, and that IP-10-

mediated lymphocyte infiltrations may play a major part in

SARS pathology in a manner similar to other viral diseases

[143].
7. In vivo cytokine profile and SARS pathology

Patient studies can rarely be standardized and controlled

with the same accuracy as in vitro studies. Moreover, the

kinetics and interrelation of cytokine production and SARS-

CoV spread, a critical point for data interpretation, cannot be

properly investigated with human subjects. Nonetheless data

obtained from ex vivo peripheral blood mononuclear cells or

from SARS patients’ sera are largely in agreement with the

above-discussed findings in cell culture.

Most studies involving patient materials found no

significant upregulation for a/b-IFNs or for IFN-induced

genes [139,140,144–148]. Interestingly, however, a recent

study investigating immune responses of 40 clinically well-

defined SARS cases revealed high levels of plasma IFN-a

(but not IFN-b) and an untypical ISG expression profile in

pre-crisis patients, but not in the crisis patients [122].

Possibly, these significant amounts of IFN-a early in

infection are produced by infected pDCs, as those cells are

capable of a full response to SARS-CoV [92].

High levels of the chemokines IL-8 and IP-10 along with

the proinflammatory cytokine IL-6 [139,140,146,148–153]

were often detected in patients. Given the cell culture results

for SARS-CoV, at least for IL-8 and IP-10 a direct production

by virus-infected cells is conceivable. IL-6, however, is not or

only weakly induced in productively infected tissue cells

[107,127,154,155] but moderately upregulated in abortively

infected macrophages and DCs [156]. Interestingly, IL-6

induction by SARS-CoV could be strongly boosted by prim-

ing of macrophages with bacterial LPS [157]. Thus, it can be

speculated that IL-8 and IP-10 in SARS patients are directly

produced by virus-infected cells, whereas upregulation of the

proinflammatory cytokine IL-6 is more likely a secondary

response due to an activation of the immune system.

High viral load, systemic and multiorgan infection,

massive lung infiltrations by monocytes and macrophages,

and rapid depletion of T cells are the hallmarks of full-blown

SARS [2,7,158–166]. It is debated whether the disease is

caused by the virus or is the result of a dysregulated immune

response. After primary infection, SARS-CoV grows at a

fast rate and spreads to different organs, including the lungs

[161,164,167]. Autopsies from deceased patients revealed

severe damage of the lungs and lymphatic tissues, accom-

panied by infiltrations of monocytic cells [168–170]. This may

indicate that immunopathogenesis is involved in the severe
outcome of the disease, providing the rationale for SARS

therapy with immunosuppressant corticosteroids [171]. On

the other hand, cell damages could have been directly caused

by the virus, as SARS-CoVis cytolytic [172], and high titers of

virus have been found in several organs of deceased patients

[160,161,173]. In addition, signs of necrosis were found

besides virus particles in affected tissues [170], and high viral

loads are predictive of adverse clinical outcome [174].

The cytokine profile outlined above most probably plays a

significant role in SARS pathology. In the initial phase of

infection, dampening and misregulating the antiviral IFN

response may allow the virus to grow rapidly and spread to

different organs, including the lungs [161,175]. The early

IFN-a detected in patients before the onset of disease [122]

may be derived from pDCs which are capable of responding to

SARS-CoV [92], whereas IFN-b production by tissue cells is

suppressed [102]. Thus, the virus buys time during the initial,

critical phase of infection in order to establish itself in the host.

At the same time, the virus-induced chemokines IP-10 and IL-

8 attract immune cells. These invading cells can themselves be

infected [161] and might produce even more chemokines and

cytokines such as the proinflammatory cytokine IL-6

[142,156] and possibly also IFN-g (which can induce even

more IP-10) and the anti-inflammatory cytokine TGF-b

[139,140,146,176]. This mixture of high-level virus replica-

tion followed by the invasion of activated immune cells and

production of both pro- and anti-inflammatory cytokines may

result in a cytokine storm which leads to organ destruction and

exhaustion of the immune system, eventually culminating in

the severe and often fatal respiratory distress, the hallmark of

full-blown SARS.
8. Concluding remarks

Much has been learned about coronaviruses and their

interactions with the IFN and cytokine responses, but a lot of

questions still remain to be answered:
� H
ow do coronaviruses escape from getting sensed by

cytoplasmic PRRs?
� T
o which extend do the recently discovered IFN

antagonists contribute to coronavirus-induced disease

and pathology?
� P
lasmid-expressed ORF3b, ORF6 and N of SARS-CoV

are all able to inhibit IRF-3 [113], but coronavirus-

infected cells fail to block IRF-3 activation by hetero-

logous inducers [100,104,112]. How is this specificity of

the coronaviral IRF-3 antagonists achieved?
� A
re there other, evolutionary conserved IFN antagonists

encoded by all coronaviruses, and do they target the same

signaling pathway(s)?
� A
re other IRFs, such as IRF-7 or IRF-5, inhibited to the

same extent as IRF-3?
� H
ow important is the early type I IFN response in vivo?

Data in the MHV system indicate that early, mainly pDC-
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mediated, type I IFN responses are essential to control

MHV infections [92]. In agreement with this it has

recently been shown that SARS-CoV infection triggers an

early type I IFN response in cynomolgus macaques [177].

Interestingly, STAT 1 nuclear import was impaired in

SARS-CoV infected cells, but not in surrounding non-

infected cells.
� W
hat are the main type I IFN responder cells and how

important are they to control coronavirus infection in vivo?
� W
hich ISG(s) is/are responsible for inhibiting corona-

virus replication? Given the high amount of dsRNA in

infected cells [43,100], PKR, RNaseL and ADAR qualify

as the prime candidates.
� H
ow do the observed cell type-specific IFN and cytokine

expression patterns impact on coronavirus disease and

pathology?

To address these questions, robust and reliable animal

models of coronavirus infections are needed. MHV as a

natural mouse pathogen and the recently developed murine

systems for SARS-CoV infection [178–180] will certainly

be of advantage in that context, since they allow for the use

of genetically modified virus and host strains. Although the

translation of our knowledge of coronavirus–host interac-

tions from the cellular level to the level of the host organism

will be a challenging task, it will certainly improve our

knowledge of SARS pathogenesis and open up new ways for

the prevention and treatment of coronaviral diseases.
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