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Abstract

Motivation: The characterization of the protein–protein association mechanisms is crucial to under-

standing how biological processes occur. It has been previously shown that the early formation of

non-specific encounters enhances the realization of the stereospecific (i.e. native) complex by reducing

the dimensionality of the search process. The association rate for the formation of such complex plays

a crucial role in the cell biology and depends on how the partners diffuse to be close to each other.

Predicting the binding free energy of proteins provides new opportunities to modulate and control pro-

tein–protein interactions. However, existing methods require the 3D structure of the complex to predict

its affinity, severely limiting their application to interactions with known structures.

Results: We present a new approach that relies on the unbound protein structures and protein docking

to predict protein–protein binding affinities. Through the study of the docking space (i.e. decoys), the

method predicts the binding affinity of the query proteins when the actual structure of the complex

itself is unknown. We tested our approach on a set of globular and soluble proteins of the newest affin-

ity benchmark, obtaining accuracy values comparable to other state-of-art methods: a 0.4 correlation

coefficient between the experimental and predicted values of DG and an error<3 Kcal/mol.

Availability and implementation: The binding affinity predictor is implemented and available at

http://sbi.upf.edu/BADock and https://github.com/badocksbi/BADock.

Contact: j.planas-iglesias@warwick.ac.uk or baldo.oliva@upf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are the building blocks needed by living organisms to carry

out most of their cellular processes. To fulfill their functional role,

proteins need to physically interact with one another (as well as

with other biomolecules, e.g. DNA) forming transient and

permanent complexes in a time and location dependent manner

(Gavin et al., 2002; Robinson et al., 2007). Hence, the characteriza-

tion of binding affinities and molecular mechanisms of protein–pro-

tein associations are critical challenges in current biomedical

research. The formation of a protein complex involves three
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steps: the initial fast formation of a non-specific encounter complex

from free proteins in solution, the two-dimensional search on both

protein surfaces that brings the pair to an orientation close to the

native complex (transient complex), and the subsequent conforma-

tional changes (Schreiber et al., 2009). The conformations of the

dynamic contacts of proteins with other proteins (encounter com-

plexes) can be stabilized through long-range electrostatic interac-

tions and possibly supplemented by short-range interactions(Tang

et al., 2006). In fact, studies in protein design show that association

rates can be increased by optimizing the electrostatic attraction

between proteins (Selzer et al., 2000). Thus, the ensemble of encoun-

ter complexes is crucial to accelerate the association process.

Conversely, large conformational changes upon binding slow down

the association process (Zhou and Bates, 2013). This model of the

protein binding mechanism helps to contextualize different pub-

lished results on predicting protein–protein interactions that involve

non-interacting regions. For example, we developed a protein inter-

action predictor relying on the classification of structural domains

(Andreeva et al., 2008) and super-secondary structures (Bonet et al.,

2014) where a relevant number of such structural features were

located outside the binding interface (Planas-Iglesias et al., 2013a, b).

In a different context, when only the structure of the two unbound

proteins that form a binary complex is known, a docking strategy to

predict the complex structure can be used, producing several candi-

dates that are ranked according to a certain scoring function (Feliu

and Oliva, 2010; Feliu et al., 2011; Segura et al., 2015). Indeed, pro-

tein docking and the development of scoring functions to rank dock-

ing models is a fertile ground as proved by the extensive literature of

proposed methods and an active CAPRI and CASP-CAPRI competi-

tion (see reviews by Lensink et al. (2016), Gromiha et al. (2017) and

references therein). Wass et al. showed that sets of docking poses

could be used to discern between interacting and non-interacting pro-

teins through the presence of near-native decoys and the distribution

of docking scores (Wass et al., 2011). All these findings support the

funnel-like intermolecular energy landscape theory for molecular

interactions (McCammon, 1998), and hint at the existence of a com-

mon feature or profile for interacting proteins, as if their recognition

is not only dependent on the specific binding interface.

The energy landscape of protein interactions is also characterized

by their association rate, which along with the dissociation rate

depicts the binding affinity of the protein complexes. Such affinity is

described by the equilibrium dissociation constant (Kd), and from a

thermodynamic perspective—assuming the standard concentration

of 1 mol/dm3 and equaling the quotient of activity factors to 1, is

calculated by the Gibbs free energy using the formulae:

DG¼�RTloge(Kd). Experimental techniques for measuring binding

affinity are expensive and time-consuming (Garcia-Garcia et al.,

2012). For this reason, many computational methods have been

developed in the last decades to predict the binding affinity (Horton

and Lewis, 1992; Kastritis et al., 2014; Ma et al., 2002; Moal et al.,

2011; Vangone and Bonvin, 2015), and only few have considered

the effect of non-binding regions (Tian et al., 2012). However, most

of these methods show poor accuracy when tested against large

datasets (Kastritis and Bonvin, 2010). Such methods usually rely on

the known structure of binary complexes (Erijman et al., 2014), and

have eventually proved the relevance of the quality of the crystal

structure of the complex to improve the prediction (Marillet et al.,

2016). The affinity prediction for the complex is achieved by identi-

fying features on the native interface and applying scoring functions

(Moal et al., 2011), either based on statistical potentials (Su et al.,

2009), on atomic physical interactions (Audie and Scarlata,

2007) or complementarities in the surfaces obtained by docking

approaches (Vreven et al., 2012). To account for conformational

changes, often linked to protein interactions, molecular dynamics

simulations and simplified models, such molecular mechanics

Poisson-Boltzmann surface area and Generalized Born variant, pro-

vides a valid, albeit more computationally expensive, route to

improve the prediction of the binding energy between proteins

(Gohlke et al., 2003; Gumbart et al., 2013; Moritsugu et al., 2014;

Rodriguez et al., 2015).

Questions on the role of non-interacting regions affecting the

binding affinity and the energy landscape of protein–protein interac-

tions have been addressed only of late (Kastritis et al., 2014; Tian

et al., 2012). Still, even these recent methods use the structure of the

protein complex to calculate the long-distance interaction between

the residues of both partner proteins and their opposite native inter-

faces (Kastritis et al., 2014; Vangone and Bonvin, 2015) and hence

have limited applicability. With the aim to shed light into the role of

non-interacting sites, we study the formation and binding affinity of

binary complexes of globular soluble proteins. We use the poses

resulting from the protein–protein docking search to scout the con-

formational space of potential encounter complexes. We classify the

docking space into different types of productive and non-productive

conformations according to their potential to form the native struc-

ture of the binary complex. Based on this analysis we endeavor to

predict the binding affinity using the unbound protein structures,

proving its feasibility. We have tested our approach using the affin-

ity benchmark 2 (Vreven et al., 2015), the largest affinity benchmark

up to date. In contrast to current state-of-the-art methods that

require the native structure of the binary complex, we conclude that

only the structure of the unbound partners is required, thus extend-

ing the applicability of predictions despite lowering the quality on

the prediction but with a reasonable margin of error (in most cases

lower than 3 Kcal/mol).

2 Materials and methods

2.1 Datasets
We use the Docking Benchmark 5 and the Binding Affinity

Benchmark 2 (Vreven et al., 2015) to study the conformational

space of docking poses resulting from docking experiments. The

benchmarks, respectively, consist of 230 and 179 non-redundant

high quality structures of protein complexes classified by biological

functions. The sets are divided in three categories: enzymes,

antibody-antigen and others [including membrane-bound receptors,

G-protein (or G-protein-coupled receptor) proteins and a set of mis-

cellaneous protein types and functions]. In addition, for each protein

the interface-RMSD (Méndez et al., 2003) is reported. This measure

can be used to estimate the degree of conformational change that a

protein undergoes upon binding, allowing to split the datasets into

rigid (interface-RMSD<1 Å) and flexible (interface-RMSD�1 Å)

interactions. We restrict our dataset to globular soluble proteins by

omitting the categories of membrane-binding receptors and G-pro-

teins (or G-protein-coupled receptors). We also omitted antibody-

antigen complexes as we considered these to be a particular case of

protein–protein interactions which mechanisms of recognition and

binding may be more intriguing (see Supplementary Material). The

trimmed datasets are referred here as DB5 (from Docking

Benchmark 5) and AB2 (from Affinity Benchmark 2). The analyses

with different scoring functions were performed on 94 complexes

out of the AB2 dataset that are also found in the CCHarPPI server

(Moal et al., 2015).
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2.2 Docking, refinement and scoring
PatchDock (Schneidman-Duhovny et al., 2005) was used with

default parameters to obtain the docking poses (or decoys), which

were ranked according to a geometric shape complementary score

(rigid docking). Poses were obtained by docking the conformations

of the two interacting proteins in its bound form (i.e. uncoupling the

complex and trying to reconstitute it by docking). However, decoys

were refined and rescored using FiberDock (Mashiach et al., 2010)

to simulate the flexibility, optimize the interaction and calculate the

affinity of the interaction with all decoys, near-native and non-

native poses, under the same conditions. Besides, for the analysis of

the prediction of binding affinity, we performed the docking on the

unbound forms of the complex. Finally, all docking poses were

scored by three statistical potentials: EPAIR, ES3DC and E3D from

Feliu et al. (2011). EPAIR is the classical statistical potential for the

interaction of two residues. ES3DC is a refinement of EPAIR that

considers the condition in which the residues sit (secondary-struc-

ture and degree of accessibility). The last scoring term, E3D, con-

cerns only the distance at which pairs of residues interact and

increases together with the number of interacting residue-pairs, thus

reflecting the size of the interface.

2.3 Classification of docking poses in encounter

complexes
First, we assume that PatchDock samples sufficiently the conforma-

tional space of encounter complexes. Then, we classify the obtained

poses into four different classes: Near-Native, Face-Face, Face-Back

and Back-Back, reflecting the relative positions of the binding sites

of each protein partner. Near-Native class correspond to all docking

poses with a ligand-RMSD<10 Å, ligand-RMSD being the RMSD

of the ligand coordinates after superposition of the receptor coordi-

nates (Méndez et al., 2003). When the ligand-RMSD is larger, the

classification depends upon the accessibility of the interacting inter-

faces of the partners: Face-Face are docking poses in which the bind-

ing sites of both protein-partners face each other (i.e. they are

inaccessible to other proteins); Face-Back, when only one binding

site interacts with the protein partner (i.e. the binding site of one of

the proteins is freely accessible); and Back-Back, when both binding

sites are free to interact with other protein units (see example in

Supplementary Fig. S1). To elucidate if a binding site of one of the

protein partners (A) remains accessible in a complex decoy or pose

(formed by A and its partner B), a guided docking using PatchDock

is done between the pose and the single chain of the other protein

partner (B). The docking is guided using the native interface residue-

residue distance constraints between proteins in the decoy; all other

parameters were set as per default. If PatchDock guided docking

produces results, the binding site of the tested partner (A) is still

accessible in the docking pose; otherwise, the binding site is not

accessible and thus the protein partner B in the decoy is placed

totally or partially on top of the binding site. This procedure is done

twice, once for each protein partner (A and B) to determine the

accessibility of both binding sites and to classify each docking pose

in one of the non Near-Native aforementioned classes. If the binding

site of both partners, A and B, is not accessible, then the docking

poses need small rotations to produce a near native solution, we

classify such poses as Face-Face. If both binding sites are accessible

in the decoy, then the orientation is opposite to the native orienta-

tion and we classify it as Back-Back. Otherwise, if one of the part-

ners, A or B, has the interface inaccessible and the pose is classified

as Face-Back.

2.4 Correlations and predictions
We use the absolute values of Pearson’s correlation coefficients (R)

to determine the linear dependence between the scores of different

classes of docking poses considering only one score at a time or mul-

tiple scores. The score of a class or group of conformations is

obtained by averaging all the poses in the group. We use linear

regression models for predicting the affinity (DG) from the unsolved

forms of the interactions in the AB2 dataset. The models are trained

and tested using Scikit-learn module of python (Pedregosa et al.,

2011) with the docking scores. We randomly split the data into 10

subsets to perform a 10-fold cross-validation analysis; the procedure

was repeated 1000 times. We also use the Pearson’s correlations

coefficients between the experimental and predicted affinities, and

prediction ratio [as defined in Marillet et al., (2016), see also

Supplementary Table S5] to evaluate predictions. The docking

scores of the predictions were obtained with the docking poses of

the bound and unbound conformations for testing the differences.

Any of the Pearson’s correlations is assumed to be statistically signif-

icant if the associated P value is <0.05. The significance of differen-

ces in the performance of the models applied to native complexes or

to docking decoys was assessed using a Mann–Whitney test and the

Hodge-Lehman estimate of the population shift. Density plots and

distributions of scores are obtained with Seaborn and Matplotlib

modules of Python.

3 Results

3.1 Analysis of the conformational space of encounter

complexes
To decipher the potential role of docking poses in the encounter of

two proteins, we followed a strategy consisting of: (i) uncouple each

complex in the DB5 dataset, (ii) rebuild complexes using

PatchDock, (iii) refine results with FiberDock, (iv) score the com-

plete set of solutions using different energetic terms and statistical

potentials (including EPAIR, ES3DC and E3D) and (v) classify poses

in four classes: Near-Native (NN), Face-Face (FF), Face-Back (FB)

and Back-Back (BB), depending on the relative position of the bind-

ing sites (see Materials and Methods). Our starting assumption is

that defined classes (step v) represent four conformational macro-

states of the interaction: the first two correspond to productive

encounters of the interacting partners and the last two to the non-

productive ones. To test this hypothesis, we initially analyzed the

span of scores (step iv) within each class and compared the different

classes using the arithmetic mean. Figure 1 summarizes this analysis

for ES3DC score.

Since docking scores are designed to rank near-native poses, it is

not surprising that Near-Native scores are much smaller than the

other groups. Distributions of E3D, EPair and FiberDock scores

show a similar trend (Supplementary Figs S2–S4, respectively).

Interestingly, these scores describe a decreasing slope from non-

productive to productive conformations, where the differences

between the BB and the FF groups are much smaller than those

existing between the FF and the NN classes. Considering that all

docking solutions were included in the analysis regardless of their

conformity with the crystallographic dimer (Supplementary Fig. S5),

this trend supports the previously reported funnel like model for

molecular interactions (Planas-Iglesias et al., 2013a, b; Wass et al.,

2011), which proposes that the interacting partners explore a wide

conformational and (high-) energetic space before committing them-

selves into the interaction.
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We have shown a funnel-like trend for a population of different

pairs of proteins, but whether the same holds true for individual

pairs needs to be tested. Hence, for each protein pair we calculated

the Pearson’s correlation between the average of the docking scores

of each class. Figure 2 shows the results for ES3DC score (other

scores in Supplementary Figs S6–S8), and the fitted values of all

regression models are shown in Supplementary Table S1. BB energy-

scores are often higher than FB ones, these higher than FF scores,

and the NN class always contains the lowest of them. Two observa-

tions are noteworthy. First, FF, BB and FB groups of poses strongly

correlate between them; conversely, the NN group of poses has a

weaker correlation with the rest. These correlations are weaker for

FiberDock scores, but all correlations are significant (P values lower

than 0.01) regardless of the scoring approach. Second, the span of

scores within each decoy class is very large because of the high varia-

bility of surfaces in different complexes. Therefore, some scores in

the BB or FB orientations (i.e. non-productive encounters) can even

have lower energy than a Near-Native solution. Error bars in Figure

2 (and Supplementary Figs S6–S8) show the magnitude of this varia-

bility, despite of which a significant correlation between different

decoy classes is still preserved. This is expected for NN and FF

poses, since the relatively correct orientation of the encounter should

be effective even if it does not result in an immediate complex. In

such cases, the scouting of the conformational space is restricted to

small rigid rotations while the partners do not need to be physically

separated, reducing the time required to find the native form of the

complex. The observed correlation between non-productive and

productive orientations is nevertheless unexpected. However, since

the scoring trend is preserved (high or low) regardless of the docking

pose productivity class, non-productive orientations should describe

the affinity of the molecular association as well as the productive

ones.

Hence, a logical route can be traced from the BB poses to the

NN orientations, where we consider that each class is a macro-state

of the binding process. Such a route can be described as a graph in

which each macro-state is represented as a node and the transitions

between them as edges. We apply data processing inequalities

(Margolin et al., 2006) to reconstruct the network that connects the

groups of poses using correlations between energies instead of

mutual information: correlations between the energies of directly

connected nodes must be higher than between nodes connected

indirectly (i.e. by a transitive relationship). Pearson’s correlation

between the scores of these classes support a model that correlatively

connects BB, FB, FF and NN classes (see inward graph in Fig. 1 for

ES3DC scores; ibid. in Supplementary Figs S2–S4 for E3D, EPAIR

and FiberDock, respectively). The same trend is observed if correla-

tion slopes (Supplementary Table S1) are considered. Therefore,

from our results we infer a path connecting the non-productive and

the productive states, where Face-Back and Face-Face play a poten-

tial mechanistic role drawing near the binding sites of the two inter-

acting partners. This model concurs with a very recent modeling

experiment deciphering the association dynamics of the bacterial

ribonuclease barnase with its inhibitor barstar (Plattner et al.,

2017). Plattner et al. show that initial steps towards binding also

involve conformations that we defined as BB and FB.

3.2 Docking scores correlate with binding affinities on

all different classes of docking poses
Current approaches to predict the binding affinity between two pro-

teins rely on several scores and energies computed on the 3D struc-

ture of the native conformation of its binary complex (Moal et al.,

2011; Moal et al., 2012). Our previous analyses suggest that, if the

scores of the Near-Native can be used to predict the affinity, then

the scores of the rest of the classes might be used as well. To prove

this hypothesis, we calculate on the unbound pairs in DB5 and AB2

(DB5 \ AB2) the Pearson’s correlation between the average of the

Fig. 1. Boxplots of ES3DC averaged scores of several protein–protein interac-

tions. Boxplots represent the distributions of the average of ES3DC scores in

the NN, FF, FB and BB classes for the protein interactions of the DB5 dataset.

Values next to each box show percentage of decoys of each class. Mean

values for each class are shown in the gray legend at the top. A representa-

tive decoy is shown inside each boxplot (see Supplementary Fig. S1). The

inner plot in the bottom-right shows a directed graph inferring the binding

process directionality, based on the correlations (see legend of Fig. 2)

Fig. 2. Scatterplot of ES3DC averaged scores between decoy classes. Each

dot shows the relationship between the averages of the ES3DC scores of

poses with different decoy conformational classes (standard deviations are

shown in error bars): NN versus FF (a); FF versus FB (b); NN versus FB (c); FB

versus BB (d); NN versus BB (e); FF versus BB (f). Pearson’s correlations are

shown in the legends at the top of each scatterplot (they are used in the

directed-graph in Fig. 1). Least squares fitting curve is shown (slope and

y-coordinate interception are in Supplementary Table S1 for the sake of

comparison)
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scores of each class and the experimentally determined DG (see

Supplementary Table S2). FiberDock scores of the Near-Native

poses significantly correlate (P<0.05) with the affinity (DG) as pre-

viously reported (Vangone and Bonvin, 2015). Interestingly,

FiberDock scores of the non-productive orientations significantly

(P<0.05) correlate with DG too. More importantly, the electro-

static terms of FiberDock significantly correlate with the affinity

(P<0.05) in all classes except for the NN, where van der Waals and

de-solvation energies have a major role. These results agree with ear-

lier studies suggesting that electrostatic forces dictate the formation

of encounter complexes (Alsallaq and Zhou, 2008; Zhou, 1993;

Zhou and Bates, 2013). This is a trend preserved in interactions

between proteins and other biomolecules such as nucleic acids

(Fornes et al., 2014) and lipids (Barneda et al., 2015; Planas-Iglesias

et al., 2015), suggesting that the role of non-interacting regions of

proteins in such intermolecular interactions could also be relevant.

Notably, we don’t need to simulate the dynamics of the protein–pro-

tein encounters to reach a similar conclusion; instead we rely only

on a limited exploration of the conformational space of the interac-

tion represented by several docking solutions.

The statistical potentials EPAIR and ES3DC indicate the active

role of specific residue-pairs in the interface of known interactions,

while E3D is directly proportional to the number of residues in con-

tact (i.e. the interface size). Congruently, correlations between DG

and the average of E3D scores are higher for the productive (NN

and FF) than the non-productive (FB and BB) orientations. There is

also a high and significant correlation for all orientations of both

EPAIR and ES3DC with the affinity, showing that specific residues

from any location on the protein surface may have a role in binding.

All these results suggest that proteins increase their affinity by

both lowering the energy of the stereospecific native complex and

enhancing the encounter complexes in any of its potential different

orientations.

3.3 Binding affinity can be predicted using all docking

poses
We have shown in the previous analysis how DG correlates with the

average values of the statistical potentials EPAIR, ES3DC and the

electrostatic terms of the FiberDock score for all groups of decoy

classes. Hence, we test the Pearson’s correlation between the DG

and the averages computed on all the decoys of a docking (see

Supplementary Table S2). The scores of FiberDock, E3D and

ES3DC show a significant correlation with DG when using the

native complex structures of the AB2 dataset, as expected from pre-

vious works (Vangone and Bonvin, 2015). In comparison, when

using all the available poses resulting from unbound docking, the

average of the electrostatic terms of FiberDock and the averages of

the statistical potentials EPAIR and ES3DC significantly correlate

with DG (P<0.05). Furthermore, when the AB2 dataset is split into

rigid and flexible cases (see Materials and Methods), the average of

FiberDock scores (obtained with all decoys of each protein-pair) is

significantly correlated (P<0.05) to DG only in rigid cases.

Interestingly, the average of the statistical potentials EPAIR and

ES3DC are correlated with DG in both cases, rigid and flexible, with

most points within a margin error of 2.8 Kcal/mol (Supplementary

Table S2 and Fig. S9). According to previously reported results

(Horton and Lewis, 1992; Zhou and Bates, 2013), the correlation of

the binding affinity with van der Waals terms shows the role of the

surface complementarity, the solvation and the loss of entropy pro-

duced by the conformational accommodation of the protein-

partners.

Complementarily, the role of the electrostatic potential terms

should be more relevant for the recognition of the protein-partners

(Schlosshauer and Baker, 2004). Hence, we have analyzed the corre-

lation of the different types of scores with the kon and koff, similarly

as for DG, for the number of cases in the AB2 dataset that these rate

constants are determined. Both constants describe the protein–pro-

tein association rate kinetically, taking into account the diffusion-

limited approach of the two interacting proteins and the stability of

the intermediate interaction (Schreiber et al., 2009). We hypothesize

that the averages of the scores of the docking poses should better

correlate with kon, whereas using only the Native conformation to

calculate the scores should correlate with koff (Ubbink, 2009).

However, the small size of the sample has limited our conclusions

(Supplementary Table S3).

From these analyses, we infer that the average of scores of many

different docking potentials, obtained with all the poses of a docking

search between two proteins, can be used to predict their DG of

binding form their tertiary structure (unbound forms). Specifically,

one of the strongest correlations, obtained with ES3DC, is also very

robust as it remains reliable for both flexible and rigid cases. We

have created a linear regression model to predict DG using the

ES3DC scores of all docking poses and a 10-fold validation protocol

(see Materials and Methods, Supplementary Fig. S10). We have

applied a similar model to predict DG using only the native confor-

mation. We have also generated similar models with other scores:

EPAIR, E3D, hydrogen-bond, van der Waals and electrostatic terms

of FiberDock (see Table 1 and Supplementary Table S5). The addi-

tion of more terms to the linear models didn’t improve the results,

while unnecessarily increasing the overfitting of the model. Hence,

we proceeded analyzing models which considered only one score.

We have compared the results of using only the native conforma-

tion, where the best potentials are E3D, hydrogen-bond and attrac-

tive van der Waals terms of FiberDock, or all docking decoys, where

the best potentials are ES3DC, EPAIR and electrostatic terms of

FiberDock. Interestingly, the differences between the predicted and

the measured binding affinities are comparable regardless of using

only the native structure or the whole set of docking poses

(Supplementary Table S6). We have also compared other potentials

and scores from the results of the CCHarPPI server for 94 complexes

of the AB2 dataset, although this approach could only be applied on

the native conformation (Supplementary Tables S4 and S5). Finally,

we further compared the use of unbound or bound conformations

for the prediction, showing that both yielded comparable differences

between the predicted and the measured binding affinities

(Supplementary Fig. S11, P¼0.404 and P¼0.391 for rigid and flex-

ible cases, respectively).

The linear regression model obtained with the whole set of

decoys from a docking search and the ES3DC statistical potential

has a slope of 0.23 and intercepts at -12.3, and was obtained using

all the data available in AB2. The predicted values of DG in the 10-

fold cross-validation significantly correlate (0.36 average Pearson’s

correlation, P<0.05) with the experimental, with an average error

(RMSE) of 2.84 Kcal/mol. Furthermore, two thirds of the assessed

pairs obtain predictions within this range (38.30% of the pairs have

predictions differing at most 1.4 Kcal/mol from experimental val-

ues). This effect is more noticeable in the flexible cases, where pre-

dictions are within 1.4 or 2.8 Kcal/mol for 43.48% and 76.09% of

the cases, respectively (Supplementary Fig. S6).

Figure 3 shows the density plot between predicted and experi-

mental DG using the test sets of 1000 10-fold cross-validation

regression models, using both bound (A) and unbound (B) confor-

mations of the proteins interaction. Differences between both
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conformations are quasi-negligible for flexible docking cases,

proving the coherence of our approach to use the unbound confor-

mations (see Supplementary Material). In comparison with other

state-of-art approaches our method is less accurate (i.e. the

Pearson’s correlation between experimental and predicted DG of the

most recent approaches ranges from 0.48 (Kastritis et al., 2014) to

0.73 (Vangone and Bonvin, 2015). Other models for different types

of proteins obtained correlations from 0.51 to 0.64 (Moal et al.,

2011). However, these approaches can only be applied if the struc-

ture of the binary complex is known, while ours only requires the

structure of the unbound proteins or just the structure of the protein

fragments or domains involved in the interaction. We provide the

web-server Binding Affinity Dock (http://sbi.upf.edu/BADock),

which implements the above described model for the prediction of

binding energies of protein pairs. We also provide a github reposi-

tory with the data and scripts to reproduce the work (https://github.

com/badocksbi/BADock).

4 Conclusions

We have used the protein-docking method PatchDock to sample the

conformational space of the non-specific complexes formed during

the association process of two soluble and globular proteins. We

have classified the decoys into four classes, depending on the orien-

tation of the binding sites of the protein partners: two productive

and two non-productive. We have shown that there is an association

between the energetic terms and docking scores in all classes of con-

formations. A mechanistic path can be inferred from the direct-

graph analysis of the correlations of the averages of docking scores.

We have observed correlations between the experimental DG and

the average of statistical potentials and electrostatic energy terms of

the poses obtained by docking. The implication of electrostatic ener-

gies in the non-productive conformations agrees with previous stud-

ies that suggested that encounter (non-native) complexes are

stabilized by these forces (Schlosshauer and Baker, 2004). Finally,

we have developed a binding affinity predictor based on the whole

set of docking poses, without requiring the structure of the complex.

Although our method is less accurate than others it is still competi-

tive, as it can cover many other proteins for which the structure of

the complex is unknown, while achieving a relevant correlation

between the prediction and the experimental value of DG.

Nevertheless, we wish to note that when the native structure of the

complex is known, many other approaches will obtain better accu-

racy than us.
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