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Abstract

We develop a decision tree based game-theoretical approach for constructing functional responses in multi-prey/multi-
patch environments and for finding the corresponding optimal foraging strategies. Decision trees provide a way to describe
details of predator foraging behavior, based on the predator’s sequence of choices at different decision points, that
facilitates writing down the corresponding functional response. It is shown that the optimal foraging behavior that
maximizes predator energy intake per unit time is a Nash equilibrium of the underlying optimal foraging game. We apply
these game-theoretical methods to three scenarios: the classical diet choice model with two types of prey and sequential
prey encounters, the diet choice model with simultaneous prey encounters, and a model in which the predator requires a
positive recognition time to identify the type of prey encountered. For both diet choice models, it is shown that every Nash
equilibrium yields optimal foraging behavior. Although suboptimal Nash equilibrium outcomes may exist when prey
recognition time is included, only optimal foraging behavior is stable under evolutionary learning processes.
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Introduction

The functional response [1,2] considers the number of prey (or

resource items) consumed by a single predator (or forager) as

influenced by prey abundance. By dictating the mortality rate of

prey and the feeding rate of predators, it is central to

understanding consumer-resource dynamics [3,4]. Furthermore,

the functional response can be extended to consider a predator

seeking two prey types [1]. Besides being more realistic for many

predators, functional responses on two food types create indirect

effects between the prey via the shared predator. For instance, if

consuming a prey item takes time or reduces motivation, then the

presence of a second food type decreases the forager’s consump-

tion of the first food type. Via the functional response, such prey

become indirect mutualists [5]. Conversely, short-term apparent

competition [6,7] results if the presence of the second prey

encourages the predator to spend more time or effort searching for

and capturing prey. This happens when foragers bias their efforts

towards areas rich in resources. Regardless, the two-food

functional response is central to understanding diets, optimal

foraging for multiple resources, predator mediated indirect effects

between prey, and population dynamics within food webs.

Two modeling approaches have addressed the question of diet

choice for a forager that searches for and then handles

encountered prey items. The first is found in classic optimal

foraging models. The forager’s encounter probability or attack rate

[3] is viewed as a mass action phenomenon between the predator

and its prey. The forager’s overall encounter rate with prey is

simply the product of prey abundance and the predator’s

encounter probability on that prey. Upon encountering a prey,

the forager can elect to consume the prey at some handling time

cost, or reject the opportunity and continue the search for other

prey. Starting from Holling’s [1] two-food functional response this

approach has generated increasingly sophisticated predictions.

In Pulliam [8] (see also [9]), a ‘‘zero-one’’ or ‘‘bang-bang’’ rule

for diet choice was derived. A forager should either always accept

or always reject an encountered food item. When encountered, the

preferred food (based on a higher reward to handling time ratio)

should always be consumed. If searching for and handling the

preferred food type yields more (or less) reward than simply

handling the less preferred food, then the less preferred food

should always be rejected (or accepted) when encountered.

Empirical support was encouraging but equivocal [10]. Most

foragers show a partial selectivity, they are neither completely

opportunistic nor completely selective. A number of mechanisms

have been proposed and modeled for why foragers sometimes only

partially consume a less preferred food; including food depletion

[11], food bulk and digestion limitations [12], complementary

nutrients [13], local omniscience [14], incorrect prey classification

and sampling by predators [15,16], prey crypsis [17] etc.

A second approach to diet choice is emerging from spatially-

explicit models such as agent based models. A forager may move

through a lattice or some form of continuous space. Prey items

may occur at fixed locations or may also move through the defined

space. The forager possesses some detection radius. Upon
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detecting a prey, the forager can choose to ignore the prey or

attempt a capture. Such approaches lead to greater realism by

considering the roles of space and individual contingencies. While

they move through the same landscape, each individual forager

becomes more or less unique based on its own personal history of

movement, food encounters, and foraging decisions. Some

individuals may experience unusually high or low harvest rates

as a consequence of runs of good or bad luck, respectively. Like the

classical models of diet choice, the foragers can still make optimal

foraging decisions by deciding which encountered foods to handle

or reject. The simulations can be run with a myriad of decision

rules, and the performance of these rules can be compared. While

a best diet choice rule may emerge from a particular scenario, the

explicit nature of the agent based models may obscure the

elegance or simplicity of the decision rule. Such agent based

models may approximate more or less the optimal decision rules

from the first approach to diet choice [14].

Here we develop a decision theory approach to diet choice. We

use an explicit decision tree to evaluate the costs and benefits of

different choices. Such a decision tree has similarities to extensive

form games from game theory [18,19]. Our goals are threefold.

First, does an explicit consideration of decision making recover the

results from the classic ‘‘mass-action’’ models of diet choice.

Second, can these decision trees assist in uncovering the optimal

decision rules for agent-based foraging models. Third, what are

the similarities and differences between the decision tree of a

forager and evolutionary games in extensive form. To achieve

these goals we imagine a forager that searches for and handles

food items of two types.

We consider three different scenarios based on the nature of

searching for food and the ability to recognize a food’s type upon

encounter. In the first, search is undirected in terms of food type,

but upon encountering a food item the forager instantly recognizes

its type. This accords with the assumptions that generate Holling’s

two-food functional response and an ‘‘all or nothing’’ decision rule

of food type acceptability. In the second the forager may

encounter one prey of each type (called simultaneous encounter

[20]), but can only handle one of the items, the other being lost.

For instance, these two prey may be together at the same place

competing over a common resource. Alternatively, the predator

may search a small area completely for any prey before deciding

whether to attack. In the third, we consider recognition time where

the forager must expend additional time if it wants to know the

type of food that has been encountered prior to handling.

Methods

Decision trees and the functional response for two prey
types

In this section, we develop a decision tree method to derive the

predator’s functional response. The tree details the predator-prey

interactions under consideration. We envision several prey types

spatially distributed among many patches (that we will call

microhabitats). The encounter events are then partially deter-

mined by the prey through their spatial distribution before the

predator arrives. For instance, if prey are territorial, then the

predator can encounter at most one solitary prey in a given

microhabitat. At another extreme, if the different types of prey

aggregate, then the predator can encounter different prey types at

the same time. Thus, encounter events depend on the spatial

behavior of the prey.

We break the predation process into different stages. A typical

predation process has at least three stages that answer the

following questions: 1. What prey (or types of prey) does the

predator encounter? 2. What does the predator do in a given

encounter situation (e.g. does the predator attack a prey, what type

does it attack, etc.)? 3. Is the predator successful or not if it attacks?

Here, we construct functional responses from the underlying

decision trees based on three scenarios. This construction is,

however, quite general and described fully in section Decision

trees and the functional responses of Appendix S1. We start with a

well known example that leads to the Holling type II functional

response for two prey types.

Suppose that there are two types of prey A and B with fixed

densities x and y, respectively. We assume that these prey are

scattered randomly among N microhabitats where N is much

larger than the number of individuals (i.e., N&xzy). Thus, there

will be at most one prey in each microhabitat (i.e. the probability

that there are two or more in some microhabitat is negligible).

Thus, the probabilities that a given microhabitat has no prey is

p0~1{ x
N

{ y
N

, exactly one prey A is pA~ x
N

and exactly one prey

B is pB~ y
N

. These probabilities are assumed not to change with

time, which is the usual assumption when deriving a functional

response.

Suppose the predator chooses a microhabitat to search at

random, that it always finds the prey in this microhabitat if there is

one, and that it takes a searching time ts for it to determine

whether a prey is there or not. There are then three possible

encounter events: the predator encounters a prey of type A, a prey

of type B, or no prey at all. These events occur with probabilities

pA, pB and p0 respectively (see Figure 1, Level 1).

For the first event when encountering prey A, the predator has

two possible actions: Either ‘‘attack prey A‘‘ and ‘‘do not attack

prey A.’’ These actions occur with probabilities qA and 1{qA,
respectively (see Figure 1, Level 2). Similarly, in the second event

when a predator encounters prey B, the two possible actions of the

predator are to ‘‘attack prey B‘‘ and ‘‘do not attack prey B‘‘ with

probabilities qB and 1{qB, respectively. For the third event, when

no prey are found, the only predator action is ‘‘do not attack’’ with

probability 1. Altogether, there are five possible predator activities,

and these correspond to the five edges at Level 2 in the decision

tree of Figure 1.

Figure 1. The decision tree for two prey types. The first level gives
the prey encounter distribution. The second level gives the predator
activity distribution. The final row of the diagram gives the probability
of each predator activity event and so sum to 1. Since each entry here is
simply the product of the probabilities along the path leading to this
endpoint, we do not provide them in the decision trees from now on.
With random prey distribution and N large, p0~1{ x

N
{ y

N
,pA~ x

N
and

pB~ y
N

. If prey A is the more profitable type, the edge in the decision
tree corresponding to not attacking this type of prey is never followed
at optimal foraging (indicated by the dotted edge in the tree). The
reduced tree is then the resulting diagram with this edge removed.
doi:10.1371/journal.pone.0088773.g001
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Let the predator’s handling times of prey A and B be tAh and

tBh, respectively. The five predator activity events are: encounter a

microhabitat with prey A and attack it; encounter a microhabitat

with prey A and do not attack it; encounter a microhabitat with

prey B and attack it; encounter a microhabitat with prey B and do

not attack it; encounter an empty habitat. The probability

distribution of these activities (i.e. the ‘‘activity distribution’’,

[21]) in this order is pAqA~
xqA

N
, pA(1{qA)~

x(1{qA)

N
,

pBqB~
yqB

N
, pB(1{qB)~

y(1{qB)

N
, p0~1{

x

N
{

y

N
with dura-

tion times tsztAh, ts, tsztBh, ts, ts, respectively. All this

information is included in the decision tree of Figure 1. Also

included in this tree are the energy consequences (p‘) to the

predator of each of the five activities.

Calculation of functional responses is based on renewal theory

(for details, see section Decision trees and the functional responses

of Appendix S1) which proves that the long term intake rate of a

given prey type can be calculated as the mean energy intake

during one renewal cycle divided by the mean duration of the

renewal cycle [20,22-24]. A single renewal cycle is given by a

predator passing through the decision tree in Figure 1. Since type

A prey are only killed when the path denoted by pA and then qA is

followed, the functional response to prey A, fA(qA,qB), is given

through Figure 1 by

fA(qA,qB)~

pAqA

p0tszpA½qA(tsztAh)z(1{qA)ts�zpB½qB(tsztBh)z(1{qB)ts�

~
pAqA

tszpAqAtAhzpBqBtBh

:

Similarly, the functional response for prey B is

fB(qA,qB)~
pBqB

tszpAqAtAhzpBqBtBh

:

These are the functional responses assumed in standard two

prey models (e.g., [9,20,25]) given in our notation. For instance, if

we normalize searching time so that Nts~1, fA(qA,qB) can be

rewritten in terms of prey density in the more familiar form
xqA

1zxqAtAhzyqBtBh

. As mentioned above, it is assumed that the

encounter rates, pA and pB, remain unchanged over the renewal

cycle in that predation has negligible effect on prey densities

during this time. This occurs if, for example, x and y are large or

N is quite large and so predation is rare. Our decision tree

approach provides a mechanistic foundation to typical functional

responses assumed in the literature. In particular, it is obvious that

the standard Holling II functional response [2] given by

f (x)~
x

1zxth

is the outcome for Figure 1 when there is only

one type of prey and the predator always pursues every prey it

encounters (take Nts~1,y~0 and qA~1).

The predator’s rate of energy gain, f , is given by (Figure 1)

f (qA,qB)~
pAqApAzpBqBpB

tszpAqAtAhzpBqBtBh

: ð1Þ

Like others [9,20,23,26], we assume that the forager aims to

maximize f . This theory predicts that if the two types of prey are

ranked according to their ‘‘profitabilities’’ (i.e. their respective

nutritional values per unit of handling time p=t), then the more

profitable prey type is always included in the diet. That is, if

pA=tAhwpB=tBh, then the optimal foraging strategy is to attack all

encountered prey A (i.e. qA~1). Furthermore, the decision to

attack the lower ranked prey (i.e. prey B) satisfies the zero-one rule.

Specifically, qB~1 (respectively, qB~0) if its profitability is greater

than (respectively, less than) the nutritional value of only attacking

prey of type A (i.e. qB~1 if and only if
pB

tBh

w

pApA

tszpAtAh

). The

threshold value for including the less profitable prey in the

predator’s diet depends only on the chances of encountering the

more profitable prey (i.e. only on the density of prey A) since

qB~1 if and only if pAvp�A where

p�A~
pBts

pAtBh{pBtAh

, ð2Þ

[9,20,23,26].

Decision trees and extensive form games
The decision tree approach is reminiscent of games given in

extensive form [18,19]. Because of this relationship between

decision trees and extensive form games, game theory can then be

used to find the optimal foraging strategy. First, we use the

truncation method to eliminate those paths that always yield

suboptimal outcomes. When applied to Figure 1, truncation

removes the dotted path of rejecting the opportunity to capture

prey type A. It is never optimal to reject the prey that offers a

higher reward to handling time ratio. But what of node B? For

food B with a lower energy to handling time ratio, we can find the

optimal foraging strategy by analyzing the agent normal form

[19]. This method assigns a separate player (called an agent) to

each decision node. The possible decisions at this node become the

agent’s strategies and its payoff is given by the total energy intake

rate of the predator it represents. When game theory is used to

solve a single predator’s decision tree, all of the virtual agents have

the same common payoff, and in a sense, these agents engage in a

cooperative game. The optimal foraging strategy of the single

predator is then a solution to this game.

To illustrate the approach, we make the decision tree of Figure 1

into a two-player foraging game. Player 1 corresponds to decision

node A with strategy set S1~fqAD0ƒqAƒ1g and player 2 to node

B with strategy set S2~fqBD0ƒqBƒ1g. Their common payoff

f (qA,qB) is given by (1). In an extensive form game, the payoff

functions are linear in the behavioral strategy choices of all players.

For our optimal foraging games, these payoffs are nonlinear

functions and so are more similar to those found in population

games [27,28]. As a game, we seek the Nash equilibrium (NE).

This is a pair of behavioral strategies (qA,qB), one for each player,

such that neither player can gain by unilaterally changing its

strategy. That is,

f (q
0
A,qB)ƒf (qA,qB) and f (qA,q

0
B)ƒf (qA,qB) ð3Þ

for all q
0
A[S1 and q

0
B[S2. In game-theoretic terms, (qA,qB) is a NE

if qA is a best response of player 1 to qB and qB is a best response of

player 2 to qA.

Clearly, an optimal foraging behavior (qA,qB) (f (qA,qB)§

f (q
0
A,q

0
B) for all q

0
A[S1 and q

0
B[S2) corresponds to a NE since it

satisfies (3). Solving the game (i.e. finding the NE) for the classic

Game Theoretical Methods for Functional Response
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foraging model of two types of prey is straightforward. Since

f (1,qB)wf (qA,qB) for all 0ƒqAv1 and 0ƒqBƒ1, the behavioral

strategy of player 1 to attack (i.e. qA~1) strictly dominates all its

other options (i.e. qA=1) and so, at any NE, player 1 must play

qA~1. The NE strategy of player 2 is then any best response to

qA~1 (i.e. any qB that satisfies f (1,q
0

B)ƒf (1,qB) for all 0ƒq
0

Bƒ1).

A short calculation yields

qB~

0 if pAwp�A
1 if pAvp�A

0,1� if pA~p�A,

8><
>:

ð4Þ

where p�A is given by (2). These results are shown in Figure 2 where

NE are indicated by solid circles (panels (a) and (c)) and by the solid

line segment on the right edge of panel (b). In this latter case (i.e.

when pA~p�A), every point on this vertical edge qA~1 is a NE and

the entire edge forms a NE component (i.e. a maximal connected

set of NE, cf. [19]). Thus, at this critical encounter rate with the

more profitable prey type, the zero-one rule of optimal foraging

which states that a given resource type in a given patch is either

always consumed when encountered or never consumed, must be

modified because the optimally foraging predator preference for

the alternative prey type can be anywhere between 0 and 1.

Since Figure 1 is a two-level foraging game, Theorem 3 of

section Zero-one rule and the Nash equilibrium of Appendix S1

implies that the NE given by Figure 2 (i.e. by qA~1 and qB given

by (4)) completely characterize optimal predator foraging behav-

ior. Figure 2 also indicates the direction of increasing energy intake

per unit time at points in the unit square. This suggests yet another

connection to game theory; namely, how does the predator learn

its optimal behavior? This question is commonly studied in

evolutionary game theory [19,29] where individual behaviors

evolve in such a way that strategies with higher payoff become

used more frequently. By following the flow of increasing payoff in

the figure, it is clear from Figure 2 that such an evolutionary

process will automatically lead to optimal predator behavior. We

will return to this question in section Game theory and

evolutionary outcomes for the prey recognition game where the

evolutionary outcome is not so clear.

In these more general games where the decision tree has more

than 2 levels, there may be NE that do not correspond to optimal

foraging behavior. However, so long as the number of encounter

events at level 1 and predator activities remain finite, these

decision trees generate the predator’s energy intake rate and its

functional responses on each type of prey. Game-theoretic

equilibrium selection techniques [30] based on evolutionary

outcomes can then be used to discard suboptimal NE behaviors

and select only those NE corresponding to optimal foraging

behaviors as we will see in the final example that includes prey

recognition effects (see section Prey Recognition Effects).

Results

Foraging with simultaneous resource encounters
In this section, we again assume that there are two resource

types (denoted as A and B) but, unlike section Decision trees and

the functional response for two prey types, some microhabitats can

contain a mixture of both types (denoted as AB). In this case, we

assume that the consumer can forage for at most one resource type

in any encounter event. Other microhabitats can be resources free.

Furthermore, let pA, pB and pAB respectively be the proportions of

these microhabitats that contain only resource A, only resource B

prey and both resources AB respectively. Finally, let p0 be the

proportion of microhabitats that contain no resources. If the

consumer chooses a patch at random, the distribution of

encounter events is given by Level 1 of Figure 3.

Figure 3 also contains the distribution of consumer activity

events under the assumption that the consumer is always successful

when it decides to forage a resource that it encounters. In the

predator-prey interpretation, this means the predator kills its prey

whenever it attacks. As discussed in the final paragraph of section

Decision trees and the functional responses of Appendix S1, our

decision tree approach to optimal foraging is also applicable when

the attacking predator is only successful with a certain probability

that may depend on the type of prey. Here qA (respectively, qB) is

the probability the consumer forages for the resource when it

encounters only resource type A (respectively, type B). Also qAB

(respectively, qBA) is the probability the consumer forages type A

(respectively, type B) resource when it chooses a microhabitat that

contains both types of resources and so 1{qAB{qBA is the

probability the consumer decides not to forage for either resource

in this encounter event.

Figure 2. Qualitative outcomes of the optimal foraging strategy for the classical foraging model (1) with two prey types as a
function of the encounter probability with the most profitable prey (i.e. of pA). Panel (a) assumes that 1§pAwp�A~pBts=(pAtBh{pBtAh) in
which case the optimal strategy and NE is (qA,qB)~(1,0): In panel (c), pAvp�A and the optimal strategy (and NE) is (qA,qB)~(1,0): The arrows in each
panel indicate the direction of increasing energy intake per unit time at points in the unit square. For completeness, the figure also includes the
threshold case, panel (b), where pA~p�A (i.e. the density of A prey is at the switching threshold). Although this case is rarely considered by ecologists,
its inclusion here is important to understand the optimal outcomes in our more complicated models. In panel (b), the optimal strategy is
(qA,qB)~(1,v) where 0ƒvƒ1, corresponding to the solid right-hand edge of the unit square that forms a set of NE points.
doi:10.1371/journal.pone.0088773.g002
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The functional response can then be developed from the

decision tree in Figure 3 that includes the searching and handling

times as well as the energy intakes of the different activity events.

Proceeding as in section Decision trees and functional response for

two prey types, the functional responses to resource type A and B

are given by

fA(qA,qAB,qBA,qB) ~
pAqAzpABqAB

t

fB(qA,qAB,qBA,qB) ~
pABqBAzpBqB

t

ð5Þ

respectively, where t~tszpAqAtAhzpABqABtAhzpABqBAtBhz

pBqBtBh. Thus the total consumer energy intake per unit time is

f (qA,qAB,qBA,qB)~
pAqAzpABqABð ÞpAz pABqBAzpBqBð ÞpB

t
:ð6Þ

To find the optimal foraging strategy, we solve for the NE of the

three-player game that assigns one player to each of the consumer

decision nodes in Figure 3. As shown in section Foraging with

simultaneous resource encounters of Appendix S1, the behavior

strategy to consume resource A at node A strictly dominates all

other actions of this player (i.e., f (1,qAB,qBA,qB)w
f (qA,qAB,qBA,qB) for all 0ƒqAv1), as we assume that resource

A is more profitable to the predator than resource B (i.e. that
pA

tAh

w

pB

tBh

). It is also shown there that any behavior strategy at

node AB whereby a resource is not always consumed (i.e.

qABzqBAv1) is strictly dominated. Thus qA~1 and

qABzqBA~1 at any NE.

From these two results, the decision tree in Figure 3 can be

truncated by deleting the two edges indicated by dotted lines. With

this change, the consumer energy intake rate f becomes

f (qAB,qB)~
pAzpABqABð ÞpAz pAB(1{qAB)zpBqBð ÞpB

t
ð7Þ

where now t~tszpAtAhzpABqABtAhzpAB(1{qAB)tBhz

pBqBtBh.

Thus, the optimal strategy is a NE of the two-player game

corresponding to the reduced tree of Figure 3. In this two-level

foraging game, player 1 corresponds to decision node AB with

strategy 0ƒqABƒ1 and player 2 at node B with strategy

0ƒqBƒ1. Their common payoff is given by (7). From section

Foraging with simultaneous resource encounters of Appendix S1

the best response for player 1 that encounters both prey types

simultaneously given the current strategy of player 2 is

qAB~

0 if qBvq�B
1 if qBwq�B

0,1� if qB~q�B

8><
>:

ð8Þ

where

q�B~
(pB{pA)ts{(pAzpAB)(pAtBh{pBtAh)

pB(pAtBh{pBtAh)
: ð9Þ

Similarly, the best response of player 2 when encountering only

resource B is

qB~

1 if qABvq�AB

0 if qABwq�AB

0,1� if qAB~q�AB

8><
>:

ð10Þ

where

q�AB~
pBts{pA(pAtBh{pBtAh)

pAB(pAtBh{pBtAh)
: ð11Þ

Then (qAB,qB) is a NE if and only if this strategy pair satisfies

equations (8) and (10). Thus, unlike section Decision trees and

functional response for two prey types, the NE behavior at one

consumer decision node depends on the behavior at the other.

By Theorem 3 in section Zero-one rule and the Nash

equilibrium of Appendix S1, NE correspond to optimal foraging

behavior. Thus, the optimal foraging behavior depends critically

on the values of q�AB and q�B. In particular, it is important to know

whether these values are between 0 and 1, less than 0 or greater

than 1. For instance, suppose that q�ABw1 and 0vq�Bv1. Then,

from (10), qB~1 (since qABvq�AB) and so qAB~1 by (8). In this

case, the only optimal foraging behavior is to consume A
whenever it is encountered and to consume B only when it is

not encountered simultaneously with A. In general, we observe

that (i) if q�ABv0, then q�Bv0, and (ii) if q�Bw0, then q�ABw1.

These inequalities constrain the number of possible optimal

strategies to (qAB,qB)[f(1,0),(1,1),(0,1)g. These are the possible

optimal strategies among the vertices of the unit square in Figure 4.

As we will see, at certain threshold parameter values, two of these

Figure 3. The decision tree for the simultaneous encounter game. At optimal foraging, two edges of this tree diagram are never followed.
These are indicated by dotted lines in the tree. The reduced tree is then the resulting diagram with these edges removed.
doi:10.1371/journal.pone.0088773.g003
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vertices can both correspond to optimal behavior. In this case, all

points on the edge between these vertices correspond to optimal

behavior as well. In particular, the case where qAB~qB~0 can

never occur because the two necessary conditions q�ABv0 and

q�Bw0 are excluded by (i) and (ii). This intuitive result predicts that

if the less profitable resource type B is consumed when

encountering both types (i.e., if qBA~1 which implies that

qAB~0), it will always be consumed when encountered alone.

Moreover, there is no interior optimal strategy (i.e. there is no NE

whereby the consumer exhibits partial diet choice when encoun-

tering both resource types simultaneously as well as partial diet

choice when encountering resource B on its own) since this

requires that both q�AB and q�B be strictly between 0 and 1, which

does not happen for any parameter choice.

It is interesting to analyze dependence of the optimal strategy

(qAB,qB) on the energetic value (pB) of the less profitability prey.

We consider only those energetic values for which B is the less

profitable prey type (i.e., 0vpBv

pAtBh

tAh

). To this end, we need to

know the critical values of pB when either q�B or q�AB are equal to 0

or 1. Let

p�B1~
pA((pAzpABzpB)tBhzts)

(pAzpABzpB)tAhzts

, p�B2~
pA((pAzpAB)tBhzts)

(pAzpAB)tAhzts

,

p�B3~
(pAzpAB)pAtBh

(pAzpAB)tAhzts

, p�B4~
pApAtBh

pAtAhzts

:

Then q�B(p�B1)~q�AB(p�B3)~1 and q�B(p�B2)~q�AB(p�B4)~0. We

divide the analysis into two cases. For the first, assume that the

handling time of resource A is longer than or equal to that of

resource B (tAh§tBh). As we assume that resource A is more

profitable than B, it follows that the energy content in food items

must be larger in resource A (pAwpB) and so q�Bv0 by (9). Thus,

the optimal foraging strategy is to consume the A resource when

both are encountered (i.e. qAB~1). Furthermore, qB~0 if

0vpBvp�B3 and qB~1 if p�B3vpBv

pAtBh

tAh

(i.e. the B resource

is consumed when encountered on its own only if its energy value

is sufficiently high). The dependence of the optimal strategy as a

function of prey B energetic value is shown in Figure 5A.

The more interesting case where prey A handling time is shorter

than prey B handling time (tAhvtBh; Figure 5B) is analyzed in

F i g u r e 4 . A l l q u a l i t a t i v e o ut c o me s o f t h e o p t i ma l f o r a g i ng s t r a t e g y ( 8 ) a n d ( 1 0 ) w i t h pa r a m e t e r s
ts~1,tAh~1,tBh~2,pA~2,pA~1=4,pAB~1=2,pB~1=4. In these plots, the energetic value pB of resource B varies in the interval from 0 to pAtBh

tAh

(i.e. 0ƒpBƒ4). The critical values of pB are p�B1~3; p�B2~
20
7

; p�B3~
12
7

; p�B4~
4
5
. The arrows in each panel indicate the direction of increasing energy

intake per unit time at points in the unit square. In each case shown, these arrows lead to a single vertex indicated by the filled in circle which
corresponds to the optimal foraging behavior (and unique NE). (a) For pBv

4
5
, q�ABv0 and q�Bv0. Thus qAB~1 and qB~0. (b) For 4

5
vpBv

12
7

,
0vq�ABv1 and q�Bv0. Thus qAB~1 and qB~0. The dashed line denotes q�AB: As pB increases, q�AB moves to the right until it coincides with the

vertical line qAB~1 when pB~p�B3~
12
7

. At this critical value of pB (not shown), all points (1,qB) on this vertical line are optimal foraging strategies

(and NE). (c) For 12
7

vpBv
20
7

, q�ABw1 and q�Bv0. Thus qAB~1 and qB~1. (d) For 20
7

vpBv3, q�ABw1 and 0vq�Bv1: Thus qAB~1 and qB~1. The
dashed line denotes q�B: (e) For 3vpBv4, q�ABw1 and q�Bw1. Thus qAB~0 and qB~1.
doi:10.1371/journal.pone.0088773.g004
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section Foraging with simultaneous resource encounters of

Appendix S1. When energy content of prey B is smaller than

p�B3 the optimal strategy is (qAB,qB)~(1,0). For intermediate

energy content satisfying p�B3vpBvp�B2, the optimal strategy is

(qAB,qB)~(1,1): For relatively large energy content

p�B1vpBvpAtBh=tAh, the optimal strategy is (qAB,qB)~(0,1).

These results are also included in Figure 4 that in addition

provides the direction of increasing energy intake per unit time at

all points in the unit square. In all cases analyzed in the previous

two paragraphs, the outcome satisfies the zero-one rule (i.e. either

always consume a given resource type in a given patch or never

consume it) as suggested by [31].

It is particularly interesting to see what happens at the critical

values p�B3 where q�AB~1, and p�B1 where q�B~1: These values

correspond to transitions (b)-(c) and (d)-(e) respectively in Figure 4

because the dashed vertical (panel (b)) and horizontal (panel (d))

lines respectively are then on the boundary of the unit square.

Straightforward calculations show that

f (1,qB)~
(pAzpAB)pA

(pAzpAB)tAzts

,

when pB~p�B3. Thus f (1,qB) is independent of qB and the optimal

foraging behavior is any strategy pair of the form (qAB,qB)~(1,qB)
for 0ƒqBƒ1.

Similarly, when pB~p�B1,

f (qAB,1)~
(pAzpABzpB)pA

(pAzpABzpB)tAzts

and the optimal foraging behavior is any strategy pair of the form

(qAB,qB)~(qAB,1) for 0ƒqABƒ1. Once again, the zero-one rule

must be modified at these critical values. For instance, when

pB~p�B1, resource B is always consumed under optimal foraging

when encountered on its own. However, if both resources are

encountered simultaneously, optimal foraging occurs for any

preference for the less profitable prey type. In section Zero-one

rule and the Nash equilibrium of Appendix S1, the modified zero-

one rule states that there is at least one optimal foraging behavior

where the corresponding NE is a pure strategy, i.e., where the

predator preference for a prey is either 0 or 1. After such

modification the zero-one rule holds even at pB~p�B1 because the

(pure) strategy (qAB,qB)~(1,1) is optimal. This extension of the

zero-one rule applies to situations where optimal preferences for

prey types as a function of a parameter switch suddenly at some

critical values from 1 to 0 or vice versa.

These results can be partially explained through the patch

choice model of [31]. Specifically, since patches A and AB have

the same maximum profitabilities
pA

tAh

(which is higher than in

patch B), both are included in the consumer’s diet. However, as

shown by [31], this does not mean that the most profitable

resource is chosen in patch AB. From (9), we see whether qAB~0
or 1 depends both on the ranking of A and B profitabilities (the

denominator in (9)) as well as on the difference in energy gain

pB{pA per unit consumed. When resource type A is both more

profitable and also has a higher energetic value (pAwpB), or

search time is short, then q�Bv0 and, consequently, qAB~1, i.e,

only resource A will be consumed in patches containing both

resource types. Only when type B is energetically more valuable

than type A and either search time is long enough, or the

probability of encountering patch A and patch AB is low enough,

can resource type B be selected when both resources are

encountered simultaneously. In this case, resource B will also be

consumed when encountered on its own.

Prey recognition effects
The functional response developed in section Decision trees and

functional response for two prey types assumes the predator

immediately recognizes the type of prey found during its search

and then decides whether or not to attack it. In this section, we

model the situation where the predator cannot distinguish the type

of prey it encounters unless it is willing to spend extra

‘‘recognition’’ time tr beyond the time required to search the

microhabitat. That is, the predator has an option of paying this

extra cost to gain information on the prey type encountered before

it decides whether to attack. This information is said to be

gathered in the facultative sense [32]. Kotler and Mitchell [32]

point out instances of facultative information that occur in host-

parasite and in mate selection models. They also discuss optimal

foraging when information is gathered in the obligate sense (i.e.

the predator gathers this information on prey type in the process of

handling the prey and has the option of rejecting it at that point).

Although we do not consider the model for obligate information in

this paper, its decision tree (and analysis of optimal foraging) is

simpler than Figure 6 for facultative information.

Figure 5. Dependence of the optimal foraging strategy qAB ((8),
solid line) and qB ((10), dashed line) on the energy content of
the less profitable prey type B. Panel A assumes a larger handling
time of prey type A (tAh~2, tBh~1), while panel B assumes the
opposite case (tAh~1, tBh~2). Other parameters ts~1, pA~2,
pA~1=4, pAB~1=2, pB~1=4:
doi:10.1371/journal.pone.0088773.g005
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As in section Decision trees and functional response for two prey

types, we assume that the two prey types are distributed among N

micohabitats with at most one prey in each. To ease notational

difficulties, we now label these prey types as species 1 and 2 with

densities x1 and x2 respectively and nutritional values p1 and p2

respectively to the predator. If the predator chooses a microhabitat

at random, the encounter event distribution (see Figure 6) is the

same as in Figure 1 (with our change of notation). In particular,

p0~1{ x
N

{ y
N

, p1~
x
N

and p2~
y
N

.

On finding a prey in a microhabitat, the predator decides

immediately whether to attack, move to another microhabitat to

begin a new search, or spend recognition time to determine the

type of prey encountered. Suppose these choices are taken with

probabilities qA, qM , qR respectively (where qAzqMzqR~1).

The horizontal dashed line in Figure 6 joining these two encounter

events indicates that this decision must be made without knowing

the type of prey. Thus, in the terminology of extensive form games

[19], the set of these two nodes forms an ‘‘information set’’ of the

predator and is represented by a single player in the three-player

game corresponding to Figure 6. We remark that the two nodes

that form this single information set require only one player

because, at both nodes, the information available is the same (the

information is that the searching predator encountered a prey).

If the predator decides to spend recognition time to determine

the encountered prey is of type i, then it must subsequently decide

whether to attack this prey or not with probabilities qAi and 1{qAi

respectively (see the third level of Figure 6). It is not necessary that

qA1~qA2. If we assume that the predator is always successful when

attacking a prey, the tree diagram is given in Figure 6 where t1h

and t2h are the handling times for prey of type 1 and 2

respectively. We also assume that the time needed to recognize

either type of prey is the same (i.e. t1r~t2r~tr). Proceeding as in

section Decision trees and functional response for two prey types,

the functional response to prey type i is given by

fi((qA,qR,qM ),qA1,qA2)~
pi(qAzqRqAi)

t

where t~tszp1qAt1hzp1qR(qA1t1hztr)zp2qAt2hzp2qR(qA2t2h

ztr): Thus the total predator nutritional value per unit time is

f ((qA,qR,qM ),qA1,qA2)~
p1p1(qAzqRqA1)zp2p2(qAzqRqA2)

t

for fixed prey distribution p1 and p2.

The optimal predator foraging behavior corresponds to the

maximum of f as a function of qA, qM , qR, qA1, qA2. This

maximum is considerably harder to determine than in section

Decision trees and functional response for two prey types.

However, game-theoretic methods to solve for NE are effective

at simplifying the analysis. Figure 6 is a three-player foraging game

with player 1 representing the predator decision at the two-node

information set at level 2 and players 2 and 3 assigned to the

respective decision nodes at level 3. From section The Nash

equilibria of the prey recognition game of Appendix S1, any

strategy (qA,qR,qM ) of player 1 with qMw0 is strictly dominated

and so any NE behavior of this player must satisfy qM~0. Thus,

at the optimal strategy, the predator should never move to another

microhabitat when it first finds a prey since, by abandoning this

prey, the predator wastes the time spent searching for it. In

contrast to section Decision trees and functional response for two

prey types where the predator could reject the prey type with low

profitability on first encounter, this is not possible here without

rejecting the better prey type as well (because upon an initial

encounter the predator does not know the prey type).

Since player 1 has strategy of the form (qA,qR,qM )~
(qA,1{qA,0) for some 0ƒqAƒ1, we will denote the NE behavior

of player 1 by qA and assume that qM~0 from now on. Section

The Nash equilibria of the prey recognition game of Appendix S1

also shows that, if prey type 1 is more profitable than type 2 (i.e. if
p1

t1h

w

p2

t2h

as in section Decision trees and functional response for

two prey types, then the predator must attack any prey 1 that it

recognizes. We will assume this throughout this section. Thus, we

will also assume that qA1~1 in the decision tree of Figure 6 and

analyze the truncated foraging game that eliminates the three

edges indicated by dotted lines there.

The reduced tree corresponds to a two-player game with

strategy set 0ƒqAƒ1 for player 1 at level 2 and 0ƒqA2ƒ1 for

player 2 representing the predator decision whether to attack a

recognized prey 2 at level 3. The energy intake rate is then

Figure 6. Decision tree for prey recognition game. In the reduced tree, the dotted edges are deleted.
doi:10.1371/journal.pone.0088773.g006
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f (qA,qA2)~
p1p1zp2p2(qAz(1{qA)qA2)

t
ð12Þ

where

t~tszp1t1hzp2t2h(qAz(1{qA)qA2)z(p1zp2)tr(1{qA).

The NE of this truncated game is easy to determine when
p2

t2h
§

p1p1

tszp1t1h
. In this situation, the profitability of prey type 2 is at

least as high as the nutritional value of only attacking prey type 1

when there is no recognition time (i.e. tr~0). In section Decision

trees and the functional response for two prey types (cf. equation

(1)), the NE behavior of player 1 is then to attack any prey

encountered and this continues to be the NE strategy when

recognition time is non-zero. Thus qA~1 at any NE and, in fact,

all NE are of the form (qA,qA2)~(1,qA2) for some 0ƒqA2ƒ1 (see

section The Nash equilibria of the prey recognition game of

Appendix S1 for the formal derivation). This corresponds to the

predator being opportunistic (sensu [32]). Note that, if the

predator immediately attacks an observed prey, the decision

whether to attack after recognizing the type of prey is no longer

relevant since this choice is never needed.

For the remainder of this section, assume that the profitability of

resource 2 is lower than is the mean energy intake rate obtained

when feeding on the more profitable prey type only (i.e.,
p2

t2h

v

p1p1

tszp1t1h

). In this case, the predator should consider

whether to determine the prey type it encountered, because

including the less profitable prey type in its diet may decrease the

mean energy intake rate.

To calculate the NE behavior, we proceed as in section

Foraging with simultaneous resource encounters. From section

The Nash equilibria of the prey recognition game of Appendix S1,

the best response of player 1 to a given strategy qA2 of player 2 is

qA~

0 if qA2vq�A2

1 if qA2wq�A2

0,1� if qA2~q�A2

8><
>:

ð13Þ

where

Figure 7. Qualitative outcomes of the optimal foraging strategy (13) and (14) for increasing recognition time tr. Panel (a) assumes
0vtrv

1
6

for which 0vq�A2v1 and q�Av0. The optimal foraging strategy is at (qA,qA2)~(0,0) (i.e. always pay the cost of recognition and then never
attack the less profitable prey type) and the NE component (shown as the gray line segment) f(1,qA2)Dq�A2ƒqA2ƒ1g (corresponding to the NE
outcome of attacking immediately) is suboptimal. In each of the other three panels, the (union of the) thick edges forms a strict equilibrium set (SES,
for definition see section Zero-one rule and the Nash equilibrium of Appendix S1) that is the globally stable evolutionary outcome. Panel (b) assumes
tr~

1
6
, q�A2~0 and q�Av0. The union of the two edges f(1,qA2)D0ƒqA2ƒ1g and f(qA,0)D0ƒq2ƒ1g forms one NE component corresponding to

optimal foraging behavior. Panel (c) assumes 1
6
vtrv

1
2
, q�A2v0 and q�Av0. The edge f(1,qA2)D0ƒqA2ƒ1g forms a NE component corresponding to

optimal foraging behavior. Panel (d) assumes trw
1
2

for which q�A2v0 and 0vq�Av1: The edge f(1,qA2)D0ƒqA2ƒ1g forms a NE component
corresponding to optimal foraging behavior. The arrows in each panel indicate the direction of increasing energy intake per unit time at points in the
unit square. Other parameters ts~1, t1h~1, t2h~2, p1~2, p2~1 and p1~1=2~p2 .
doi:10.1371/journal.pone.0088773.g007
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q�A2~1{
(p1zp2)tr p1p1zp2p2ð Þ

p2 p1p1t2h{p2 tszp1t1hð Þ½ � :

Conversely, the best response of player 2 to a given strategy qA

of player 1 is

qA2~

1 if qAvq�A
0 if q�AvqAv1

0,1� if qA~1 or qA~q�A

8><
>:

ð14Þ

where

q�A~1{
p1p1t2h{p2 tszp1t1hð Þ

p2(p1zp2)tr

:

That is (qA,qA2) is a NE foraging behavior if and only if it

satisfies (13) and (14). We remark that q�A and q�A2 are both less

than 1, and q�A2v0 when 0ƒq�Av1.

When recognition time, tr, is small (trvt�r1~

p2 p1 p1t2h{p2t1hð Þ{p2tsð Þ
p1zp2ð Þ p1p1zp2p2ð Þ ), q�A is negative and q�A2 is positive

(Figure 7(a)). There are then two possible NE outcomes; namely,

attack any encountered prey immediately corresponding to the NE

(qA,qA2)~(1,qA2) where qA2§q�A2 (shown as the gray segment of

the line in Figure 7(a)) or never attack immediately and then only

attack prey type 1 when recognized (with NE (qA,qA2)~(0,0), the

solid dot in Figure 7(a)). From section Zero-one rule and the Nash

equilibrium of Appendix S1, the optimal foraging behavior must

be a NE outcome but because our decision tree has three levels,

every NE may not be an optimal strategy. However, even in this

case finding all NE substantially simplifies the problem of finding

the optimal strategy, because it is now enough to evaluate function

f given by (12) only at these NE points. Moreover, if there is a NE

component (such as the gray segment in Figure 7(a)) the value of f

at any point in this segment must be the same. By evaluating

f (0,0)~
p1p1

tszp1t1hz(p1zp2)tr

and f (1,qA2)~
p1p1zp2p2

tszp1t1hzp2t2h

,

we find f (0,0)wf (1,qA2) and so the optimal behavior is to never

attack immediately and then only attack prey type 1 when

recognized. As recognition time increases, q�A increases and q�A2

decreases. However, the NE outcomes and optimal behavior

remain the same as long as q�A2w0. Optimal predator behavior is

then either described as being selective [32] or as being intentional

[33].

For recognition time satisfying tr~t�r1, q�A2~0 while q�A
remains negative and so all strategy pairs of the form

(1,qA2) and (qA,0) are NE (Figure 7(b)). Moreover, each

corresponds to an optimal foraging strategy since

f (qA,0)~
p1p1

tszp1t1hz(p1zp2)tr

~f (1,qA2) in this case.

For still larger recognition times, q�A2v0, thus qA~1 at any NE.

When t�r1vtrvt�r2~
p1 p1t2h{p2t1hð Þ{p2ts

p2 p1zp2ð Þ , q�Av0 and the

corresponding optimal foraging behavior is shown in Figure 7(c),

while for recognition time larger than t�r2, q�Aw0 (Figure 7(d)). In

both cases, the NE strategy pairs are of the form (1,qA2) and these

all yield optimal foraging behavior.

Game theory and evolutionary outcomes for the prey
recognition game

The existence of suboptimal NE in the prey recognition game

makes the interesting question considered briefly in section

Decision trees and extensive form games even more important

here; namely, how does the predator manage to learn its optimal

behavior and avoid suboptimal equilibrium behavior. This type of

question (on the so-called equilibrium selection problem [30]) is

commonly studied in evolutionary game theory where individual

behaviors evolve in such a way that strategies with higher payoff

become used more frequently. There are several standard models

that examine the evolutionary outcome of these behaviors

changing over time [29,34].

The evolutionary outcome is clear for all choices of parameters

in the two diet choice models of sections Decision trees and the

functional response for two prey types and Foraging with

simultaneous resource encounters (see arrows in Figures 2 and 5,

respectively). These arrows indicate the direction of increasing

energy intake rate (e.g. in Figure 4, this rate increases as qB is used

more frequently if and only if the vertical arrow is pointing

upward). In all cases, the predator learns to use the NE strategy

that corresponds to the optimal behavior for the foraging games of

Figures 1 and 3 respectively. (This is true for Figure 2b as well

since the arrows lead to some point on the vertical side of the unit

square with qA~1, all of which correspond to optimal behavior in

this threshold case when pA~p�A.)

The evolutionary outcome is also clear for the prey recognition

game of this section when recognition time is large from Figure 7.

Specifically, for tr§t�r1 (panels (b), (c) and (d)), the predator will

evolve to a strategy on an edge consisting of NE points which

correspond to optimal foraging. In the language of evolutionary

game theory, this set of NE forms a globally stable set that attracts

any initial predator behavioral choice as long as behaviors evolve

in the direction of increasing energy intake rate.

However, for short prey recognition time (i.e. tvt�r1 with

0vq�A2v1 in Figure 7(a)), the NE (0,0) (corresponding to the

optimal foraging behavior of always spending the time to

recognize the type of prey encountered and then only attacking

prey of type 1) may not be globally stable. If the predator initially

attacks recognized prey 2 with probability greater than q�A2,

behavior may evolve to a point in the suboptimal NE component

where (qA,qA2)~(1,qA2) with qA2§q�A2 (i.e. to a point on the gray

line segment in Figure 7(a)). That is, the predator may become

trapped at this suboptimal behavior, especially if evolution

increases the strategy of attacking immediately faster than it

decreases the strategy of attacking recognized prey 2 (i.e. if the

arrow to the right in the top half of Figure 7(a) is much bigger than

the one pointing down).

The situation depicted in Figure 7(a) is remarkably similar to

that of the two-player extensive form Chain store game [19,35]

(also known as the Ultimatum mini-game [36] or the Entry

deterrence game [37]). In the large literature on this game, it is

often argued that the evolutionary outcome will be the point (0,0))
since neutral drift near the suboptimal NE component will

inevitably lead at some time to the strategy choice shifting to

qA2vq�A2 after which selection will quickly lead to (0,0). To see

this, consider a point on this gray line segment. If the predator

decides once in a while to spend some time to recognize the type of

prey it encounters, its strategy will move to the left of the segment.

As strategies with higher payoff are then to the right and down in

the vicinity of the line segment, it is likely that qA2 will regularly

decrease until it reaches the lower end of the segment. Any further

strategy experimentation on the part of the predator will lead to
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qA2vq�A2, after which the only evolutionary outcome can be (0,0).

In terms of evolutionary game theory again, the suboptimal NE

component is not stable whereas the optimal NE is.

In summary, the optimal foraging behavior is selected in the

prey recognition game as the NE component that is the stable

outcome of the evolutionary learning process whether or not prey

recognition time is short (i.e. for arbitrary tr). The analysis of

optimal foraging theory for this example illustrates anew the

potential of game-theoretic methods to gain a better understand-

ing of issues that arise in behavioral ecology.

Discussion

In this article, we develop a game-theoretic approach for

constructing functional responses in multi-prey environments and

for finding optimal foraging strategies based on these functional

responses [9,20]. The approach here is based on methods from

extensive form games [18,19]. The importance of these game-

theoretic approaches for functional response is two-fold. First,

decision trees similar to those used in extensive form games are a

natural way to describe details of predator behavior based on the

sequence of choices the predator makes at different decision

points. This facilitates writing down the corresponding functional

response. Second, we show that optimal foraging behavior that

maximizes energy intake per unit time can be determined by

solving the underlying foraging game for its Nash equilibrium. We

documented these game theory methods through three examples:

the classical diet choice model, simultaneous encounter with prey,

and a model in which recognition time is considered. We remark

that, although the calculation of the optimal foraging behavior in

the first example is straightforward, it is not as easy in the last two

cases where our game theory methods lead readily to the solution.

Decision trees are often used in evolutionary ecology to describe

possible decision sequences of individuals in biological systems

[28], including models of kleptoparasitism [38] and of producers

and scroungers [39]. They have been used less often in connection

with functional responses, even though the predation process can

be conveniently described by such trees (e.g., [26,40,41]). Optimal

foraging behavior that maximizes animal fitness is then often

described as a sequence of single choices at each decision node

faced by the predator. Such outcomes are reminiscent of those

found by applying the backward induction technique to extensive

form games that also chooses one strategy at each decision node

[18,19]. However, there are essential differences. Specifically,

under backward induction, the optimal choice at such a node

depends only on the comparisons of payoffs along paths following

this node. Unfortunately, the time constraint in our foraging game

means that decisions at one node have payoff consequences as to

what is optimal at another node, a connection between these

decision nodes of the tree that has no counterpart in extensive

form games. That is, the payoff concept for ‘‘foraging games’’ such

as Figure 1 combines both the nutritional values and the duration

of each activity given at all the end nodes of the decision tree. On

the other hand, as shown in all three examples, the extensive form

technique connected to backward induction of forming the

reduced decision tree by truncating those paths corresponding to

dominated strategies remains an effective means of considerably

simplifying the NE analysis.

Dynamic programming (a form of backward induction) has also

been used to find optimal foraging behavior [23,42]. Specifically,

the approach developed by Houston and McNamara [23] shows

that the optimal foraging strategy must maximize the difference

between the expected energy intake during a single renewal cycle

and the product of the mean optimal energy intake rate and the

duration of the cycle. This approach specifies the optimal choice at

each decision node provided the energy intake rate under the

optimal strategy is known. Since the optimal choice in one part of

the decision tree then requires knowing the overall optimal

strategy, the solution is typically obtained by numerical iteration.

Instead, the approach we take in this article avoids such

numerical methods by solving the game analytically. In this game,

virtual players (also called agents) are associated with each decision

point. These players are virtual because their payoff is derived

from the functional response of a single individual only.

Nevertheless, these players play a game because their decisions

are linked, one player’s optimal strategy depends on the other

players’ decision. We showed that solving this game by finding all

the Nash equilibria will lead to the optimal foraging strategy. In

those cases where some NE are not optimal foraging strategies, we

showed it is easy to select the optimal ones among them by

calculating their mean energy intake rate. Even when the game

has infinitely many Nash equilibria that form a segment of a line

(such Nash equilibrium components often arise in extensive form

games), we showed that the energy intake rate at all these Nash

equilibria will be the same. This means that once there are a finite

number of isolated Nash equilibria points or Nash equilibrium

components, finding the optimal strategy corresponds to compar-

ing a finite number of values, which is trivial.

We documented these game-theoretic methods by applying

them to three examples. The classic diet choice model with two

prey types where predators encounter prey sequentially was

considered first since it has been historically analyzed without

game theory and yet provides an informative introduction to our

new approach. Then we moved to a more complicated situation

where a searching predator can simultaneously encounter both

prey types [31,43]. These authors showed that under simultaneous

encounter the predictions based on the prey profitabilities (i.e.,

energy content over handling time) are not sufficient to predict the

optimal foraging strategy. In fact, the optimal foraging strategies

can be quite complicated as they depend now also on the relation

between the energy content in different food types. In particular,

Figure 5A shows that when the less profitable prey type 2 contains

also less energy than the more profitable prey type 1, then the

more profitable prey type 1 will be selected when both prey types

are encountered. However, when the energy content of the less

profitable prey type is large (but still small enough that prey type 2

continues to be less profitable), it will be preferred when both prey

types are encountered (Figure 5B). The solid line in Figure 5B

shows the preference for prey type A when encountered with prey

type B. When this preference switches from 1 to 0 above pB~3,

predator preference for prey type B when encountered with prey

type A switches from 0 to 1. All possible optimal foraging strategies

as a function of the alternative prey type energy content are shown

in Figure 4. In particular, it cannot happen that the less profitable

prey type is included in the predator’s diet when encountered

simultaneously with the more profitable prey type but not taken

when encountered alone.

The last model discussed in this article examines whether a

predator should spend time to recognize which type of prey it

encountered before deciding whether to attack the prey or not

[32]. This example is more complex for several reasons, including

the fact that the corresponding decision tree now has three

different levels (whereas the previous two examples are described

by two-level trees). While the NE corresponds exactly to the

optimal strategy in two-level decision trees, this is not the case

here. When recognition time is small, we show that there are NE

of the optimal foraging game that lead to suboptimal foraging

(Figure 7(a)). However, these suboptimal NE are easy to exclude
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by equilibrium selection techniques borrowed from evolutionary

game theory [30]. Specifically, optimal foraging is always given by

the unique NE outcome that corresponds to the stable equilibrium

point (or set of equilibrium points) as the predator learns its

optimal strategy (i.e. as its strategy evolves in the direction of the

arrows in Figures 2, 4, 7).

This method taken from evolutionary game theory to determine

optimal foraging behavior differs from the more traditional

approach based on the (modified) zero-one rule. This latter

approach can be applied to the prey recognition game. Kotler and

Mitchell [32] show that the zero-one rule yields just two possible

optimal outcomes: either complete opportunism or completely

selective. Instead of analyzing for the effects of increasing

recognition time as we have done, they concentrate on what

happens when the abundance of the less profitable prey increases

(which, in our notation, means p2 increases). They emphasize the

somewhat counterintuitive result that, with low abundance, the

less profitable prey is excluded from the diet. At intermediate

abundances it is included, and then with high abundance it is

excluded again.

Game-theoretic methods play an important role in the

traditional approach as well. Specifically, because the energy

intake rate is the same at all points of the NE component, we need

to compare only two numbers; the energy intake rate at any point

of the NE component (the gray line segment in Figure 7(a)) and the

energy intake rate at the other NE point (0,0). Our analysis shows

that, when recognition time is small, the optimal foraging strategy

is to always pay the extra time to recognize the encountered prey

type (i.e., never attack the encountered prey item immediately

qA~0, Figure 7(a)) and to include it in the diet if it is the more

profitable prey type (i.e., not to include the alternative prey type 2,

qA2~0). As the recognition time increases, the optimal foraging

strategy is not to waste time recognizing the encountered prey type

(Figure 7c, d). In this case, all encountered prey types are included

in predator’s diet and so qA2 is not uniquely defined. That is, since

all encountered prey are immediately included in predator’s diet,

the question whether to include the recognized prey type in the

diet becomes irrelevant and so the preference for the alternative

prey type is any number between 0 and 1.

For the three optimal foraging games modeled in this paper, the

predator’s encounter probabilities with different prey types do not

change over the system’s renewal cycle. In particular, there are no

interactions among predators, such as competition for the same

prey, that may alter the length of this cycle as the predator’s

behavior in these interactions changes. On the other hand,

interactions among predators can be added to their decision trees.

Our analysis of optimal foraging behavior through extensive form

game-theoretic methods can then be generalized to the resultant

multi-level trees, an important area of future research.

Supporting Information

Appendix S1 The first section of the Appendix, Decision trees

and the functional responses, describes a general approach to

construct functional responses from decision trees. The second

section, Zero-one rule and the Nash equilibrium, generalizes the

classical zero-one rule of the optimal foraging theory derived for

the multi-prey Holling type II functional response to a more

general functional responses. This section also shows how the zero-

one rule relates to the Nash equilibrium of the underlying optimal

foraging game. Appendix Foraging with simultaneous resource

encounters derives the Nash equilibrium strategy (8), (10) and

Appendix The Nash equilibria of the prey recognition game

derives the Nash equilibrium (13), (14).
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