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Abstract In today’s globally interconnected food system, outbreaks of foodborne
disease can spread widely and cause considerable impact on public health. Food
distribution is a complex system that can be seen as a network of trade flows
connecting supply chain actors. Identifying the source of an outbreak of foodborne
disease distributed across this network can be solved by considering this network
structure and the dimensions of information it contains. The literature on the
network source identification problem has grown widely in recent years covering
problems in many different contexts, from contagious disease infecting a human
population, to computer viruses spreading through the Internet, to rumors or trends
diffusing through a social network. Much of this work has focused on studying
this problem in analytically tractable frameworks, designing approaches to work
on trees and extending to general network structures in an ad hoc manner. These
simplified frameworks lack many features of real-world networks and problem
contexts that can dramatically impact transmission dynamics, and therefore, back-
wards inference of the transmission process. Moreover, the features that distinguish
foodborne disease in the context of source identification have not previously been
studied or identified. In this article we identify these features, then provide a
review of existing work on the network source identification problem, categorizing
approaches according to these features. We conclude that much of the existing
work cannot be implemented in the foodborne disease problem because it makes
assumptions about the transmission process that are unrealistic in the context of food
supply networks—that is, identifying the source of an epidemic contagion whereas
foodborne contamination spreads through a transport network-mediated diffusion
process, or because it requires data that is not available—complete observations of
the contamination status of all nodes in the network.
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1 Introduction

An important problem for many networked systems involving spreading processes
is identifying the source of the spreading agent; if the contaminated food source,
patient zero, or the rumor originator is identified efficiently, damage can be
prevented or reduced [7, 10, 13, 25].

Over the past couple decades there has been significant effort devoted to
studying the dynamics of outbreaks on networks [5, 17, 19, 23, 24, 26, 31]; for a
comprehensive review of epidemic spreading on complex networks, see [27]; for
a review of information diffusion on complex networks including a comparative
evaluation of available models and algorithms, see [36]. Most of this work has
focused on the forward problem of understanding and forecasting the diffusion
process and its dependence on the structure of the underlying network. However
in recent years much work has emerged on the inverse problem of identifying the
source of an outbreak spread in a network. This work covers problems in different
contexts, including contagious disease infecting a human population; rumors or
information diffusing through a social network; adoption of an idea, behavior
change, or product in an organizational network; the spread of viruses on the
internet; and the transport-mediated diffusion of contaminated individuals between
cities. These contexts represent different spreading scenarios that require different
modeling approaches for forward dynamics and inverse solutions.

Most studies of spreading processes in networks have been done in the context of
epidemiology, modeling the spread of diseases or viruses through a host population.
Network disease propagation models are based on the stages of disease as it infects
individuals and spreads across contact links in a host population. Initially the
entire population is susceptible to the disease; once any individual is exposed to
an infectious contact they become infected and can infect others; from this point
they can recover, be removed, become immune, or other variants. These models
are referred to as compartmental models due to the disease compartments that
individuals move between in illness progression: S—susceptible, [—infected, R—
recovered or removed, etc.

Compartmental disease spreading models represent a simple contagion process,
because only one direct contact with an infected neighbor is required for the
contagion to be transmitted. Along with disease, information spread through a
network has been shown to follow a simple contagion process. On the other hand,
behavior change has been shown to spread as a complex contagion that requires
multiple sources of exposure or reinforcement for the new behavior to be adopted.



The Network Source Location Problem in the Context of Foodborne Disease Outbreaks 153

A typical quantity that is studied in relation to network epidemic models is the
epidemic threshold, or the set of conditions under which the disease will either
proliferate or die out in the network. Unlike classical diseases or viruses spread
through social contact networks, computer viruses have been shown to have an
epidemic threshold of 0, meaning that the infectivity rate can be vanishingly small
for the epidemic to happen. This is due to the scale-free structure of computer
networks, which are extremely heterogeneous with a few nodes having an extremely
high number of connections. The spread of computer viruses therefore diverges from
classical diseases not due to the contagion model—both are simple contagion—
but due to the heterogeneity of the network substrate over which computer viruses
spread.

Another type of epidemic model is the metapopulation reaction—diffusion pro-
cess, which in addition to contagion dynamics accounts for the role of movement
or transport in diffusing a contamination in space. In this type of model, nodes
represent subpopulations, such as cities, and links represent the movement of
individuals between subpopulations. Individuals interact in each subpopulation
according to assumptions of equal mixing or a local social network structure
and disease spreads between these individuals according to a contagion model;
this is the reaction process. The movement of individuals between subpopulations
is the spatial diffusion process, often modeled over a network as a Markov
transition process. Metapopulation models therefore depend both on the local social
network structure at each node and on the spatial structure of the environment,
transport infrastructures, traffic networks, and other movement patterns over which
individuals diffuse.

Approaches to the source detection problem are developed in the context of one
of these forward spreading processes. Most approaches have been devised in the
context of simple contagion processes including infectious disease outbreaks in
human contact networks or rumors spreading in social networks [1-3, 20, 33, 37,
38]. Another stream of work has focused on identifying the source of processes in
which network-mediated spatial diffusion is the main vector of spread. This includes
contagious diseases spread through drift in water systems [28] or spreading between
cities by global air travel [6], and foodborne disease contamination spread through
food distribution networks [14].

This article focuses on foodborne disease. The features that distinguish food-
borne disease in the context of source identification have not previously been studied
or identified. In this work we identify these features and conclude that most of the
existing approaches to source detection cannot be implemented in the foodborne
disease problem because they make assumptions about the transmission process
that are unrealistic in the context of food supply networks—that is, identifying
the source of an epidemic contagion [1-3, 20, 33, 37, 38] whereas foodborne
contamination spreads through a transport network-mediated network diffusion
process, or because it requires data that is not available—complete observations of
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the contamination status of all nodes in the network [8, 11, 30, 34] or timed network
data [1-3, 15, 20, 21, 28, 33, 35]. We begin by first providing relevant background
on outbreaks of foodborne disease and the contamination diffusion process.

1.1 Large-Scale Outbreaks of Foodborne Disease

The complexity and globalization of food production have made foodborne disease
a widespread public health problem worldwide. A small but worrisome minority of
outbreaks are generated by a contamination originating at the site of production or
processing, generating a widespread diffusion of contamination through the supply
chain and affecting a potentially great number of people across geographically
distributed locations. As recent trends continue, including large-scale production
practices and distribution over ever-larger distances, both the frequency and the
severity of consequences of large-scale outbreaks are increasing. In the USA, the
number of large-scale (i.e., multi-state) outbreaks increased by 135% in the years
1995-2004 to the years 2005-2014. These large-scale outbreaks accounted for 3%
of total outbreaks, which includes localized, non-distributed incidents, but were
responsible for 34% of hospitalizations and 56% of deaths [9].

During a large-scale outbreak of foodborne disease, rapidly identifying the
source, including both the food vector carrying the contamination and the location
source in the supply chain, is essential to minimizing impact on public health and
industry. However, tracing an outbreak to its origin is a challenging problem due
to the complexity of the food supply system. Furthermore, current investigation
methods represent a missed opportunity to utilize valuable information to solve the
source localization problem.

Food distribution is a complex system that can be seen as a network of trade
flows connecting supply network actors. Identifying the source of an outbreak of
contamination distributed across a network can best be solved by considering this
network structure and the dimensions of information it contains. Together with
reports of illness, this network information can be used to solve the problem of
identifying the source of large-scale outbreaks.

To formulate the problem of source detection on a network, assumptions must
be made regarding (1) the network and observation data available for source
identification, and (2) the transmission process that led to the observations. Based
on basic practical knowledge of food supply networks and the foodborne disease
contamination process, in this article we introduce the source identification problem
in the context of foodborne disease outbreaks and outline six features that distin-
guish this problem from source detection in other network contexts due to either
practical data limitations or differences in transmission process mechanics. We then
use the six features to categorize the existing literature on the network-based source
detection problem according to relevance to the foodborne disease context.



The Network Source Location Problem in the Context of Foodborne Disease Outbreaks 155

2 Background and Definitions

2.1 Network-Based Source Identification

To solve the source detection problem in the context of foodborne disease, a network
model of the supply of a specific food commodity is assumed as a given input. A
probabilistic model of the transmission process of contamination spreading through
this network is then postulated. In the following, we assume that a foodborne disease
outbreak will originate from a single contamination source. This source sends out
contaminated products that travel through the network according to the transmission
model, resulting in observations of illness at a set of network nodes. The source
identification objective is to minimize the error between the model-derived estimate
of the location of the source and the true location of the source in the network, given
the nodes associated with the observations of illness.

2.2 Food Supply Networks and Foodborne Disease
Transmission

Food supply systems can be represented by a directed network structure consisting
of multiple stages of production, distribution, storage, and consumption. Flows
through the network are generally structured such that product is distributed in
a forward direction along a path, or a collection of directed edges connecting
supply nodes from origination to point of sale. A large-scale outbreak occurs when
contaminated food departs from some source in an early stage of the network that
is able to reach downstream nodes in geographically distributed locations. The
contamination will eventually make its way to consumers, who develop illness some
time after consuming the contaminated food. Case reports of illness are associated
with the supply network node at which the offending product was purchased and
exits the supply network, e.g. a retailer or restaurant; these nodes can be considered
infected.

The network in Fig. 1 represents a supply network in which contamination at
a food producer has spread through the supply network, leading to reports of
illness at three different retailers. With this structure mapped, it is straightforward
to utilize all case data (i.e., evidence) available during an event to identify the set of
feasible sources of contamination, that is, the set of nodes that connect to all known
contaminated nodes. Network structural information thus provides a first cut into
the source identification problem by enabling the identification of feasible sources.
To differentiate between the feasible sources, further dimensions of information
available within the network can be leveraged. Each edge contains information
about the volume of goods traded between supply network actors. Volume-weighted
information is a source of heterogeneity that can be thought of as the relative
propagation potential of a given edge, providing insight into the paths along which
contaminated product is likely to have traveled.



156 A. L. Horn and H. Friedrich

Producers

LI;’!)

0O oo 0o 0 0 0 0O _0_0

2
Il

o =

SR S e

Processors

E»

2

(@) o~ O‘ ‘/) [ ) O [ ] O \O O (@) (@) gf Retailers

O O O O Q& Distributors

Fig. 1 Illustration of a food distribution network with three reported cases of illness (at the shaded
nodes) linked to retailer nodes. Figure source: [8]

3 Distinguishing Features of Foodborne Disease
Transmission

3.1 A Transport, Not Epidemiological, Transmission Process

Many network-based source detection methods are designed to identify the source of
an infectious contagion. These methods often assume some variant of the epidemi-
ological model of contagion transmission, including the widely used susceptible-
infected (SI) or susceptible-infected-recovered (SIR) models. However the transmis-
sion of contamination through the food supply to people is different from the disease
contagion process from people to people. Contamination spreads as contaminated
(solid, perishable) food moves through the supply network after being inoculated by
the pathogen at the source. As the food is transported through the supply network,
the pathogenic quantity will generally remain conserved, meaning it will neither
spread to other food items nor decay significantly in infectivity [18, 29]. The former
is due to a number of factors including the lack of contact between packaged items,
the lack of interaction or mixing between unpackaged items, and the biological
insusceptibility of contamination to transmission and decay, i.e. low infectivity and
recovery rates.

Due to this conservation of contamination, the spreading process in the context
of foodborne disease primarily involves the contaminated food being spatially
distributed along the network without decaying (i.e., recovery) or growing (i.e.,
infection) the contamination along the way. Contaminated food items cause infec-
tion in people when the food is consumed, but this process does not represent
a classical infection dynamics because the contamination is directional (food to
human) and largely does not spread between people. Contagion processes represent
a different dynamics; if these are applied to the foodborne disease situation, the
extremely low infection rate would mean that when individual food items come into
contact, the infection will not be transmitted and will die out. The diffusion along the
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network is the mechanism that moves the contamination forward through the supply
chain. To reflect these diffusion dynamics, the foodborne disease contamination
spreading process has therefore been modeled as a simple Markov transmission
process [14].

It would be possible to model the foodborne disease spreading process using
a metapopulation reaction—diffusion process, as discussed in Sect. 1, where nodes
represent locations in the supply chain containing a constant “subpopulation”
of food items, and links represent the transport of food items between supply
chain locations. However because contagious transmission is largely not occurring
between food items, a metapopulation model would add more complexity (by
incorporating the inactivated local contagion process along with the diffusion
process) without incorporating more of the dynamics of the spread of contamination
by food through the supply chain. Therefore in the following, we will refer to the
foodborne disease contamination process as a diffusion-type process by which we
mean exclusively network-mediated diffusion and not contagion.

Finally, the observation data available for source identification occurs on the
human level and not on the food item level, and only via infection status, (I) in
the SI/R model. Observations of contamination occur when people report illness.
Each illness is linked to a supply network node at which the contaminated food
was purchased. Data regarding the contamination status of individual food items
is not normally available during an investigation. Furthermore, it is not possible
to establish from the illness reports whether a supply node has ever received
contaminated food and is thus susceptible (S), as it may have led to illnesses that
went unreported. Methods that rely on observations of susceptible status or that
assume nodes not reporting infection are contamination-free (also called “negative
information”) are thus non-applicable in this setting.

3.2 Observations are Sparse

Though the contamination will travel through multiple network nodes on its journey
through the supply network, it is only observed when illness is reported in connec-
tion with the exiting or absorbing node at which contaminated food was purchased.
The contamination status of transient nodes involved in the production, processing,
or storage of food, though closer to the source in number of network edges, will
remain hidden to investigators unless further investigations are performed (normally
during later stages of an investigation). Furthermore, even at the consumption level,
the overwhelming majority of foodborne illness cases are either not identified or
logged by authorities, with official estimates of underreporting varying from 10
to 75 times for different pathogens [32]. A trivial implication of the sparsity of
observations is that it is unrealistic to assume, as some source detection methods do,
that the contamination status of all nodes in the network is known.
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3.3 Observations will Always be Spaced Far from the Source

The placement of observations only at absorbing nodes also means that there will
be a large network distance between the source and each observation, increasing the
number of possible paths that could have been traveled and in turn the uncertainty
in the structure of the diffusion trajectory. At the same time, the differing volume-
weights along the edges of the supply network provide valuable information for
inference. Given the large uncertainty in the diffusion structure, approaches to
source detection that consider network structure alone will be inferior to those that
consider this weighted information.

3.4 Similar Path Lengths

Due to the staged structure of the food supply network, paths through the network
from source to observation will be close to the same length in terms of number of
network edges. This is common for supply chain networks of all types, and can
be observed in models of food supply networks across all product groups [4, 12].
Many existing source detection methods simplify the inference process by assuming
that the contamination traveled across the shortest path from the source to each
observation, or otherwise by leveraging shortest path properties of graphs. These
approximations will apply poorly in the food supply network context where most
paths will be indistinguishable in length.

3.5 Multiple Candidate Paths

Between any possible source and observation in a food supply network, there exist
multiple paths of travel of similar weight or likelihood. This is due to the lack of
monopolies in food production, trade, and retailing markets: any given food type
will be distributed through multiple larger retailers or wholesalers, each dealing
with similarly large volumes of product [4, 12]. Certain source detection methods
make the simplifying assumption that the contamination travels across the single
highest-probability path between a source and observation. These methods will be
inaccurate in the food supply network setting where transmission dynamics are not
necessarily dominated by a small percentage of connections.

3.6 Data on Times Through the Network are Lacking

In theory, there should be a signal for source detection from the timed reports of
illnesses combined with a model of the time it takes to transmit the contamination.
Each collection of edges in a network path encodes information about the time
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delay that a contaminated product could have taken to travel these steps. These
delays will be distributed differently according to parameters like the distance
and speed of travel and supply network logistics encountered. However, there is
significant temporal uncertainty in the contamination transmission process. The
time the contamination may spend in storage, both at various nodes along the supply
network (e.g., warehouses) and with the consumer after purchase, as well as during
the incubation period, can be significant and vary widely—and potentially much
more so than the time spent in travel. Furthermore, while the times of infection are
available to some degree of accuracy (recorded according to patient recalled time
of illness onset), data on storage times through the network are unavailable with
the exception of a few case-specific customer or retailer survey studies [18, 29].
Therefore, while time can be an important aspect in some foodborne disease source
detection applications, time-based methods are not currently implementable in the
foodborne disease context given available data.

4 Categorization of Literature

Many approaches to the network source detection problem have been developed
in recent years, though none of these methods have specifically considered the
context of outbreaks of foodborne disease. We now review the major themes in the
existing work, using the features described above to guide the discussion in terms
of relevance to the problem on food supply networks. The categorization of existing
work in terms of these features is summarized in Table 1.

The earliest approaches to source detection are based on complete observations,
relying on knowing the contamination status (SI/R) of each node in the network at a
fixed point in time [8, 11, 30, 34]. These methods do not incorporate information
about differing weights along edges but are based solely on graph structure by
employing notions of network centrality, the intuition being that the node most
“central” to the observed contamination process is the source. The seminal work by
Shah and Zaman [34] introduces the measure of rumor centrality, which considers
the number of linear extensions between each source and the infected nodes. The
method and analytical results concerning detection probability are derived for trees
or tree-like graphs; to apply to general networks, a Breadth-First-Search (BFS)
heuristic that assumes the contamination traveled across the shortest paths to the
observations must be used. Other methods based on betweenness centrality [8]
and eigenvector centrality [11, 30] apply to general networks without employing a
shortest path heuristic, although the calculation of betweenness is based on shortest
path properties. These methods were important for establishing foundational results
on the network source detection problem but are impractical for real network-
outbreak scenarios due to the complete observation assumption.

Many methods have since been developed for the more realistic setting that only
a subset of the contaminated nodes are observable, i.e. partial observations. These
can be categorized into temporal methods—approaches designed to make use of
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the information from the timed reports of illness and times through the network,
and non-temporal methods—approaches that rely only on the node location where
contamination has been reported. The temporal category includes methods assuming
discrete-time epidemic (SI/R) contagion models based on dynamic message-passing
[20], Bayesian belief propagation, [2], analytic combinatoric approaches [3]. The
analytic-combinatoric method [3] builds on the approach of [20] and [2] by
removing the node-independence assumption of [20] and the tree-like contact
network assumption that both [20] and [2] are predicated on to compute the exact
source probability distribution for general contact network structures. Because the
analytical calculations increase exponentially for non-tree-like networks, a compu-
tationally feasible Monte Carlo estimation approach is provided and demonstrated
empirically to provide comparable results with the analytic method. The approach
of [3] applies both to static and temporally evolving networks.

A separate approach involves continuous-time Gaussian transmission models
[21, 28]. While a continuous-time transmission model is a better approximation
for realistic settings, the approach in [21, 28] is limited by being designed for
trees and extended to general graphs via a BFS (shortest-path) heuristic. Other
temporal methods have been proposed that observe the contamination status of a
subset of sensor nodes at user-controlled intervals invoking a Four-Metric approach
[33], Monte Carlo methods [1], or analytical methods for time-varying networks
[15]. A separate approach is based on time-reversal backward spreading, where
link weights are set equal to travel time and not spreading propensity [35]. These
methods are impractical for the foodborne disease context given the lack of temporal
data on times through the network available for solving the problem, as discussed
in Sect. 3.6.

Fewer approaches to source detection exist within the category of non-temporal
approaches based on partial observations. A line of work based on the notion of
Jordan centrality has led to multiple variants of a technique that chooses the source
node with the shortest maximum path length over all observations, that is, the
Jordan center [37]. While this method has been extended to incorporate weights
along the edges! [38], it relies on path lengths to discriminate between sources.
Furthermore, the technique is designed for tree-like networks; for application
to general topologies an alternate procedure based on closeness centrality (i.e.,
counting the sum of the shortest path to each observation) is proposed.

In addition, many of the methods based on partial observations in both the tempo-
ral and non-temporal categories are developed in the context of contagion spreading
models [1-3, 20, 33, 37, 38], and are therefore inapplicable in the case of the supply
network-mediated diffusion process of foodborne disease spread. As explained in
Sect. 3.2, network-based diffusion is the mechanism moving contamination forward
through the supply chain, which represents a different dynamics than contaminated
individuals changing infection state and growing the infection. If contamination

In the contagious disease context, normalized weights can be interpreted as heterogeneous
infection probabilities.
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models are applied to foodborne disease spread, the extremely low infectivity rate
and recovery rates would mean that the disease would die out, and the forward
diffusion of already-contaminated items would not be accounted for.

Another line of work in the category of non-temporal approaches involves a
measure of Effective Distance on a network [6]. The Effective Distance method
is developed for identifying the source of infectious disease outbreaks spreading
through global mobility networks and is therefore devised in the framework of
metapopulation reaction—diffusion models. However, it does not depend explicitly
on the infection quantities, but only on flow transitions between nodes. It is therefore
applicable to network-diffusion-only type processes such as foodborne disease and
has been evaluated in application to the 2011 outbreak of EHEC in sprouts [22].

The method is based on the concept that the trajectory of a particle diffusing
through a network will primarily follow the shortest, highest probability path to
any other node. The true source of an outbreak should therefore be the node that
exhibits the set of shortest, highest probability paths to the outbreak node set. Based
on this logic, the authors introduce a metric for the Effective Distance d.zr (i, j)
between two connected nodes i and j, defined such that the likelier the connection,
the shorter the Effective Distance. This is given as

derr(i, j) =1 —log pij, ()

where p;; is the probability of transiting from i to j. The effective length of a given
path y;, between source node s and observation node o is then defined to be the sum
total of the Effective Distances of each edge (i, j) € y;,. As discussed, the concept
of [6, 22] is to focus on the shortest Effective Distance path over all possible paths
¥so € I'go from s to 0. The Effective Distance between s and o is then defined as

(i, J)€Ys0
= mip [1¥s0l — log P(¥s0l$)]. (2

Vso€lso

The Effective Distance of a path therefore results from a multifactorial objective
function that penalizes topologically long path lengths (the |y,,| term in the
minimization) while rewarding high path probabilities (the —log P (y;,|s) term).
To identify the source of an outbreak, the single shortest Effective Distance path to
each observation is identified. The source is then chosen as the node that minimizes
the average and variance of the shortest Effective Distance path to each observation.

As mentioned above, the Effective Distance method was designed for application
to infectious disease outbreaks spreading over global mobility networks. These
networks are characterized by great heterogeneity in path lengths and probabilities,
meaning that spreading processes on these networks will be dominated by a small
percentage of the shortest, highest probability transport connections. As expected,
the Effective Distance method performs well in settings involving outbreaks of
infectious disease (e.g., SARS, HIN1) spreading through global air travel networks
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[6]. Nonetheless, it is a heuristic approach that considers only a single path to each
observation. While this type of approximation may be justified in certain network
contexts such as the global air mobility networks the method was designed for, it
is not adapted for the structure of food supply networks which are characterized
by homogeneity in path lengths and the existence of multiple paths of similar
probability (see Sect. 3). When the method is applied to the 2011 EHEC (foodborne
disease) outbreak, source identification results are less accurate and more unstable
than the infectious disease case examples [6, 22].

Two recent works have addressed the single path limitation. First, Ianelli et al.
[16] have developed a generalization of the Effective Distance approach to include
multiple transmission routes in estimating disease arrival times. This work leverages
random walk theory to analytically demonstrate that the single path approach is
an approximation of more general logarithmic network-based measures. While
both methods are developed in the framework of metapopulation reaction—diffusion
models, only the multiple paths approach depends explicitly on the dynamical
quantities of the SIR model. This generalized effective distance approach for
estimating (forward) disease propagation arrival times is therefore a departure point
for an improved and analytical approach to the (inverse) source detection problem
for metapopulation propagation processes like infectious diseases spreading through
global air traffic networks.

More recently, the source detection problem for network-diffusion-only type
processes such as foodborne disease has been solved using a similar analytical
approach to account for all trajectories between source and observation. The work
of Horn and Friedrich [14] formulates a probabilistic model of the contamination
diffusion process as a random walk on a network and derives the maximum
likelihood estimator for the source location. By modeling the transmission process
as a random walk, this work develops a novel, computationally tractable solution
to the inverse problem that accounts for all possible paths of travel through the
network. Improvements in accuracy and stability are demonstrated in comparison
with the single paths approach of [6, 22], when both methods are applied to different
network topologies including stylized models of food supply network structure as
well as the 2011 EHEC outbreak in Germany.

S Summary

Many existing approaches to the source detection problem cannot be implemented
in the foodborne disease context because they are designed for a different purpose—
identifying the source of an epidemic contagion [1-3, 20, 33, 37, 38] whereas
foodborne disease is spread according to a network-mediated diffusion process,
or because they require data that is not realistically available—complete observa-
tions of the contamination status of all nodes in the network [8, 11, 30, 34] or
timed network data [1-3, 15, 20, 21, 28, 33, 35]. Those that are implementable
are limited by unrealistic assumptions regarding the transmission process. These
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methods apply tree-like approximations to deal with general graphs, assuming
contamination always travels from source to observations along the shortest, highest
probability paths [6, 22]. While this type of approximation is justified in certain
network contexts, food supply networks are not well approximated by tree structure.
Moreover, these methods are by definition approximations that do not explore the
full set of trajectories between each source and observation.

To address this limitation, recent work has developed a source detection approach
based on a random walk transmission model that presents a computationally
tractable approach to calculate the total probability of traveling between a source
and each observation along all possible paths of all possible lengths [14]. The
resulting approach is not only relevant for solving the source identification problem
in food supply networks but also represents a methodological improvement for
source identification in diffusion processes more generally.
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