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Abstract: Industry is constantly seeking ways to avoid corrective maintenance so as to reduce costs.
Performing regular scheduled maintenance can help to mitigate this problem, but not necessarily
in the most efficient way. In the context of condition-based maintenance, the main contributions of
this work were to propose a methodology to treat and transform the collected data from a vibration
system that simulated a motor and to build a dataset to train and test an Artificial Neural Network
capable of predicting the future condition of the equipment, pointing out when a failure can happen.
To achieve this goal, a device model was built to simulate typical motor vibrations, consisting of a
computer cooler fan and several magnets. Measurements were made using an accelerometer, and
the data were collected and processed to produce a structured dataset. The neural network training
with this dataset converged quickly and stably, while the tests performed, k-fold cross-validation and
model generalization, presented excellent performance. The same tests were performed with other
machine learning techniques, to demonstrate the effectiveness of neural networks mainly in their
generalizability. The results of the work confirm that it is possible to use neural networks to perform
predictive tasks in relation to the conditions of industrial equipment. This is an important area of
study that helps to support the growth of smart industries.

Keywords: predictive maintenance; condition-based maintenance; artificial neural network; vibratory
analysis; smart industry; industry maintenance

1. Introduction

The control, monitoring and maintenance of production line equipment are fundamental activities
for the quality and performance of the productive process [1–4]. Sensors and actuators play an
important role in the operation of various machines such as conveyor belts, generators, mixers,
compressors, furnaces, welding machines, among others, so they must always be in proper working
condition. To guarantee this, these machines are constantly monitored and two types of maintenance of
their components, corrective and the scheduled, are performed. Corrective maintenance is performed
in the case of a critical failure in the equipment and causes an unplanned downtime of the production
line. Scheduled maintenance is performed periodically and equipment is checked and replaced,
if necessary, in order to avoid unplanned downtime [2,5–7]. Although scheduled maintenance is
less disruptive, both types have associated costs due to loss of production. To avoid these two
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types of maintenance, industry has begun to perform condition-based maintenance where predictive
equipment status is used to plan a maintenance. Employing this method has become part of the smart
industrial maintenance and results in fewer downtimes than scheduled maintenance, as it avoids
unnecessary maintenance, and reduces corrective maintenance by anticipating possible equipment
failures [2,4,7–11]. Machine learning techniques such as Artificial Neural Network (ANN), Regression
Tree (RT), Random Forest (RF) and Support Vector Machine (SVM) are being used to perform regression
and prediction tasks in various applications [10,12–21]. These techniques have enabled predictive
condition systems or remaining useful lifetime systems to be developed that allow different types of
production variables to be used [10,22–24].

The objectives of this work were: (1) to propose a methodology to generate a training dataset
based on vibration measurements. This methodology includes the characterization of the dataset and
definition of a way of calculating the failure time in vibrating systems by means of the amplitude
and frequency data; (2) to train an ANN to be able to predict the failure time of an equipment.
This prediction allows anticipating maintenance only before a failure on motor occurs, reducing the
production line downtimes and the costs involved. A computer cooling fan, with an accelerometer
coupled to it to measure its vibrations, was used to simulate the evolution of motor vibration and collect
the data to train and test the ANN. The training dataset was generated considering the frequency
spectrum of the vibrations, containing amplitude and frequency of a time interval. Each pair of
amplitude and frequency measurements was associated with a failure time. The efficiency of the model
training was demonstrated by comparative tests with RT, RF and SVM machine learning techniques.
The tests performed were the k-fold cross-validation standard test and model generalization test,
both of them using the Root Mean Square Error (RMSE) performance index [14,15].

This work is organized as follows: Section 2 presents the related works; Section 3 presents the
methods applied in the development of the proposed system; Section 4 presents the predictive tests
performed and the results of the performance index; and Section 5 presents the conclusions and
proposals for future studies.

2. Related Works

In the context of asset management in industry, condition-based maintenance plays an important
role in seeking to reduce unnecessary maintenance, reduce downtime and reduce costs involved in
these two aspects. In general, this maintenance strategy includes fault diagnosis, fault prognosis and
maintenance process optimization [8,9,11].

Fault Diagnosis Systems (FDSs), play the role of fault diagnosis, aiming to detect and identify
faults, characterized when a behavior or system parameter is out of acceptable conditions [25–27].
This type of system was studied in both small and local applications [25] as well as larger
systems [26,27]. FDSs can be classified into two main groups, those using model-based techniques and
those using model-free techniques. The first group uses mathematical models of the monitored system,
which describe the behavior of the real process. This model is used to compare the behavior of the real
system with that described by the model. The second group uses machine learning techniques to learn
the different states of the monitored system to identify and classify faults [26–28]. Ntalampiras [26]
presents an FDS in electrical Smart Grids (SG), where a model-free method was used to detect and
isolate faults in SG, using data from the physical layer of the monitored system.

In contrast to FDSs, which aim to detect and classify faults, fault prediction systems comply
with failure prognosis aspect, which aims to predict the future behavior of equipment and determine
their possible moments of failure, assisting in decision making on maintenance issues. Yildirim,
Sun and Gebraeel [8,9] presented a framework for generating efficient maintenance planning based
on predictive analytics using Bayesian prognostic techniques. This predictive analysis dynamically
estimates the remaining life distribution of electric generators, allowing estimating the maintenance
cost and the best time for maintenance to occur. Verbert, Schutter and Babuška [11] also presented
the optimization of maintenance through efficient failure prediction, the work propose a multivariate
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multiple-model approach based on Wiener processes for modeling and predicting of equipment
degradation behavior. The work clearly traces the dependencies between the processes of fault
diagnosis, fault prognosis and maintenance optimization. In the fault prognosis context, ANNs are
important tools, because they enable the implementation of the prediction task easily and accurately.

2.1. Data Predicting with ANN

ANNs are structures inspired by biological neurons and formed by simple units of processing,
called neuron. The neurons are connected to each other, and for each connection a synaptic weight is
given. The training phase of the ANN adjusts the synaptic weights of these connections, modeling the
relation of inputs and outputs of the system. ANNs have the ability to model nonlinear and complex
problems and are easy to implement, as numerous libraries for various programming languages are
available. The high generalizability of this technique is also a highlight, as data outside the training set
is admissible in the system [15,24,29].

One of the tasks that can be performed by a ANN is prediction. This task was used to assist in
the control and monitoring of numerous variables in several areas. In medicine, ANNs were used to
predict mortality risk and incidence of disease [29–31]. Hao et al. [31] used ANNs to predict chronic
disease risk in patients. The system developed used as input structured and unstructured data about
the patient’s health conditions. In the field of wind power, they were used to predict wind speed and
the amount of power that can be generated [24,32–34]. A study by Li, Ren and Lee [34] presents the
used ANNs to predict wind speed, with the objective of reducing the effect of the instability of this
variable and increasing the efficiency of the generation of electrical energy. The system uses wind
velocity as input, transforming this data into average wind speed and wind speed turbulence intensity.
In the area of railway engineering, studies have predicted failure point in rail turnouts and the rates of
wear of wheels and rails [35,36]. Shebani and Iwnicki [36] presented a system for predicting wear in
train wheels and train tracks. The system was developed with the aim of reducing maintenance costs,
improving passenger comfort and even avoiding accidents. To carry out this prediction, the authors
used an ANN having as inputs several variables such as the characteristics of the wheels and rails,
train speed, yaw angle, etc. Other areas have also been targets of prediction studies using ANNs such
as turbine operation [10], education [37], entertainment [38] and production [39].

2.2. ANN in Engines Failure Prediction Systems

ANNs were employed in studies of engines to analyse vibrations and predict equipment
failure [2,4,7,22,40–42]. A study by Plante, Nejadpak and Yang [7] showed that by observing the
vibration of motors it was possible to identify those considered normal in the operation of the
machinery and those related to failure. From this analysis, along with the data concepts associated
with vibration, it was possible to detect and predict faults and allows predictive maintenance to be
planned and helps to establish the remaining life of the equipment. For each type of failure, the authors
presented a frequency spectrum of the collected vibrations, allowing the analysis of the vibration
behavior to identify possible types of failure. The use of the frequency spectrum to perform the
analyses was also employed in the present work, since with this spectrum it is possible to have
strong, reliable signal data. Gongora et al. [2] presented the failure classification of induction motor
bearings based on ANNs using the motor stator current as data input. The work describes motor
maintenance, the costs involved and the types of failures. It highlights the main types of engine failure
and concludes that engine failure prediction can be performed by non-invasive methods such as
vibration measurement. Günnemann and Pfeffer [42] presented the classification of defects of a motor
through the measurement of vibration in its operation. This classification was performed with an
ANN, having as input data the frequency spectrum of the collected signal, the output being a binary
representing a defective or non-defective motor.
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The ANN proposed in the present study was developed from the information gathered in the
articles mentioned above. The methodology, which involves data collection and treatment, ANN
training and performance measures, is described in the next section.

3. Proposed Method

In real systems, the collection and processing of data used for machine learning training should
be performed historically in relation to the point of interest, like an equipment failure. Knowing
when a particular equipment failed, a preliminary dataset would be extracted containing sensors
data information. This dataset should then be refined and enriched with signal growth information
and the time remaining for the failure to occur. This work presents a methodology to generate a
training dataset similar to the dataset of a possible real system, with the difference that the vibration
signal growth rate and the estimated failure time were artificially generated, for a better control of the
scenarios and testing of the ANN. This methodology has as much importance as the results achieved,
allowing vibration behaviors to be simulated and the data collected used to produce the training and
test datasets for machine learning. Figure 1 shows the overview of the proposed method. The process
begins with data collection, derived from the measurements made by the accelerometer coupled
to a cooler fan. This data was then processed to generate training dataset. Among the procedures
performed with this data are the Fourrier transform of the vibration signal, the definition of signal
growth rates and the calculation of motor failure time. After the data were processed, the ANN was
trained to predict the motor failure time and validated by means of a performance index.

Figure 1. Data collection and pre-processing flow chart.

3.1. Data Collection and Data Processing

The device model used in this work, to collect data, was comprised of a computer cooling fan with
small magnets fixed to its blades. Adding a second magnet to certain blades created a weight difference
between those with only one magnet and those with two magnets. This weight difference generated
vibrations during the rotation of the fan’s motor, allowing the vibration to be controlled in order to
generate different vibration scenarios. A microcontroller, the Arduino UNO, was responsible for setting
the motor speeds and performing the readings of the vibration values from the accelerometer [43].

An Akasa AK-FN059 12cm Viper cooling fan was used in the construction of the device model
and an MMA8452Q accelerometer was used to measure vibration, attached to the cooling fan [44,45].
This accelerometer has 12 bits of resolution and communicates with the microcontroller through
the I2C (Inter-Integrated Circuit) protocol. It was developed a software using Processing program
language to collect the data from the serial port and store it in a text file [46,47]. Figure 2 shows the
device model developed to simulate motor vibrations.

Figure 2. Device model developed to simulate vibrations in motors.
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In order for the training dataset to cover different levels of vibration, three weight distribution
configurations were done in the cooler blades. Figure 3 presents these configurations, where the color
pairs represent the position where the weights were doubled to generate different vibration behaviors.
For each of these configurations, 17 rotation speeds were set up, ranging from 20% to 100% of the
cooler maximum speed at 5% intervals. The vibration measurements of each of these speeds was
collected by the accelerometer at a frequency of 20 ms for 1 min, generating 3000 records per speed.
Thus, in total, 153,000 vibration records were collected from the simulation model.

Figure 3. Weights distribution configurations between the cooler’s blades, performed to collect
different vibration behaviors.

The vibration data was pre-processed to standardize the inputs and outputs used in the training
dataset. When analyzing the behavior of the collected signals, it was observed that the vibrations
had no harmonic behavior, i.e., the signal did not show constant amplitude and frequency. For the
same window of measurement of the same rotation speed, different and non-standard data were
collected. Therefore, it was necessary to define a single frequency and amplitude value for each of the
axes in a measurement window. Once 1 min of data was collected for each motor speed of the cooler,
represented by 3000 observations, a set of 50 observations of the dataset were defined as the measuring
window, which represent 1 s of signal. Figure 4 shows an example of the difference in measurements
taken at the same speed rotation of the fan at two different measuring windows.

Figure 4. Vibration signals from two different and sequential measuring windows.

The Fourier series and Fourier transform were used to describe the signals in the frequency
domain, mapping the various frequencies and amplitudes of the signal. From this transformation it was
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possible to define a single amplitude and frequency value per axis for each measurement window [48].
For this purpose, the calculation of the Fourier transform using the Fast Fourier Transform function was
implemented in R, with the aid of the ’spectral’ library, generating all pairs of amplitude and frequency
of a measurement window. To generate a unique value, for each window, the Root Mean Square (RMS)
value of the signal, or effective value, for the amplitude and frequency sets, was calculated by the
following equation [49–51]:

xrms =

√
1
n
·

n

∑
i=1

x2
i (1)

where xrms represents the effective value of the amplitude or frequency; xi represents each amplitude
or frequency that compose the signal; and n the total number of amplitudes or frequencys that compose
the signal.

A new dataset containing 3060 records of pairs of amplitude and frequency data for each vibration
axis was generated. Figure 5 presents an example of the transformation performed on the vibration
measurements graphically.

Figure 5. Process of simplification of measured vibration signal. (a) Vibration signal collected from
a measuring window; (b) Application of the Fourrier Transform in the collected signal, generating
all pairs of amplitude and frequency present in the signal; (c) Calculation of the RMS value of the
amplitudes and frequencies, generating only one pair for each measurement window.

With the unique values calculated for each measurement window it was possible to establish the
threshold values of amplitude and frequency needed to calculate the estimated failure time. The limit
values, i.e., the maximum possible amplitude or frequency values before equipment failure, were
defined by means of the analysis of the measurements made with the cooler rotating at the maximum
speed. Thus, the highest values of each amplitude and frequency pair were found for each axis.
The maximum amplitudes on the accelerometer measurement scale ([−8g, 8g]) were 0.25 for the x axis
and 0.7 for the y and z axes with a frequency of 18 Hz for all the 3 axes. The data were analyzed to
remove attributes that would not be representative. The first attributes removed were the amplitude
and frequency of the x axis, since the way the accelerometer was installed did not generate vibrations
on that axis because it is the axis of height. The frequency attributes of the y and z axes were then
removed. Although they generated values, the interval between the measured frequencies and the
threshold was small and almost unchanged. Thus, only the amplitudes of the y and z axes were used
for the training dataset. Figure 6 graphically presents the process of generating the amplitudes used in
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training dataset, where an amplitude value of the training dataset corresponds to the RMS value of a
collected signal measurement window. In this figure, the amplitudes of y axis was represented.

Figure 6. Schematic of vibration signal transformation to generate amplitude dataset (AY).

To calculate the estimated failure time, three steps were performed in the dataset. The first was to
establish vibration signal growth rates for the observations, doubling the dataset for the amount of
desired growth rates. Three growth rates gr of the signal were set: 0.01, 0.02 and 0.05. In a real-time
system this rate would be found by averaging the amplitude and frequency difference of two windows
of sequential measurements, indicating how the vibration signal is growing. The second step was to
calculate the time, in windows of measurement, so that each amplitude reached the threshold value
according to the growth rate established for each amplitude of the axes. This calculation is given by:

FTx =
xlim − x

x · gr
(2)

where FTx represents the failure time considering one variable x (amplitude); xlim represents the
threshold value of x and gr represents the growth rate of the signal. Finally, the third step was to
calculate the average between the failure times, generating the expected equipment failure time. Thus,
given the input x = {x1, x2, ..., xn} and the signal growth rate gr, the expected output representing the
estimated failure time FTe is given by:

FTe =
∑n

i=1
xilim−xi

xi ·gr

n
(3)

This was a simple and efficient way to characterize the vibration dataset and can be performed at
any time interval for the measurement windows. In the case of this work, the measurement window
used was 1 s; however, it could have a duration of 1 min, 1 h or 1 day, with the result of calculating the
equipment failure time given in the same units as the measuring window. The equation presented
considers a linear growth rate, however exponential or logarithmic growth behaviors could be used
depending on the desired or expected growth type. In a real dataset, this growth behavior would be
discovered by the ANN.



Sensors 2019, 19, 4342 8 of 17

3.2. Performance Index

All validations of the trainings performed in this work used the RMSE performance index.
This performance index indicates the standard deviation of the difference between the estimated values
and the values predicted [15]. The RMSE value was calculated with the following equation [14,15]:

RMSE =

√
1
n
·

n

∑
i=1

(
x′i − xi

)2 (4)

where n represents the number of observations compared; x′i the value of the i-th element of the
predicted results vector; and xi the value of the i-th element of the test dataset estimated values vector.

3.3. ANN Training

At the end of dataset pre-processing, a new dataset was generated with 9180 observations and
four attributes: amplitude of the y axis; amplitude of the z axis; signal growth rate; and estimated
failure time. The first three attributes were used as input values for the training of the ANN, since the
attribute estimated failure time was used as the output of the network.

The ANN class used to predict the failure time was the Multilayer Perceptron Neural Network
(MLP). This ANN consists of an input layer, one or more hidden layers, and an output layer. The input
signal propagates forward from layer to layer until it reaches the network output. The network training
happens in a supervised way and, although there are others, the algorithm of backpropagation of
error is the most common learning algorithm for this type of ANN. This architecture is flexible to
parameterize inputs and outputs, in the case of this work the network allows configuring different
sensors’ input signals. ANN neurons can be parameterized with nonlinear activation functions
ensuring their use to continuous outputs. This feature allows to model complex systems that deal with
nonlinear datasets, such as the relationship between vibration and equipment failure time addressed
in this work. This class of ANN in conjunction with the backpropagation learning algorithm is simple
to implement, efficient for large-scale problems, great generalizability and, as can be seen in Section 4
(Figure 7), depending on the dataset structure used for training, converges quickly and accurately,
with the error tending asymptotically to 0. The backpropagantion learning algorithm can be used
with an online update of synaptic weights; these updates occur with each new set of inputs in ANN
training, so the model is refined by the training dataset observation number multiplied by number
of iteractions (epochs), giving greater precision in the model. MLP neural network training with
the backpropagation algorithm is also computationally efficient because computation is linear for all
ANN synaptic weights, making the algorithm linear with respect to the number of w synaptic weights
(O(w)). The literature shows that it is a consolidated model for use in time series prediction problems,
considered in some cases as a benchmarking model [15,24,29].

The training of the ANN were performed in R with the help of the ‘RSNNS’ library [51,52].
The training parameters were found empirically by trial and error, for each set of parameters
the RMSE value was calculated and compared, the parameters that presented the smaller RMSE
were: learning rate (specifies the gradient descent step width)—η = 0.85; number of epochs
(iterations)—Maxit = 50,000; number of hidden layers—nHidden = 1; number of neurons in the
hidden layer—sizeHidden1 = 25. The ANN was trained with the backpropagation learning algorithm
(learnFunc); the logistic function was used as the activation function of the hidden layer and the linear
function was used as the activation function of the output layer (hiddenActFunc). The connections
weight initialization between the neurons was performed in a random manner.

3.4. Comparing with Other Machine Learning Techniques

To establish the performance level of the model generated with ANN training, other classical
machine learning techniques to perform the regression, estimation and prediction tasks were chosen
for comparison. Regression Tree, Random Forest, and Support Vector Machine techniques, as well as
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ANNs, are widely used for classification and prediction problems in many application areas [10,14–21].
For this reason, they were selected to perform the same prediction task to which ANN was exposed.

Regression Tree is the name given to a Decision Tree used to perform the regression task.
This structure consists of binary branches, where each node represents a decision regarding a simple
comparison. These decision frameworks consider all training dataset inputs, modeling the relationship
of these inputs to the expected output. The biggest advantage of this technique is the simplicity
of tree construction, requiring little processing. Another advantage is the ease interpreting of the
generated model. The generalizability of this technique can be reduced, as the tree structure strongly
depends on the training dataset, so values outside of those considered during model training can lead
to a large prediction error [10,12,16,49]. RT training was conducted in R with the help of the ‘rpart’
library [51,52]. The choice of parameters for model training was performed in the same way as the
ANN, empirically by trial and error. The parameters with the lowest RMSE value were: minimum
observations on one node for a split attempt—minSplit = 10; minimum number of observations in
each tree leaf (node)—minBucket = round(minSplit/3); complexity parameter, removes worthless
divisions—cp = 0.0000001; maximum tree depth—maxDepth = 30.

Random Forest corresponds to a set of tree predictors, each of these trees is dependent on the
values of an independently taken random input vector with the same distribution for all trees in
the forest. This structure combines several simple predictors, reducing complexity and improving
performance when compared to individual tree models. For regression problems, RT is used as
submodels of the RF structure. This technique is robust in the presence of outliers and noises in the
training dataset and very stable to overfitting. Just as RT, RF may not perform well if the input data
from the trained model is very different from the data presented during the training phase [10,13,18,19].
RF training was performed in R with the help of the ’randomForest’ library [51,52]. The choice of
parameters happened empirically by trial and error. The parameters with the lowest RMSE value were:
number of growing trees—nTree = 500; number of variables sampled in each division—mTry = 3;
minimum size of terminal nodes—nodeSize = 5; number of times data is exchanged per tree to verify
the variable importance—nPerm = 1.

Support Vector Machine is a popular machine learning technique used for classification, regression,
prediction, and other problems. Nonlinear regression-driven SVMs, enabled by the intensive-loss
function [53], perform during the training phase, basically, the mapping of input vector elements
to high dimensional feature space using a nonlinear mapping process. This technique, like ANNs,
is highly flexible from a training dataset entry point of view and tends to have a better generalization
than tree-based techniques [10,15,17,21,23,49,53–55]. SVM training was conducted in R with the help
of the ’svm’ function of library ‘e1071’ [51,52]. The choice of parameters also happened empirically
by trial and error. The parameters with the lowest RMSE value were: kernel used in training and
prediction—kernel = radial basis; cost of constraints violation—cost = 10; parameter γ used in kernel
calculation formula—γ = 10; tolerance of termination criterion—tolerance = 0001; parameter ε value
of the insensitive-loss function—ε = 0.0005.

The parameters presented were the ones that were varied to find the best RMSE performance
index. There are other parameters for the training of each of these machine learning techniques;
however, these other parameters were configured with the default values of the R libraries used.
To consolidate and allow a better visualization of the used parameters, Table 1 presents the parameters
by technique. Comparative tests between these techniques are presented in the next section.
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Table 1. Machine learning techniques parameters.

ANN RF

nHidden = 1 nTree = 500
sizeHidden1 = 25 mTry = 3
η = 0.85 nodeSize = 5
Maxit(epochs) = 50,000 nPerm = 1
learnFunc = Backpropagation
hiddenActFunc = Logistic

RT SVM

minSplit = 10 kernel = radial basis
minBucket = round(minSplit/3) cost = 10
cp = 0.0000001 γ = 10
maxDepth = 30 tolerance = 0.0001

ε = 0.0005

4. Prediction Results

The models, using the machine learning techniques described in the previous section, were trained
and tested. During ANN model training, the learning algorithm tends to reduce the output error
interactively. Figure 7 shows the evolution of the weighted sum of squared error, for the k = 1 folder.
It can be seen from this figure that the error value tends asymptotically to 0 quickly and the error
no longer varies after few training epochs. The other folders presented similar behavior in respect
of error evolution during the training. The training phase involved k-fold cross-validation, to verify
in a standardize way the performance of the trained model. The k-fold cross-validation enables the
simulation of k data scenarios, where the test dataset is not use to train the model. After each folder
training, the prediction model was tested with the test dataset and the values predicted and estimated
are compared with the performance index [15]. By means of the RMSE calculation, using the estimated
and predicted values, it was possible to measure if the generated model had precision and reflected
the reality of the system being studied. In this work, the k value was set as 5. Also, the RMSE values
can be used to compare the models performance. Figure 8 presents the graphs which demonstrate
this comparison for the models generated in the k = 1 folder, where the x axis represents the set of
amplitudes of the signal and the signal growth rate (AY-AZ-GR) and y axis represents the failure time
in seconds. For small amplitudes and small vibration signal growth rate the time until the equipment
fails is longer; as the vibrations increase and vibration increases, the time until the equipment fails is
shorter. The dataset used was generated considering a window of measurement of 1 s which generated
a failure time also in seconds, but this window could consider a measurement of 1 day, which would
generate a failure time in days, meaning that the measuring window is flexible. Table 2 shows the
RMSE values for each model, validation folder and the average of this index.
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Figure 7. Iterative error evolution of the ANN training process (k = 1).

Figure 8. Results of the tests of the first folder (k = 1) carried out with the machine learning techniques.

Table 2. RMSE values of the folders used in the test of the machine learning techniques.

Folder ANN RT RF SVM

1 0.0039 0.0047 0.0025 0.0106
2 0.0035 0.0054 0.0035 0.0129
3 0.0028 0.0051 0.0022 0.0105
4 0.0041 0.0052 0.0024 0.0120
5 0.0049 0.0052 0.0026 0.0123

Average 0.0038 0.0051 0.0026 0.0117

All models converged during training and were able to deliver good performance results.
The average RMSE for the ANN model was 0.0038 being ahead of the models trained with the
RT and SVM techniques, the best result of k-fold cross-validation was presented by the RF technique,
with an average RMSE value of 0.0026. Performance measurements of models, acquired through the
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test dataset, even with k-fold cross-validation, may present better values than a possible generalization
in a real system. This scenario can happen if the dataset has values in its observations close to or even
equal. In the dataset used in models training and testing, the amplitude and vibration growth rate
values were doubled to simulate different scenarios of vibratory behavior generating optimal tests,
since the test dataset can contain the same values for vibration amplitude in y and z as the training
dataset. Thus, two new datasets were generated with different amplitude values and vibration signal
growth rates in relation to the original training dataset, in order to attest to the generalizability of
the trained model. Both datasets for generalization served as input to the models and the RMSE
values of these new tests were calculated. Generalization dataset (a) was generated with the same
vibration amplitude values as the models’ original training dataset, but with different growth rate
values of 0.015, 0.03, and 0.04, totaling 9180 observations. Generalization dataset (b) was produced
with the average amplitude values for each cooler motor rotation speed in the three weight settings of
its blades, doubled by the vibration signal growth rates of 0.015, 0.03 and 0.04 totaling 153 observations.
Comparative graphs between the estimated and predicted values of these two generalization datasets
can be seen in Figures 9 and 10, as well as numerically in Table 3. The values generated for these
datasets did not exceed the maximum and minimum values of the models training dataset, in order
not to impair the performance of tree-based techniques. It is possible to observe in these figures and by
analyzing Table 3 that the prediction followed the same behavior as the one presented in the k-fold
cross-validation, in a more accentuated way. Short term predictions were accurate for ANN, RT and RF
techniques, however for medium and long term predictions ANN outperformed the other techniques.
In general ANN had the best RMSE indexes for the generalization tests with 0.0313 for generalization
(a) and 0.118 for the generalization (b). The values presented are low, proving the good generalizability
of the model. The RT and RF models had a good generalization for short term predictions and, even
with low RMSE indexes, SVM did not perform very well.

The results presented in tests with ANN prove that the objective of the work was achieved,
and that a real-time system could be implemented to predict the failure time associated with vibration
in motors using this machine learning technique. This system should have as input the same parameters
used in the ANN training: vibration amplitude on the y axis; amplitude of vibration on the z axis; and
vibration signal growth rate, calculated with the current vibration values and the values of the last
measurement. The system would output the estimated failure time with good accuracy.

Figure 9. Generalization Test (a).
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Figure 10. Generalization Test (b).

Table 3. RMSE values of the generalization test of the machine learning techniques.

Gen. ANN RT RF SVM

a 0.0313 0.0922 0.0920 0.0696
b 0.1184 0.1417 0.1430 0.1237

5. Conclusions

Increasingly, businesses seek more efficient ways to perform activities that directly impact their
performance. In the case of the advent of smart industry, accurately predicting when any equipment or
process may fail helps decision making regarding maintenance that needs to be performed, minimizing
costs and reducing workload.

The objectives of this work and its main contributions were to propose a methodology to treat the
collected vibration data from a device model, developed to simulate an actual system by measuring the
vibrations of a computer cooler fan with an accelerometer, and to build a dataset to train a ANN capable
of predicting when a failure can happen. The construction of this dataset involved the estimation of
equipment failure time, achieved by a formula that considers the linear growth of the signal. The ANN
class chosen to perform the prediction task was MLP, which is an easy to implement ANN with a good
generalization index. The ANN model was compared in terms of RMSE performance index values
with other machine learning techniques: Regression Tree; Random Forest; and Support Vector Machine.
The results of the training and comparative tests were satisfactory, showed that the ANN model was
superior to the other techniques. Generalization in short term predictions were equivalent between
ANN, RT and RF techniques, however with the ANN model, medium and long term predictions
were better. The success of the training and testing of the MLP neural network described in this work
to predict motor failure shows that this technique could be applied in industrial condition-based
maintenance. Despite the good performance of the ANN for the dataset built in this paper, MLP neural
networks with backpropagation learning algorithm may have some weaknesses. The literature [15]
points out a tendency of these techniques to converge slowly, besides allowing the occurrence of
overfitting, where after a certain time of training the error curve, until close to 0, moves away from
0. Thus, some of these points can be explored in future work. Different classes of ANNs could be
implemented and compared in order to observe which is the best model for the problem discussed in
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this paper. From an asset management point of view, it would be interesting to evaluate the possibility
of jointly implementing fault diagnosis systems and fault prediction systems with ANNs, with the aim
of building a unified system for maintenance planning in the industry. The proposed methodology
could also be target of future works, considering real systems measurements and other variables such
as temperature and pressure of the equipment, since the behavior of these variables are different and
would influence the construction of fault prediction systems differently. The training dataset could be
constructed based on real measurements or simulated with nonlinear estimates such as logarithmic
or exponential.

It is important to highlight that research and development of techniques that helps decision
making in the industry are essential for greater production efficiency and cost reduction.
The development of low cost and easy implementation solutions are attractive to industry, which can
materialize academic knowledge and development.
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