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Abstract: Dynamic contrast enhanced (DCE) MRI is a non-invasive imaging technique that has become a 

quantitative standard for assessing tumor microvascular permeability. Through the application of a pharmacokinetic 

(PK) model to a series of T1-weighed MR images acquired after an injection of a contrast agent, several vascular 

permeability parameters can be quantitatively estimated. These parameters, including Ktrans, a measure of capillary 

permeability, have been widely implemented for assessing tumor vascular function as well as tumor therapeutic 

response. However, conventional PK modeling for translation of DCE MRI to PK vascular permeability parameter 

maps is complex and time-consuming for dynamic scans with thousands of pixels per image. In recent years, image-

to-image conditional generative adversarial network (cGAN) is emerging as a robust approach in computer vision 

for complex cross-domain translation tasks. Through a sophisticated adversarial training process between two 

neural networks, image-to-image cGANs learn to effectively translate images from one domain to another, 

producing images that are indistinguishable from those in the target domain. In the present study, we have developed 

a novel image-to-image cGAN approach for mapping DCE MRI data to PK vascular permeability parameter maps. 

The DCE-to-PK cGAN not only generates high-quality parameter maps that closely resemble the ground truth, but 

also significantly reduces computation time over 1000-fold. The utility of the cGAN approach to map vascular 

permeability is validated using open-source breast cancer patient DCE MRI data provided by The Cancer Imaging 

Archive (TCIA). This data collection includes images and pathological analyses of breast cancer patients acquired 

before and after the first cycle of neoadjuvant chemotherapy (NACT). Importantly, in good agreement with previous 

studies leveraging this dataset, the percentage change of vascular permeability Ktrans derived from the DCE-to-PK 

cGAN enables early prediction of responders to NACT.  

Keywords: Dynamic contrast enhanced (DCE) MRI, vascular permeability, image-to-image conditional generative 

adversarial network (cGAN), breast cancer, neoadjuvant chemotherapy (NACT)  

1. Introduction 

 Neoadjuvant chemotherapy (NACT) has been established as a standard of care for patients with locally 

advanced breast cancer and has been expanded to include patients with early-stage breast cancer1. The primary goal 

of NACT is to downstage the tumor prior to surgery, enabling improved operability and conservation of healthy 

breast tissue2-5. Pathologic complete response (pCR) to NACT has been shown to be prognostic for survival1. 
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However, only 6-25% of breast cancer patients experience pCR to NACT3. Moreover, pathologic analysis must be 

performed after multiple cycles of NACT and surgery, limiting the ability to assess patient responses early in the 

treatment process. Currently, there is significant interest in non-invasive means to predict the pathologic response 

status to NACT prior to surgery, enabling clinicians to adjust personalized treatment regimens based on early 

responses, which in turn could lead to improved patient outcomes2. 

 To this end, various quantitative imaging modalities have been investigated for assessment of pathologic 

response status in breast cancer patients receiving NACT attributable to their non-invasive ability to assess tumor 

biology3,5,6. Early changes in underlying tumor biology characteristics including permeability, perfusion, 

metabolism, oxygenation, and cell density could enable early prediction of pathological response. In recent years, 

researchers have identified dynamic contrast enhanced (DCE) MRI and its resulting pharmacokinetic (PK) vascular 

permeability parameters as a potential biomarker for early assessment of NACT pathological response in breast 

cancer patients2,3,7. Tudorica et al. have shown that percentage changes in DCE MRI vascular permeability 

parameters are good to excellent predictors of pCR to NACT, with univariate logistic regression (ULR) c-statistic 

values ranging from 0.804-0.967 in a cohort of 28 invasive ductal carcinoma patients2. Namely, early changes in 

Ktrans, a measure of capillary permeability, immediately following the first cycle of NACT has shown the greatest 

promise for early prediction of pathologic response. 

 Despite its potential, the use of DCE MRI for monitoring treatment response has several limitations 

hindering its widespread clinical implementation. First, there is significant variability in image acquisition protocols 

and scanners across different institutions, which can lead to non-reproducible and inconsistent results in clinical 

oncology. Standardization of DCE MRI acquisition will enhance the reproducibility and consistency of DCE MRI 

studies. Moreover, DCE MRI requires sophisticated software for solving complex PK mathematical models that are 

used to generate vascular permeability parameters. There is also significant variation in not only PK models, but 

also the software tools/packages used to solve these models. It is well recognized that commercialization of a 

standardized software tool for generating vascular permeability parameters in DCE MRI will help establish the 

widespread clinical implementation of DCE MRI7. Furthermore, establishment of a simple software tool for 

generating vascular permeability parameters will enhance the ease of implementation and decrease the complexity 

and time required to solve these mathematical models.  

 To this end, several research groups including ours have investigated deep learning as a potential tool to 

standardize PK analysis and reduce computational complexity. These studies have applied deep learning approaches 

for quantification of vascular permeability in applications including brain cancer8-10, stroke11, pancreatic cancer12, 

and head and neck cancer13. The deep learning approaches explored in these studies include 1D convolutional neural 

network (CNN), 2D CNN, and recurrent neural networks (RNNs) such as gated recurrent unit (GRU) and long 

short-term memory (LSTM) networks. Although these studies have demonstrated the utility of deep learning for 

efficient quantification of vascular permeability, it is still uncertain if deep learning can reliably monitor tumor 

vascular permeability treatment responses with the same level of precision as conventional methods. Moreover, 

with the recent surge in the development of novel deep learning approaches, several innovative techniques have 
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emerged, offering potential improvements in both accuracy and robustness for quantifying vascular permeability in 

DCE MRI. 

 One of these novel deep learning approaches, generative adversarial network (GAN), specifically image-

to-image conditional GAN (cGAN), has proven to be a robust approach in computer vision for complex cross-

domain translation tasks14,15. During training of an image-to-image cGAN, a Generator neural network learns to 

create synthetic images that are similar to a target domain using images from another domain. Simultaneously, a 

Discriminator neural network evaluates the synthetic images against real images and determines if they are real or 

fake, guiding the Generator to produce increasingly realistic images over time. By leveraging this sophisticated 

adversarial training scheme between two neural networks, image-to-image cGANs can generate high-quality images 

that closely resemble the ground truth. Several studies have revealed the robust capabilities of cGANs for complex 

medical imaging tasks, including synthetic image generation16,17, image de-noising18, segmentation19,20, super-

resolution21, and modality transfer22. Specifically, image-to-image cGANs have recently been successfully applied 

to challenging cross-domain translation tasks in medical imaging, such as synthesizing apparent diffusion 

coefficient (ADC) maps from diffusion-weighted imaging23 and mapping cerebral blood volume (CBV) from 

standard MRI scans24.  

 Clearly, image-to-image cGANs are an attractive approach for translation of DCE MRI to PK vascular 

permeability parameter maps. However, to the best of our knowledge, an image-to-image cGAN has not been 

previously investigated for DCE-to-PK cross-domain translation tasks. In the present study, we have developed a 

novel DCE-to-PK cGAN approach for quantification of vascular permeability parameter maps in DCE MRI. The 

utility of the deep learning approach is validated in open-source breast cancer patient DCE MRI data provided by 

The Cancer Imaging Archive (TCIA). This data collection contains patient images and pathological analyses 

acquired before and after the first cycle of NACT from a multi-center data analysis challenge7,25. Moreover, the 

NACT induced early changes in vascular permeability as quantified by the DCE-to-PK cGAN has been correlated 

with pathological treatment response.  

2. Materials and Methods 

2.1. Patient Data 

 An open-source collection of breast cancer DCE MRI data provided by the Quantitative Imaging Network 

(QIN) and published on TCIA was used in the current study for training, testing, and validating the proposed image-

to-image cGAN approach7,25. The data collection was used in a previous study investigating the response of breast 

cancer patients to NACT in a multi-QIN center data analysis challenge. As described previously7, 20 DCE MRI 

scans were acquired across ten breast cancer patients. Each patient was subject to two imaging exams, one acquired 

prior to the start of treatment, V1, and another acquired after the first cycle of treatment, V2. MRI studies were 

performed on a Siemens 3T TIM Trio system. DCE MRI was acquired using a 3D gradient echo-based time-

resolved angiography with stochastic trajectories (TWIST) sequence (TR/TE: 6.2/2.9 msec; flip-angle: 10 degrees; 

field of view: 30 to 34 cm; in-plane matrix size: 320 × 320; slice thickness: 1.4 mm; parallel imaging acceleration 

factor: 2; temporal resolution: 18 to 20 sec). Following the acquisition of two baseline images, a contrast agent 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.24313070doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gd(HP-D03A) [ProHance] was injected intravenously (0.1 mmol/kg at 2 ml/s) with a programmable power injector, 

followed by a 20 ml saline flush.  

 In addition to DCE MRI data, average tumor baseline longitudinal relaxation rate R1 (R10), population-

averaged arterial input function (AIF), tumor region of interest (ROI), and pathologic response status were provided 

for each patient for PK modeling and analysis. As described previously, tumor average R10 values were determined 

by comparing the signal intensity of baseline DCE images without contrast to spatially registered proton density 

images acquired immediately before DCE MRI26. The provided population-averaged AIF was obtained in a 

previous sagittal breast DCE MRI study, which employed the same contrast agent injection protocol27. Patient tumor 

ROIs were drawn by experienced breast radiologists at Oregon Health and Science University on post-contrast DCE 

MRI. Pathologic status was determined through pathologic comparisons pre-NACT and following the final cycle 

of NACT. A binary classification of pCR or non-pCR (pathologic nonresponse and pathologic partial response) was 

provided for each patient7.  

2.2. DCE MRI Preprocessing 

 DCE MRI scans were cropped to isolate patient tumor-bearing breasts and remove background anatomical 

structures including the lungs and heart, resulting in an in-plane matrix size of 160 × 160. The scans were truncated 

to twenty-eight frames to allow for all imaging datasets having the same temporal size. DCE images were then 

motion corrected using an in-house MATLAB co-registration algorithm.  

2.3. Pharmacokinetic Modeling 

 Dynamic signal intensity changes in DCE MRI and patient-specific R10 values were used to determine Ct, 

the dynamic concentration of contrast within the tissue, according to the following equations:  

    𝑆(𝜏) =  𝑆0
(1−𝑒−𝑇𝑅∗𝑅1(𝜏))∗sin(𝜃)

1−𝑒−𝑇𝑅∗𝑅1(𝜏)∗cos(𝜃)
       (1) 

    𝑅1(𝜏) =  𝑟1𝐶𝑡(𝜏) + 𝑅10       (2) 

where S and S0 is the DCE MRI signal intensity with and without contrast agent, respectively, θ is the flip angle of 

the DCE MRI sequence, and r1 is the relaxivity of the contrast agent. Following Ct mapping, the Extended Tofts 

Model (ETM) was applied to estimate vascular permeability parameters according to Eqn. 3:  

   𝐶𝑡(𝜏) = 𝑉𝑝𝐶𝑝(𝜏) + 𝐾𝑡𝑟𝑎𝑛𝑠 ∫ 𝐶𝑝(𝜏)𝑒−𝑘𝑒𝑝(𝜏−𝜏′)𝑑𝜏
𝜏

0
     (3) 

where Cp is the dynamic concentration of contrast within the plasma, also known as the AIF. Vp, Ktrans, and kep are 

vascular permeability parameters that describe the fractional volume of blood plasma, the transfer rate of contrast 

agent from the blood plasma to the extravascular extracellular space (EES), and the reverse transfer rate of the 

contrast agent from the EES to the blood plasma, respectively10,28,29. A non-linear least squares (NLLS) curve-fitting 

algorithm was used to map the PK parameters to Ct and Cp for each voxel. The bounds for curve-fitting of each 

vascular parameter were: Ktrans = [1e-8, 2], kep = [1e-8, 2], and Vp = [1e-8, 0.2]. All mathematical modeling algorithms 

were implemented in MATLAB R2024a with an Intel Xeon CPU @ 3.70 GHz and 32 GB RAM.  
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2.4. DCE-to-PK cGAN Architecture 

  The proposed cGAN architecture for translating DCE MRI to PK vascular permeability parameters is 

shown in Figure 1. Patient-specific R10 values were broadcasted to a matrix size of 160 × 160 and concatenated 

with corresponding DCE MRI patient scans. The Generator neural network translates R10 + DCE MRI into synthetic 

vascular permeability Ktrans maps. The Discriminator neural network determines if the input Ktrans maps from the 

ETM or the Generator are real or fake, conditioned on corresponding R10 + DCE MRI. In the current study, we used 

a dual-pathway CNN from our previous work9,10 for the Generator and a conditional PatchGAN for the 

Discriminator14.  

 For the Generator, an image input layer and convolutional layer were followed by the two parallel pathways, 

local and global, to capture multi-scale features. The local pathway consists of three convolutional non-dilated 

layers. The global pathway consists of three convolutional layers that were dilated by factors of 2, 4, and 8, 

respectively. The dual-pathway convolutional layers were designed with 128 filters with a size of 3 × 3. Local and 

global pathways were then concatenated and followed by four fully connected convolutional layers of 1024, 512, 

128, and one filter, each with a size of 1 × 1. A ReLU activation layer followed each convolutional layer, except 

for the final convolutional layer, which was instead followed by a Tanh layer. Zero padding was applied to every 

convolutional operation.  

Figure 1. Pathway for DCE-to-PK cGAN training. A Generator neural network was trained to translate input 

R10 + DCE MRI to synthetic Ktrans maps. Simultaneously, a Discriminator neural network was trained to 

distinguish between the Generator synthetic Ktrans maps and real ETM Ktrans maps, conditioned on input R10 + 

DCE MRI. A custom least squares patch-based adversarial loss incorporating an L1-loss term was used to update 

both network parameters until the resulting synthetic Ktrans maps generated by the Generator appeared 

indistinguishable from real ETM Ktrans maps. 
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 For the Discriminator, a conditional PatchGAN was implemented to down-sample Ktrans maps by a factor 

of eight and discriminate based on patches. The Discriminator was conditioned with corresponding R10 + DCE MRI 

used to create the real and synthetic Ktrans maps. An image input layer was followed by a fully convolutional 

architecture with five convolutional layers of 128, 256, 512, 1024, and one filter, each with a size of 3 × 3. Batch 

normalization was applied to all convolutional layers, except for the first and final convolutional layer. A leaky 

ReLU activation layer followed each convolutional layer, apart from the final convolutional layer, which was 

instead followed by a Sigmoid layer.  

2.5. Model Training  

 DCE MRI and corresponding Ktrans maps were normalized to [0 1] for model training. K-fold cross 

validation was performed to allow all patients to serve as testing data of the DCE-to-PK cGAN. To this end, imaging 

data from a single patient (n = 240 DCE slices) from both pre and post-NACT (V1 and V2) were isolated and saved 

for network testing. The remaining patient data (n = 2,160 DCE slices) were then randomly split into an 80:20 

training to validation ratio. Using the Adam optimizer, hyper-parameters were manually adjusted to achieve the 

best network performance with minimum error: a learning rate of 1e-5 for both the Generator and Discriminator, 

mini-batch size of 16, and maximum epochs of 200. Training data was shuffled at every epoch. A custom least 

squares cGAN-based approach30 incorporating an L1-loss (mean absolute error) component was implemented for 

the Generator and Discriminator loss functions as follows:  

    ℒ𝐷 =  
1

𝑁
∑ [(𝐷(𝑥𝑖 , 𝑦𝑖) − 1)2  + 𝐷(𝑥𝑖, 𝐺(𝑥𝑖))2] 𝑁

𝑖=1     (4) 

   ℒ𝐺 =  
1

𝑁
∑ [(𝐷(𝑥𝑖 , 𝐺(𝑥𝑖)) − 1)2  +  𝜆𝐿1 ∗ ‖𝑦𝑖 −  𝐺(𝑥𝑖)‖1] 𝑁

𝑖=1     (5) 

where N is the mini-batch size, xi is the conditioned R10 + DCE MRI, yi is the ground-truth ETM Ktrans maps, 𝐺(𝑥𝑖) 

is the Generator synthetic Ktrans maps, and λL1 is the weight of the L1 loss term, which was set to 1. Following 

training, the patient testing dataset was fed directly into the Generator to produce synthetic Ktrans maps that were 

then rescaled back to their original distribution. This process was repeated 10-fold for all patients. All neural 

network algorithms were implemented in MATLAB R2024a with an NVIDIA GeForce RTX 3090.  

2.6. Statistical Analysis 

 Patient intratumoral individual pixel, slice mean, and tumor mean Ktrans for both V1 and V2 were quantified 

using tumor ROI provided by the TCIA. Linear regression was applied to individual patients as well as an ensemble 

of patients Ktrans values for statistical correlation and significance. The root-mean-squared error (RMSE), mean 

absolute error (MAE), normalized RMSE (nRMSE), normalized MAE (nMAE), Pearson R-squared (R2), and 

concordance correlation coefficient (CCC) were determined for each patient pixel-by-pixel Ktrans between the DCE-

to-PK cGAN and ETM. nRMSE and nMAE were normalized using patient standard deviation (SD) of target ETM 

Ktrans. ULR models were fit to compute the c-statistic, the area under the Receiver Operating Characteristic (ROC) 

curve, for V1 Ktrans, V2 Ktrans, and percentage Ktrans change from V1 to V2 for both the ETM and cGAN approaches. 

Two-tailed and unpaired Student’s t-tests were used to determine statistical significance between pre- and post-

NACT. p < .05 was considered to indicate statistical significance. Data were presented as mean ± SD.  
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3. Results 

 The DCE-to-PK cGAN was found to generate vascular permeability parameter maps in breast cancer TCIA 

patient datasets (n = 120 slices) in 2.5 seconds on average with an NVIDIA GeForce RTX 3090, significantly 

lowering the average computation time over 1000-fold relative to the ETM (150 min average on Intel Xeon CPU 

@ 3.70 GHz and 32 GB RAM). A representative non-pCR patient to NACT is depicted in Figure 2. DCE MRI 

revealed a large, highly enhanced tumor mass as well as multiple infiltrative lesions. These tumors were enhanced 

at both pre-treatment, V1, and post-NACT, V2. Vascular permeability Ktrans maps produced by the cGAN closely 

resembled ETM counterparts, exhibiting excellent spatial correlation and high structural similarity (Figure 2a). 

This patient was found to have elevated vascular permeability Ktrans at V1 (ETM = 0.0233 ± 0.0035 min-1; cGAN = 

Figure 2. TCIA non-pCR patient tested using the DCE-to-PK cGAN. Two representative DCE MRI slices 

from a non-pCR patient revealed highly enhanced tumor lesions at both pre-treatment (V1) and post-NACT 

(V2). Notably, ETM and cGAN Ktrans maps showed excellent spatial correlation and high structural similarity 

(a). Quantification of tumor mean Ktrans at V1 (n = 22 slices) and V2 (n = 21 slices) revealed a small decrease in 

vascular permeability at V2 by both the ETM and cGAN (b). Analysis of slice-based mean Ktrans (c) and pixel-

by-pixel Ktrans (d) showed strong correlations (R2 = 0.98) between the cGAN and ETM (p < 0.0001). Mean ± 

SD. 
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0.0230 ± 0.0035 min-1) that was largely retained at V2 (ETM = 0.0213 ± 0.0058 min-1; cGAN = 0.0200 ± 0.0053 

min-1), with excellent agreement between the ETM and cGAN (Figure 2b). Linear regression (Figure 2c and 2d) 

revealed a significant linear correlation (p < 0.0001) between the cGAN and ETM for both slice-based mean Ktrans 

(n = 43; R2 = 0.98) and pixel-by-pixel Ktrans (n = 20,873; R2 = 0.98) for this patient.  

 Similar to the non-pCR patient, as shown in Figure 3, DCE MRI of a representative pCR patient revealed 

a large, highly enhanced tumor at both V1 and V2. ETM and cGAN Ktrans maps were almost indistinguishable, 

exhibiting excellent spatial correlation and high structural similarity (Figure 3a). While the patient was found to 

have elevated vascular permeability Ktrans at V1 (ETM = 0.0383 ± 0.0164 min-1; cGAN = 0.0380 ± 0.0160 min-1), 

the patient had markedly decreased Ktrans at V2 (ETM = 0.0155 ± 0.0016 min-1; cGAN = 0.0156 ± 0.0016 min-1) in 

Figure 3. TCIA pCR patient tested using the DCE-to-PK cGAN. Two representative DCE MRI slices from 

a pCR patient revealed a highly enhanced tumor lesion at both pre-treatment, V1, and post-NACT, V2. Notably, 

Ktrans maps produced by the ETM and cGAN had excellent spatial correlation and high structural similarity (a). 

Quantification of tumor mean Ktrans (b) at V1 (n = 19 slices) and V2 (n = 12 slices) revealed substantially 

decreased vascular permeability at V2 by both the ETM and cGAN (p < 0.0001). Analysis of slice-based mean 

Ktrans (c) and pixel-by-pixel Ktrans (d) showed strong correlations (R2 = 0.99) between the cGAN and ETM (p < 

0.0001). Mean ± SD, ****p < 0.0001. 
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good agreement by the ETM and cGAN (Figure 3b). Slice-based mean Ktrans (n = 31; R2 = 0.99) and pixel-by-pixel 

Ktrans (n = 3,031; R2 = 0.99) revealed a significant linear correlation (p < 0.0001) between the cGAN and ETM for 

this patient (Figure 3c and 3d). Clearly, the DCE-to-PK cGAN accurately monitored vascular permeability 

responses in non-pCR (Figure 2) and pCR (Figure 3) patients with high structural similarity to the ETM.  

 The DCE-to-PK cGAN deciphered intra-patient heterogeneous tumor responses in good agreement to the 

ETM, further demonstrating its utility (Figure 4). Anatomical DCE images of a representative breast cancer patient 

revealed two tumor lesions, lesion 1 (green arrow) and lesion 2 (red arrow). Both lesions were largely enhanced at 

V1 and V2 (Figure 4a). ETM and cGAN maps showed elevated vascular permeability Ktrans at V1 for lesion 1 

(ETM = 0.0247 ± 0.0090 min-1; cGAN = 0.02451 ± 0.0091 min-1) and lesion 2 (ETM = 0.0283 ± 0.0077 min-1; 

cGAN = 0.0287 ± 0.0078 min-1). In response to NACT, lesion 1 had markedly decreased Ktrans (Figure 4b; ETM = 

0.0104 ± 0.0030 min-1; cGAN = 0.0102 ± 0.0032 min-1), whereas lesion 2 retained elevated permeability (Figure 

4c; ETM = 0.0232 ± 0.0051 min-1; cGAN = 0.0239 ± 0.0050 min-1). Importantly, these heterogeneous responses 

between the two lesions were recapitulated with high accuracy by the cGAN. Moreover, there was significant linear 

Figure 4. DCE-to-PK cGAN deciphered intra-patient heterogeneous tumor response. In a representative 

patient, two highly enhanced tumor lesions, lesion 1 (green arrow) and lesion 2 (red arrow), were identified on 

DCE images (a). Notably, ETM and cGAN Ktrans maps showed elevated vascular permeability at V1 for both 

lesions. Interestingly, both ETM and cGAN V2 Ktrans maps revealed markedly decreased vascular permeability 

for lesion 1 (b) and retained vascular permeability for lesion 2 (c). Slice-based mean Ktrans (d) and pixel-by-pixel 

Ktrans (e) analysis showed strong correlations (R2 = 0.98) between the cGAN and ETM (p < 0.0001). Mean ± 

SD, ****p < 0.0001. 
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correlation (p < 0.0001) between the cGAN and ETM for both slice-based mean Ktrans (n = 28; R2 = 0.99) and pixel-

by-pixel Ktrans (n = 6,471; R2 = 0.98) for this patient (Figure 4d and 4e). 

 Error analysis (Table 1) across all patient’s intratumoral pixel-by-pixel Ktrans values showed low RMSE 

and MAE for the cGAN. Importantly, all patients had less predictive error than the SD seen on ETM maps (nRMSE 

and nMAE < 1). R2 and CCC revealed strong correlations between the cGAN and ETM approaches for quantifying 

Ktrans (R2 and CCC > 0.9). As shown in Figure 5, an intratumoral ensemble of tumor mean Ktrans (n = 20), slice-

based mean Ktrans (n = 359), and pixel-by-pixel Ktrans (n = 143,640) across all patients demonstrated significant linear 

correlations (p < 0.0001) between the ETM and cGAN (R2 ≥ 0.98). Negligent over or under-prediction by the cGAN 

for tumor mean, slice-based mean, and pixel-by-pixel Ktrans was found from Bland-Altman plot analysis (not shown 

here). 

 Pathological evaluations of individual patient responses to NACT were performed previously by Oregon 

Health & Science University in a study by Huang et al7. In this group of patients, seven were identified as non-pCR 

and three were pCR. Based on these classifications, we plotted tumor mean Ktrans at V1 and V2 as well as percentage 

Table 1. Predictive performance of DCE-to-PK cGAN 

Patient RMSE MAE nRMSE nMAE R2 CCC 

Patient 01 1.98E-3 1.28E-3 0.167 0.108 0.981 0.985 

Patient 05 2.63E-3 1.62E-3 0.113 0.069 0.988 0.993 

Patient 06 1.15E-3 7.70E-4 0.181 0.120 0.973 0.985 

Patient 08 1.04E-3 5.37E-4 0.100 0.052 0.990 0.995 

Patient 10 2.18E-3 1.33E-3 0.264 0.161 0.947 0.968 

Patient 12 3.19E-3 1.11E-3 0.316 0.110 0.954 0.959 

Patient 13 1.95E-3 1.38E-3 0.223 0.157 0.981 0.978 

Patient 14 1.97E-3 1.26E-3 0.138 0.088 0.982 0.991 

Patient 15 1.06E-3 6.01E-4 0.114 0.065 0.987 0.994 

Patient 16 2.46E-3 1.63E-3 0.176 0.116 0.973 0.985 

Figure 5. Patient ensemble linear regression analysis. Tumor mean Ktrans (a) across all patients at both V1 and 

V2 (n = 20) revealed a significant linear correlation between the ETM and cGAN (p < 0.0001; R2 = 0.99). 

Similarly, intratumoral slice-based mean Ktrans (b) and pixel-by-pixel Ktrans (c) had strong linear correlations 

between the ETM and cGAN with R2 = 0.99 (n = 359) and 0.98 (n = 143,640), respectively (p < 0.0001).  
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Ktrans change between V1 and 

V2 (Figure 6). Clearly, scatter 

plots of tumor mean Ktrans for 

both the ETM (Figure 6a) and 

cGAN (Figure 6b) showed 

differential PK vascular 

permeability responses to 

NACT between non-pCR (red 

triangles) and pCR patients 

(black circles). The pCR 

patients had a more prominent 

decrease in tumor mean Ktrans 

after the first cycle of NACT 

in comparison to non-pCR 

patients. There was great 

agreement in Ktrans values and percentage Ktrans change between the cGAN and ETM. Importantly, the DCE-to-PK  

 cGAN quantified percentage Ktrans change clearly distinguished non-pCR from pCR patients in good agreement to 

the ETM (Figure 6c). Furthermore, concurring with previous work leveraging this dataset7, ULR models found 

percentage Ktrans change was an excellent 

predictor of pathological response 

(Table 2). 

4. Discussion 

 DCE MRI is becoming increasingly common in standard-of-care cancer imaging regimens attributable to 

its noninvasive ability to assess tumor biology in the form of tumor microvascular permeability. However, DCE 

MRI has several limitations that still hinder its widespread clinical implementation. These limitations include 

variability in image acquisition protocols, the need for standardized PK analysis techniques, and the requirement 

for advanced computational tools. Addressing these issues could significantly enhance the clinical utility of DCE 

MRI in oncology. To this end, we have developed a novel DCE-to-PK cGAN approach for translation of DCE MRI 

to PK vascular permeability parameter maps.  

 An important finding from the present study is that the DCE-to-PK cGAN significantly lowered the 

computational time over 1000-fold relative the ETM, while generating synthetic Ktrans maps that closely resembled 

real ETM Ktrans maps (Figures 2-4). In addition to the excellent spatial correlation and visual structural similarity 

between cGAN and ETM maps, we found low intratumoral error (nMAE and nRMSE < 1.0) and strong correlation 

(R2 and CCC > 0.9) across all patients (Table 1). Furthermore, an ensemble of tumor-bearing Ktrans values for all 

patients (Figure 5) revealed a significant linear correlation (p < 0.0001) for tumor mean, slice-based mean, and 

Table 2. ULR c-statistic values for early prediction of pathologic 

response to NACT 

Model V1 Ktrans V2 Ktrans %Ktrans Change 

ETM 0.619 0.857 1.00 

cGAN 0.619 0.857 1.00 

Figure 6. DCE-to-PK cGAN enables early prediction of responders to NACT. 

Scatter plots of tumor mean Ktrans for both ETM (a) and cGAN (b) revealed 

differential vascular changes to NACT between non-pCR patients (red 

triangles) and pCR patients (black circles). Notably, in good agreement with 

previous work7, Ktrans percentage changes (c) clearly distinguished the non-pCR 

from the pCR patients. 
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pixel-by-pixel Ktrans (R2 ≥ 0.98). Clearly, the DCE-to-PK cGAN can efficiently quantify vascular permeability in 

good agreement to conventional PK models. 

 Several previous studies have identified DCE MRI derived vascular permeability parameters as a potential 

biomarker for early assessment of NACT pathological response in breast cancer patients2,3,7. These studies have 

suggested that NACT-induced tumor function changes, particularly vascular function changes, precede changes in 

tumor size, which is the current standard of care for evaluating treatment response2,3,7. Furthermore, these early 

changes in vascular function are prognostic for pathological response and may serve as a useful surrogate for early 

monitoring of treatment response. Indeed, as shown in Figure 2 and 3, representative non-pCR and pCR patients 

from TCIA data collection as used in this study have minimal change in tumor size following the first cycle of 

NACT. In good agreement with previous work of this data collection7, the non-pCR patient was found to retain 

elevated vascular permeability based on the ETM, whereas the pCR patient exhibited a significant decrease in 

vascular permeability parameter Ktrans (p < 0.0001). Importantly, the DCE-to-PK cGAN correctly quantified these 

early vascular permeability changes in both non-pCR and pCR patients in excellent agreement to the ETM.  

 It is noteworthy that tumors in both non-pCR (Figure 2) and pCR (Figure 3) breast cancer patients were 

highly enhanced on DCE MRI at both V1 and V2, indicating lesions were permeable both pre- and post-NACT. 

However, as discussed above, non-pCR and pCR patients showed differential vascular permeability Ktrans changes 

in response to NACT. Ktrans is related to the rate of enhancement on DCE MRI scans, indicating that the rate of 

enhancement may be more important for monitoring treatment response than the presence of high contrast 

enhancement. Another noteworthy finding is that the DCE-to-PK cGAN not only accurately quantified vascular 

permeability changes between individual patients, but also accurately deciphered intra-patient heterogeneous tumor 

responses, as evidenced in the patient shown in Figure 4. We anticipate the DCE-to-PK cGAN can serve as a useful 

tool for monitoring both inter-patient and intra-patient tumor vascular permeability responses, which can aid in 

clinical decision-making and personalized medicine.  

 In a previous work leveraging this data collection by Huang et al., a multi-QIN center data analysis 

challenge revealed significant variability of vascular permeability parameters derived from twelve different DCE 

MRI computational modeling algorithms7. The authors found up to a two-fold to four-fold parameter value 

difference between software tools, albeit controlling for tumor ROI definition as well as R10 and AIF measurements. 

A separate study similarly revealed a 10-fold to 100-fold difference in vascular permeability parameters derived 

from different software tools in DCE MRI31. These differences in vascular permeability parameters based on 

different PK models and software tools could lead to non-reproducible results in DCE MRI studies across different 

institutions. Huang’s study showed strong agreement in percentage change of vascular permeability parameter Ktrans 

for nearly all software tools, of which 11 out of 12 were good (0.8 ≤ c-statistic ≤ 0.9) to excellent (c-statistic ≥ 0.9) 

predictors of pathologic response by ULR analysis7.  

 In the present study leveraging the same dataset from Huang’s study7, we found our in-house ETM software 

returned smaller vascular permeability Ktrans values than the majority of the other computational modeling 

algorithms used in the data analysis challenge. Our vascular permeability Ktrans values produced by in-house ETM 
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software were similar to the BWH-3D Slicer TM software tool7,32 used in the data analysis challenge (Figure 6a). 

The DCE-to-PK cGAN approach also predicted smaller vascular permeability Ktrans values relative to the other 

software tools as the deep learning approach was trained to recapitulate our ETM software (Figure 6b). 

Nevertheless, percentage Ktrans changes for both our ETM software and cGAN are in excellent agreement to all 

software tools as used in Huang’s study (Figure 6c)7. Similarly, we show that both our ETM software and cGAN 

approach are excellent predictors of pathologic response (c-statistic = 1.0) when considering percentage change of 

vascular permeability parameter Ktrans (Table 2).  

 As revealed in the present study, an image-to-image cGAN may serve as a useful tool in DCE MRI for 

monitoring treatment response. However, it is worth noting that the current sample size of the study cohort is small. 

Including additional training and testing cases will further elucidate the long-term utility of the DCE-to-PK cGAN 

approach. To this end, with the recent surge in the development of novel artificial intelligence (AI) approaches, 

specifically generative AI, it would be interesting to evaluate the ability of these approaches to generate synthetic 

DCE MRI. Such synthetic data could be used to augment and expand training cases, potentially improving the 

performance of the DCE-to-PK cGAN. Moreover, a direct comparison of the DCE-to-PK cGAN to previously 

developed deep learning algorithms for efficient DCE MRI mapping was not performed in the current study but is 

warranted. It would similarly be interesting to evaluate an ensemble learning approach to combine the knowledge 

of alternative deep learning frameworks, which may lead to enhanced predictive accuracy over implementation of 

a single deep learning model.  

5. Conclusion 

 In summary, we have developed a novel image-to-image cGAN approach for efficient translation of DCE 

MRI to PK vascular permeability parameter maps. The DCE-to-PK cGAN can generate vascular permeability 

parameter maps that closely resemble real parameter maps and reduce the computational time over 1000-fold 

compared to conventional computational tools. Importantly, percentage change of vascular permeability parameter 

Ktrans maps derived from the cGAN approach were excellent early predictors of pathologic response in breast cancer 

patients to NACT, highlighting its utility for monitoring treatment response. We anticipate the DCE-to-PK cGAN 

will serve as a useful tool to standardize PK analysis and reduce computational complexity in both general oncologic 

imaging and clinical trials.  
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