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Abstract

Sequencing of RNA 3’ ends uncovered numerous sites that do not correspond to termination sites 

of known transcripts. Through their 3’ untranslated regions, protein-coding RNAs interact with 

RNA-binding proteins and microRNAs, which regulate many properties, including RNA stability 

and subcellular localization. Here we present the ‘terminal exon characterization’ (TEC) tool 

(http://tectool.unibas.ch), applicable to RNA sequencing data from any species for which a 

genome annotation that includes sites of RNA cleavage and polyadenylation is available. We 

describe hundreds of novel isoforms and cell type-specific terminal exons in human cells. 

Ribosome profiling data indicate that many of these isoforms are translated. Applying TECtool to 

single cell sequencing data we find that the newly identified isoforms have typical per-cell 

abundance, but are expressed in subpopulations of cells. Thus, TECtool enables identification of 

novel isoforms in well studied cell systems and in rare cell types.

Introduction

Most eukaryotic transcripts undergo maturation through 3’ end cleavage and 

polyadenylation (CPA). The 3’ untranslated regions (3’ UTRs) of protein-coding messenger 

RNAs (mRNAs) interact with RNA-binding proteins (RBPs) 1 and microRNAs (miRNAs), 
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which control diverse aspects of gene expression 2. Global changes in 3’ UTR length have 

been observed during immune responses 3, development 4, and in cancers 5. The initial view 

was that 3’ UTR shortening serves to counteract the repressive effect of miRNAs in 

proliferating cells 3,6. However, subsequent studies found largely similar decay rates of long 

and short 3’ UTR isoforms 7,8, leaving the role of 3’ UTR length changes still unclear. 

Evidence is accumulating that 3’ UTR-located sequence elements, particularly uridine(U)-

rich, regulate many aspects of gene expression, from alternative polyadenylation in the 

nucleus to the subcellular localization of mRNAs and proteins in the cytoplasm 9–11.

In spite of many efforts to catalog human and mouse transcript isoforms 12–15, sequencing 

of RNA 3’ ends continues to uncover novel polyadenylation (poly(A)) sites (PAS), many 

outside of annotated exons 12–15. The presence of well-characterized poly(A) signals 

indicates that these PAS are genuine 9, yet little is known about their regulation and 

functions. In a recent study 9 we identified 108’932 PAS in genomic regions annotated as 

introns in the GENCODE transcript annotation version 19 16. In contrast to the more studied 

tandem PAS in 3’ UTRs, whose variable processing leads to changes in 3’ UTR length, the 

use of ‘intronic’ PAS can alter both the encoded protein isoforms and the 3’ UTRs and 

thereby the interactomes of the corresponding transcripts. To expand genome annotations 

with transcripts that end at currently ‘intronic’ PAS, we have developed a computational 

terminal exon characterization (TEC) tool.

Results

Prevalent pre-RNA processing at ‘intronic’ poly(A) sites

A large proportion of PAS reproducibly identified from ~200 distinct human and mouse 3’ 

end sequencing samples, are located in genomic regions currently annotated as intronic 9. 

Representing up to ~10% of the PAS identified in individual tissues (unrelated to sequencing 

depth, Figure 1A and Supplementary Figure 1A), ‘intronic’ PAS have canonically-

positioned polyadenylation signals (~21 nucleotides (nts) upstream of cleavage sites, Figure 

1B and Supplementary Figure 1B), but a more specific tissue distribution compared to the 

PAS in annotated terminal exons (Figure 1C and Supplementary Figure 1C).

TECtool identifies terminal exons from RNA-sequencing data

3’ end sequencing data remain relatively scarce. However, public databases contain many 

RNA sequencing (RNA-seq) data sets, from a wide range of cell types, that provide evidence 

for yet unannotated transcript isoforms (Figure 2A and Supplementary Figure 2). The 

terminal exon characterization (TEC) tool that we present here identifies terminal exons and 

transcript isoforms ending at ‘intronic’ PAS (Figure 2B-C). Based on alignments of RNA-

seq reads resulting from single or paired-end sequencing (Supplementary Figure 3), TECtool 

trains a model (Supplementary Figure 4) to distinguish terminal exons from internal exons 

and background regions, using a variety of features that reflect differences in the coverage of 

these regions by RNA-seq reads (Supplementary Figure 5). It then uses the model to predict 

novel terminal exons, corresponding transcripts and their putative coding regions. TECtool 

can also be applied to data from unstranded protocols (e.g. Illumina TruSeq RNA v2). In this 

case, it does not predict terminal exons that overlap with annotated exons encoded on the 
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opposite strand. To analyze data from single cells, where most transcripts are only sparsely 

covered by reads, we have designed a TECtool workflow that initially pools the reads to 

infer novel transcripts, and then quantifies the abundance of these transcripts in individual 

cells (Supplementary Figure 6).

TECtool reproducibly and accurately identifies novel transcripts

To evaluate TECtool, we took advantage of extensive datasets generated from human 

embryonic kidney (HEK) 293 cells. The ‘support level’ annotation of individual transcripts 

in ENSEMBL 19 provides a natural way to validate the tool, as we can determine whether 

isoforms that are predicted as novel relative to the annotation with the strongest 

experimental support (transcript support level (TSL) 1) are present in the annotation with 

more limited experimental evidence. From two biological replicates of RNA-seq in HEK 

293 cells 20 TECtool identified 327 and 337 terminal exons (510 in total and 154 in 

common) that were novel with respect to TSL1 annotation. 321 of the 510 overlapped with 

terminal exons from the TSL1-5 annotation, and both annotated and novel transcripts had 

very reproducible expression in the two replicates (Supplementary Figure 7A). Repeating 

the inference starting from the known TSL1-5 transcripts, we obtained 170 and 150 novel 

terminal exons in the two replicates (250 total, 70 common), similar in properties to 

transcripts identified starting from TSL1 annotation (Figure 3A). These results show that 

TECtool identifies many novel terminal exons even from a highly studied cell line such as 

HEK 293.

Ribosome profiling data from HEK 293 cells 21 revealed that novel terminal exons had 

much higher translational efficiency compared to intronic sequences, but lower than already 

annotated terminal exons (Figure 3B and Supplementary Figure 7B). The ribosome footprint 

density peaked around stop codons, whether already annotated or predicted in the novel 

terminal exon isoforms (Supplementary Figure 7C). These results indicate that TECtool-

predicted isoforms are sufficiently stable to undergo translation.

The median length of TECtool-predicted terminal exons in the two HEK 293 RNA-seq 

samples was 732 and 632 nts, respectively, larger than the median length of terminal exons 

predicted by StringTie 22 (380 and 412 nts, respectively) and Cufflinks 23 (199 and 232 nts, 

respectively), the two currently most accurate transcript reconstruction methods 24 (Figure 

3C). TECtool did not predict any exon shorter than 50 nts, in contrast to StringTie (3.5% and 

3.9% of terminal exons in the two replicates, respectively) and especially Cufflinks (21.5% 

and 22.4%, respectively). This is a reflection of transcript reconstruction tools being largely 

unable to correctly determine transcript 3’ ends, where the coverage by RNA-seq reads is 

reduced. Consistent with an accurate assignment of polyadenylation sites, only TECtool-

predicted terminal exons had the canonical poly(A) signal (‘AAUAAA’) at the expected 

position, ~21 nts upstream of PAS (Supplementary Figure 7D). In fact, only a minority of 

‘intronic’ terminal exons predicted by Cufflinks (32.4% and 31.4%) and StringTie (45.5% 

and 48.6%) had experimentally-identified intronic PAS in the region +/-200 nts around their 

3’ end (Figure 3D). Even when we defined unique terminal exons solely by their splicing-

determined 5’ end, TECtool made more reproducible predictions from replicate samples 

(40% of the union of predicted exons were identified from both replicates, compared to 30% 
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for StringTie and 18% for Cufflinks) (Supplementary Figure 7E,F), while its predictions 

were largely not covered by the other tools (58 or 63% of its predicted novel exons). Thus, 

TECtool identifies with high reproducibility many exons not found by transcript 

reconstruction methods, having the unique advantage of accurately annotating transcript 3’ 

ends. TECtool further predicts the coding region of novel transcripts, facilitating 

downstream analyses of encoded proteins.

Lagarde et al. 25 recently sequenced samples from four tissues, in parallel on both short and 

long read sequencing platforms, allowing us to further validate TECtool-generated transcript 

models. Even though full-length RNA Capture Long Sequencing (CLS) primarily captures 

highly expressed transcripts (Supplementary Figure 8), ~8% of the novel transcripts 

predicted by TECtool from short read sequencing were also identified by long read 

sequencing (44, 5, 0, and 1 of the 464, 88, 63 and 20 novel transcripts predicted from testis, 

brain, heart and liver samples, respectively). Thus, CLS validates highly expressed TECtool-

predicted transcripts and altogether, our analysis shows that TECtool can substantially 

improve transcriptome annotation.

TECtool identifies cell type-specific isoforms

Turning to an RNA-seq data set that covered 32 human tissues 26, TECtool identified 

hundreds of novel terminal exons, primarily from testis and bone marrow samples (Figure 

4A). This was not a mere reflection of the library sizes (Supplementary Figure 9). 

Furthermore, many novel isoforms were the most expressed transcripts of their 

corresponding genes (Supplementary Figure 10), indicating a special relevance of intronic 

polyadenylation in these tissues.

Novel isoforms are expressed in subsets of single cells

Single cell RNA sequencing allows one to assess whether a low average expression of a 

particular transcript results from ‘transcriptional noise’, affecting all cells, or from highly 

specific expression in rare cell types. Applying TECtool to a recently published single cell 

RNA-seq data set of 201 T cells 27, we found that the distribution of novel isoform 

expression levels in individual cells is within the range of already annotated isoforms. Once 

transcripts reach an average expression of 1-2 reads per million per cell (considering only 

reads that splice into the 5’ splice site of the terminal exon), they start to be detected in 

multiple cells (Supplementary Figure 11A). However, multiple isoforms with distinct 

terminal exons are rarely present in a cell at the same time (Supplementary Figure 11B). 

Thus, rather than being co-expressed with the more abundant annotated isoforms, novel 

isoforms appear to be expressed in subsets of cells, at a per-cell level similar to that of 

annotated transcripts. Examples of isoform switching between individual cells are shown in 

Figure 4B and Supplementary Figure 11C-D. These results illustrate the potential of 

TECtool to improve the characterization of transcript isoforms expressed in individual cells, 

thereby enabling the characterization of rare cell types.
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Discussion

Following the initial assembly of the human genome 28,29, full-length RNAs and expressed 

sequence tags were used to annotate gene structures 16,30. However, many transcripts that 

are specific to cell types or conditions remain uncharacterized, even though targeted 

sequencing of RNA 3’ ends hints to their existence 9,13. While analysis of RNA-seq data 

increasingly involves transcript reconstruction, the accuracy of the approach is limited by 

alignment errors, intron retention events and 3’ end bias when poly(A) selection is 

performed 24,31. Terminal exons are especially problematic, because the transcript coverage 

by RNA-seq reads decreases towards the 3’ end. Here we have demonstrated that the 

accuracy of isoform annotation can be substantially improved by incorporating 

experimentally identified polyadenylation sites in transcript reconstruction. The approach 

can be applied to any RNA-seq data set from a species for which polyadenylation sites have 

been mapped, including human and mouse (Supplementary Figure 12). Like transcript 

reconstruction methods, TECtool relies on high-quality RNA-seq data, from samples with 

minimal RNA degradation and little bias in coverage along transcripts. We have obtained 

good results with samples for which transcript integrity scores 32 were greater than 0.8. To 

enable the analysis of samples that may have insufficient coverage and training examples, 

TECtool also provides the option to analyze new data sets with a model build from samples 

with deep coverage and high RNA integrity, such as the HEK 293 RNA-seq data sets that we 

have used in this study.

Although 3rd generation sequencing technologies have made the full-length sequencing of 

RNAs more common, the capture of low-abundance transcripts remains very limited. 

Making use of extensive short read sequencing data available from cell populations and 

especially from single cells, TECtool supports identification of even relatively rare 

transcripts. The tool is fully automated and easy to use. It does not require any customized 

input files or specific parameters, as it trains its own classifier based on the input data.

Online Methods

Datasets

Table 1
Data sets used in this study.

Dataset Dataset 
reference

Downloaded from Dataset use

3’end sequencing 9 (http://polyasite.unibas.ch) Figures 1,2;Suppl. Figs. 
1,2,12

RNA-seq in HEK 293 20 GEO database 33: GSE56010 Figure 3 Suppl. Fig. 7

Ribosome profiling in HEK 
293

21 GEO database 33: GSE73136 Figure 3, Suppl. Fig. 7

RNA-seq in tissues from 
Protein Atlas

26 ArrayExpress database 34: E-
MTAB-2836

Figures 2A and 4A, Suppl. 
Figs. 2A,B, 9 and 10

RNA-seq and PacBio reads 
in 4 different tissues

25 GEO data base 33: GSE93848 Suppl. Fig. 2C, Suppl. Fig. 8

Single-cell data 27 GEO data base 33: GSE85527 Figure 4B, Suppl. Fig. 11
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Dataset Dataset 
reference

Downloaded from Dataset use

Mouse data 35 GEO data base 33: GSE52260 Suppl. Fig. 4B, 12

Poly(A) sites—The genome coordinates of the poly(A) sites from the recently published 

atlas 9 were converted to the GRCh38 genome assembly version with liftOver 36.

Analysis of ‘intronic’ poly(A) sites identified by 3’ end processing

The locations of all poly(A) sites were associated with the set of transcripts of support levels 

1-5 from the ENSEMBL gene annotation version 87 30. Pre-mRNA 3’ end processing sites 

inferred from the samples that were part of two 3’ end sequencing studies, utilizing either 

the 3’-Seq 37 or the SAPAS 38 protocol, were intersected with the annotated PAS. PAS with 

expression of at least five reads per million in individual samples were identified. PAS from 

introns, terminal exons or terminal exons located upstream of an annotated stop codon in the 

same gene were identified based on the ENSEMBL annotation.

TECtool

TECtool is implemented as open source Python (version 3.4 and higher) software that can be 

obtained from http://tectool.unibas.ch. It depends on the packages HTSeq version 0.9.1 39, 

Bedtools version 2.26.0 40, Pybedtools version 0.7.10 41, pyfasta version 0.5.2, numpy 

version 1.13 42, scipy version 0.19 43 and scikit-learn version 0.19.0 44, pandas version 0.2 

45 and progress version 1.3.

Inputs, outputs and user options—TECtool requires the following inputs (Figure 2B): 

(1) a file containing all chromosomes in fasta format, (2) a file with the corresponding 

annotation in ENSEMBL GTF format 30, (3) a file with genome coordinates of 3’ end 

processing sites (in BED format) and (4) a file containing spliced alignments of RNA-seq 

reads to the corresponding genome (in BAM format, sorted by coordinates and indexed). For 

human and mouse, downloadable files of poly(A) sites can be found on the website of the 

‘PolyAsite’ atlas (http://polyasite.unibas.ch, 9). The output of TECtool (Figure 2B) is an 

augmented annotation file (in GTF format), containing the input as well as the newly 

annotated transcripts. Additional files, summarizing the features of annotated and newly 

identified exons, that are generated during the run, are also provided (in tab-delimited 

format). The tool requires that the sequencing direction is specified (as forward/unstranded) 

for the reads in the BAM file using the --sequencing_direction flag. Other implemented 

options allow the specification of the number of spliced reads required to support a novel 

exon, or whether to enforce the use of specific features in training the model and predicting 

new terminal exons. The tool can also be run with a user-specified, pre-trained model 

(TECtool options: --use_precalculated_training_set, --training_set_directory), that the user 

would need to obtain in a preliminary run with a dataset with good transcript coverage by 

reads. This may be useful when the coverage of annotated exons in the input RNA-seq data 

is low and therefore too little data is available in order to train an appropriate model.
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Selection of ‘intronic’ PAS—In a first step, TECtool uses the provided transcript and 

PAS annotations of the genome to select candidate ‘intronic’ PAS. These are located within 

the loci of annotated genes, but outside of annotated exons. When the RNA-seq was not 

done preserving strand information, TECtool discards PAS that are located in introns of 

genes that have other exons annotated on the complementary strand.

Identification of candidate novel terminal exon—For each ‘intronic’ PAS, TECtool 

defines a ‘feature’ region, that extends from the PAS to the closest upstream exon (Figure 

2C). The upstream exon is considered the ‘reference’ region. When the upstream exon has 

multiple possible 5’ ends, the longest exon variant becomes the ‘reference’ region.

Uniquely mapping reads overlapping with the ‘feature’ region, either unspliced or mapping 

across splice junctions, with the 5’ end in an exon upstream of the candidate ‘intronic’ PAS 

and the 3’ splice site within the ‘feature’ region, are identified. When the number of such 

spliced reads surpasses a user-defined lower bound (default: 5 reads), a putative terminal 

exon is constructed, extending from the 5’ splice site of the spliced reads to the ‘intronic’ 

PAS. Potential terminal exons that overlap with annotated exons of other genes are not 

considered.

Collection of training exonic regions—TECtool aims to classify

1. Terminal exons: unique last exons of annotated transcripts, as defined in the 

provided annotation file, not including exons that overlap with other exons or 

that do not have the (user-)defined minimum number of splice-in reads (default: 

5 reads).

2. Internal exons: exons that are neither first nor last exon of an annotated 

transcript, do not overlap with any other exon and have the (user-)defined 

minimum number of splice-in reads.

3. ‘Background’ regions: annotated terminal exons that do not overlap with other 

exons, but have less than the (user-)defined minimum number of splice-in reads.

Feature computation—For each exonic region in the training set (‘object’), TECtool 

computes the following features (Supplementary Figure 3B-H):

• Splicing-in-boundary/all: Counts of reads that splice from an upstream region 

into the 5’ boundary/anywhere within the entire length of the object.

• Splicing-out-boundary/all: Counts of reads that splice from the 3’ boundary/

anywhere within the entire length of the object to a downstream region.

• Crossing-in/out-boundary: Counts of unspliced reads overlapping the 5’/3’ 

boundary of the object.

• Unspliced-within-boundaries: Counts of unspliced reads that are contained in the 

object.

• Reads-within-gene-loci: Number of reads that map within gene loci.

• Union-exon-length: Length of the union exons of the gene.
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TECtool then calculates (Supplementary Figure 5):

• Reads-out versus reads-in ratio: the ratio of reads splicing out or crossing the 3’ 

boundary of the object and reads splicing in or crossing the 5’ boundary of the 

object.

• Normalized region expression: ratio between the expression of the object (per 

kilobase, including splicing-in/out-all, crossing-in/out-boundary, and unspliced-

within-boundary reads) and the expression of the corresponding gene (per 

kilobase, reads-within-gene-loci/length of union-exons).

• Object length.

• Entropy efficiency: A measure of the ‘uniformity’ of read coverage along the 

object, defined as the Shannon entropy of read coverage per position divided by 

the maximum value it can take based on the object length

EE(x) = −
∑i = 1

n p(xi)log(p(xi))
log(n)

where n represents the length of the object and p(xi) the coverage at position i 

divided by the total coverage along the object (p(xi) =
xi

∑j = 1
n xj

) . EE(x) takes 

values between 0 and 1.

• Relative positions of 5% and 95% quantile coverage: where the cumulative 

distribution of read coverage along the object reaches 5% and 95%.

• Splicing-in-all versus 5’ end expression: ratio between the number of reads 

splicing into the object (see ‘Splicing-in-all’ above) and the mean coverage per 

position over the first 10 nucleotides of the object.

• Splicing-out-all versus 3’ end expression: ratio between the number of reads 

splicing out from the object (see ‘Splicing-out-all’ above) and the mean coverage 

per position over the last 10 nucleotides of the object.

• Crossing-in versus 5’ end expression: ratio between the number of reads 

overlapping the 5’ boundary of the object (see ‘Crossing-in-boundary’ above) 

and the mean coverage per position over the first 10 nucleotides of the object.

• Crossing-out versus 3’ end expression: ratio between the number of reads 

overlapping the 3’ boundary of the object (see ‘Crossing-out-boundary’ above) 

and the mean coverage per position over the last 10 nucleotides of the object.

• Splicing-in-boundary versus 5’ end expression: ratio between the number of 

reads splicing into the object (see ‘Splicing-in-boundary’ above) and the mean 

coverage per position over the first 10 nucleotides of the region.

• Splicing-out-boundary versus 3’ end expression: ratio between the number of 

reads splicing out from the object (see ‘Splicing-out-boundary’ above) and the 

mean coverage per position over the last 10 nucleotides of the region.
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• Splicing-in-boundary versus Splicing-in-all: ratio between the number of reads 

splicing into the 5’ boundary of the object (see ‘Splicing-in-boundary’ above) 

and the number of reads splicing into the object (see ‘Splicing-in-all’ above).

Classifier training and prediction of novel terminal exons—TECtool samples 

randomly 20% of the training data for validation, and approximates the distributions of all 

features described above for each region type in the remaining 80% of the training data 

(Supplementary Figure 4A) using Kernel Density Estimation (KDE). We chose an 

exponential kernel function, to better approximate drops at the boundary of the empirical 

distributions. Under the assumption of uncorrelated features, the KDEs represent posterior 

probabilities to use in the Bayes Classifier. As samples generated with different sequencing 

protocols typically have different coverage patterns along genes, the features that best 

distinguish exon types may change from sample to sample. Thus, TECtool uses a forward 

greedy feature selection, incrementally and greedily adding features that increase the 

performance (F1-score t-value > 1.37) on the validation data, starting from a core set of 

features (‘Entropy efficiency’ and ‘Reads-out versus reads-in ratio’). To increase the stability 

of the model, TECtool trains classifiers on 10 randomized subsets of the training data (1000 

objects in each class, or the entire set if smaller than 1000), and then uses each of them to 

evaluate each candidate terminal exon (Supplementary Figure 4A). The average probabilities 

of the candidate exon to be terminal, internal, or background, computed over the 10 

classifiers, determine the category to which the candidate exon is assigned. When there are 

multiple putative terminal exons with the same 5’ splice site but different PAS, only the exon 

with the highest probability of being terminal is reported in the final gtf.

Novel transcripts and CDS annotation—Having identified putative terminal exons, 

TECtool constructs putative novel transcripts, starting from annotated transcripts that 

contain an exon that splices to the novel terminal exon. These transcripts (which we call 

‘root transcripts’) and upstream exons are identified based on spliced reads.

In the final step, TECtool annotates the putative protein-coding region in the newly 

annotated transcripts. When the root transcripts are protein-coding, TECtool uses the already 

annotated start codon and searches for the first in-frame stop codon. If found, the novel 

transcript is annotated as protein-coding. When the root transcript had no annotated start 

codon or when no in-frame stop codon is found, the transcript is classified as non-coding.

Automated analysis of RNA-seq data sets with TECtool

We implemented automated TECtool analyses of standard RNA-seq (Supplementary Figure 

3A), as well as single cell RNA sequencing data (Supplementary Figure 6). The analysis 

flows are implemented in the snakemake framework 46, and the parameters for each type of 

analysis are specified in a corresponding configuration file. The single cell sequencing data 

poses the challenge of relative low and highly non-uniform coverage for most genes. 

Therefore, we initially pool the data from all cells in a sample to identify the terminal exons, 

which we then quantify in individual cells with a method for transcript isoform 

quantification.
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Analysis of mouse RNA sequencing data—To demonstrate the generality of the tool, 

we have also applied it to RNA sequencing data from a time series of mouse T cell 

activation (accession GSE52260). A summary of the results for individual time points is 

shown in Supplementary Figure 12 together with genome browser screenshots for two 

individual examples.

Analysis of novel transcript expression in 32 human tissues

We analyzed the mRNA-seq data generated for 32 human tissues 26 with the TECtool 

version for processing paired-end reads. We merged the enriched annotation files 

corresponding to replicate samples from the same tissue, to construct tissue-specific 

annotation files. Estimates of transcript and gene expression levels in each tissue were 

obtained with Salmon 47.

Visualization of read densities

Sashimi plots 18 were generated with a custom script that is based on the following R 

libraries: Gviz 48, rtracklayer 49 and GenomicFeatures 50.

Statistics

For the comparison of translation efficiency, two-tailed t-tests were used not treating the two 

variances as being equal. The number of cases and p-values are given in the legend of Figure 

3.

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cell type-dependent usage of ‘intronic’ poly(A) sites.
(A) Top panel: Percentage of ‘intronic’ PAS in individual samples obtained with the 3’-Seq 

protocol 17. Bottom panel: corresponding sequencing depths. (B) Position-dependent 

frequency of the canonical poly(A) signal (‘AAUAAA’), dashed line at -21 nts) upstream of 

‘intronic’ poly(A) sites (orange) and of poly(A) sites from annotated terminal exons (blue) 

from the study introduced in (A). (C) Distribution of the number of distinct samples in 

which individual PAS were observed, for PAS from terminal exons with no stop codon 

annotated downstream (‘terminal exon’, 26894 PAS), from annotated terminal exons located 
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upstream of an annotated stop codon in the corresponding gene (‘terminal exon (ds stop)’, 

3430 PAS), and from genomic regions currently annotated as intronic (‘intron’, 3937 PAS). 

Black boxes indicate the interquartile range (IQR) with the blue line corresponding to the 

median, whiskers corresponding to 1.5 times the IQR from the hinge, and densities 

extending to the most extreme values.
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Figure 2. Example and model to identify novel 3’ UTR isoforms.
(A) ‘Sashimi plots’ 18 of RNA-seq reads mapped to a region within the Coiled-coil Domain 

Containing 173 (CCDC173) gene locus, with the annotated ENSEMBL transcripts (blue), 

the PAS annotated in the PolyAsite atlas (vertical black lines, http://polyasite.unibas.ch) and 

densities of RNA-seq reads (gray) from fallopian tube and testis samples. The novel terminal 

exon is marked by the red dashed box, gray arcs indicate putative splice junctions, and 

numbers on the arcs indicate supporting reads (for clarity, only splice junctions supported by 

at least 10% of the maximum number of split reads between two exons in the genomic locus 
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are shown, see also Supplementary Figure 2A). (B) Flow of the data through TECtool (input 

and output file formats are indicated in parentheses). (C) Outline of the main computational 

steps: Step 1 - Selection of PAS located within regions that with respect to the input 

annotation (see ‘Annotation (GTF)’ in (B)), are ‘intronic’ (red arrow), and not exonic, 

intergenic or antisense (black arrows). Step 2 - Identification of the ‘feature’ region of the 

putative novel terminal exon (red line), extending from the ‘intronic’ poly(A) site up to the 

closest annotated exon upstream (blue box with red border). Step 3 - Identification of reads 

that map uniquely to the feature region. Step 4 - Definition of terminal exon boundaries (red 

box), given by a splice site at the 5’ end - inferred from split reads -, and the ‘intronic’ 

poly(A) site at the 3’ end. Classification of putative terminal exons is done with a Bayes 

classifier. Step 5 - The newly identified terminal exons are linked to upstream exons to 

which they were found to be spliced based on split reads, to generate novel isoforms. Step 6 
- Prediction of protein coding regions in newly identified transcripts.
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Figure 3. Evaluation of TECtool’s performance.
(A) Scatter plot of estimated expression levels of already annotated transcripts (ENSEMBL 

v87, transcript support level 1-5 (TSL1-5), blue, 168'726 transcripts) and of transcripts 

ending at TECtool-identified terminal exons (red, 842 novel transcripts), in biological 

replicates of RNA-seq from HEK 293 cells (rP indicate the corresponding Pearson 

correlations). (B) Translational efficiencies computed for annotated terminal exons, novel 

terminal exons and intronic regions (two-tailed t-test p-values for pairwise comparisons of 

regions based on TSL1-5, novel versus intron replicate 1 (rep1): 2.1e-16; replicate 2 (rep2): 

5.4e-18, and annotated versus novel rep1: 1.4e-5; rep2: 8.6e-7). The numbers of annotated, 

novel and introns were in rep1: 16068, 24, and 64455, and in rep2: 15772, 25, and 63932. 

Boxes indicate the interquartile range (IQR) with the line corresponding to the median, 

whiskers correspond to the most extreme value that is within 1.5 times the IQR from the 

hinge and outliers beyond this range are shown as individual points. (C) Cumulative 

distribution of the length of novel terminal exons identified by TECtool, StringTie and 

Cufflinks in the two replicate RNA-seq data sets, relative to the TSL1-5 annotation. The 

number of novel terminal exons identified by each tool is indicated in parentheses. (D) 
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Distance between experimentally determined PAS from the PolyAsite atlas 9 and the 3’ ends 

of novel transcripts identified by StringTie (top panel) and Cufflinks (bottom panel). Pie-

charts show the number of 3’ ends of novel transcripts that have an experimentally 

determined PAS within +/-200 nts (blue), or have experimentally determined PAS farther 

away but in the same intron (red) or do not have any experimentally observed PAS in the 

respective intron (white).
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Figure 4. TECtool identifies novel isoforms with cell type-specific expression.
(A) Number of novel terminal exons identified by TECtool in at least one sample from the 

indicated tissues. (B) VPS37B gene locus with the ENSEMBL-annotated transcripts (blue), 

novel transcripts predicted by TECtool (red), and Sashimi 18 plots of RNA-seq read 

densities (gray) from two single T cells (labeled as cell K and cell L).
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