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Abstract

Atrazine (ATR) remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has
been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally
relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 mg/L), and increased the ratio of female
to male fish (22 mg/L). ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1),
whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a
cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including
Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHß, INHa, aGSU, and 11ß-HSD2. Our data appear to eliminate the possibility that ATR
directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor
subfamily (SF-1, LRH-1, and zff1d) are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K
signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in
infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone
networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and
function in lower and higher vertebrates.
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Introduction

Endocrine disrupting chemicals (EDCs) affect the reproductive

health of fish and amphibious wild life [1], but their impact on

mammals and particularly humans is less clear. Synthetic and

natural endocrine disruptors fall into several chemical categories

and include industrial chemicals, pesticides and herbicides. Some

of these EDCs, such as the active chemical found in polycarbonate

containers, bisphenol A, exhibit estrogenic effects in cultured cells

[2,3,4,5], by binding directly to the estrogen receptors ERa and

ERb [6,7,8]. However, other EDCs fail to competitively bind ERs,

including the widely used chlorotriazine herbicide atrazine (ATR)

[8,9].

The prevalent use of ATR as a broadleaf herbicide and its

persistence in the environment underscores the importance of

understanding the molecular impact of this EDC. Numerous

studies in fish, amphibians, reptiles and mammals all suggest that

ATR can alter normal endocrine, neuroendocrine and immune

responses. For instance, in amphibians, low levels (0.1–25 mg/L)

or short term exposure (48 hrs) to ATR, respectively, increases the

number of intersex frogs [10,11,12,13], and impairs normal

gonadal development [14,15]. Consistent with these phenotypes,

acute exposure to ATR lowers testosterone levels and impairs

gonadal development in young fish [16,17], in the developing

alligator [18], and in young peripubertal male rats [19]. However,

other studies suggest that reduced serum testosterone after ATR

exposure results from a marked drop in body weight and food

consumption. These latter effects are observed for both male and

females rats and potentially reflect an unknown role of ATR in

neuroendocrine signaling [20,21,22]. Still others suggest that

independent of body weight and hormone levels, ATR delays

mammary gland development [23]. Although there is ample

literature documenting the effects of ATR in a variety of species,

with the exception of aromatase (Cyp19A), other molecular targets

of ATR remain poorly defined.

Maintenance of cytochrome p450 aromatase activity, which

catalyzes the conversion of androgens to estrogens appears critical

for preserving a balanced sex ratio in teleosts. All species lacking

sex chromosomes, such as fish [24], are especially sensitive to

environmental factors that perturb sex steroid levels. Indeed,

increasing estrogen levels in a natural or laboratory setting

feminized [25], and greatly altered normal sex ratios in fish [26].

Conversely, treatment with aromatase inhibitors results in gonadal

masculinization of female fish [27,28]. This fact positions

aromatase as a potentially useful target to examine the in vivo

effects of ATR. In mammals, both ERa and the NR5A nuclear

receptor, steroidogenic factor 1 (SF-1) influence expression of the

single Cyp19A gene encoding aromatase. In zebrafish (Danio rerio),

regulating aromatase expression is more complex because of gene

duplication. The gonadal-enriched zcyp19a1 contains an NR5A
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binding site and is presumably activated by the zebrafish SF-1/

LRH-1 orthologs (ff1a, b, c and d) [24], whereas the brain-

enriched zcyp19a2 contains an estrogen response element (ERE)

and is responsive to estrogens [29,30] (Fig 1). Both zebrafish

aromatase promoters contain CREB binding sites and would

therefore be responsive to cAMP signaling. Not surprisingly,

studies using several fish species showed upregulation of zcyp19a2,

with a notable downregulation of zcyp19a1 after exposure to

estrogen, xenoestrogens and other estrogenic chemicals [31,32].

While a direct link between ATR and zcyp19a1 has not be

established, others have shown that at relatively low doses (0.1 mM

or 22 mg/L) ATR greatly increases aromatase activity in selective

mammalian cell lines [33] and in immortalized sea turtle cells [34].

Recently, ATR has been proposed to bind and activate SF-1

[35]. This notion is particularly appealing given that SF-1

orthologs are found in all vertebrates including teleosts, and given

the critical role of SF-1 in mammalian sexual development and

steroidogenesis [36,37]. Here, we used mammalian cell lines and

zebrafish as model systems to address the in vivo and in vitro roles

of ATR in activating aromatase expression. We specifically asked

whether Cyp19A1, a known target of the NR5A receptors (SF-1,

LRH-1, ff1d), would be selectively activated by ATR using these

Figure 1. ATR stimulates expression of gonadal zcyp19A1 encoding aromatase, but not zcypA2 in zebrafish. Schematic of zCyp19a1 and
zCyp19a2 zebrafish promoters with binding sites and start site indicated (arrow) as previously shown by [29]. A. Relative expression of zCyp19a1 and
zCyp19a2 transcripts determined by RT-qPCR in juvenile zebrafish (20 dpf) following exposure (72 hrs) to endocrine disruptors including 0.1 mM of 17bE2,
1 mM of genistein (Gen), 10 mM of 4-nonylphenol (4-NP), 10 mM of bisphenol A (Bis A) and 10 mM of atrazine (ATR) beginning at 17dpf. B. Relative
expression of zCyp19a1 and zCypA2 transcripts in dissected 20 dpf zebrafish bodies and heads after 72 hrs ATR treatment (10 mM). C. Relative zCyp19a1
and zCyp19a2 transcript levels are shown with ATR stimulation at doses ranging from 0.01 to 10 mM for 72 hrs (left panel), or at different time points (hrs)
with 10 mM ATR (right panel). For all panels error bars represent the S.E.M. obtained from analysis of three independent groups of fish (n = 5) using
validated primers, with reactions carried out three times each. T-test analysis reveal statistical significance with **p,0.01, *p,0.05.
doi:10.1371/journal.pone.0002117.g001
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different model systems. Based on our collective data, we

hypothesize that all NR5A receptors and tissues expressing these

receptors are especially sensitive to the effects of ATR. Additionally,

we propose that at environmentally relevant concentrations this

herbicide does indeed act as an endocrine disruptor in fish, and

based on our cellular data has the potential to influence the

developing and adult endocrine system in mammals.

Results

ATR upregulates zcyp19a1 and alters the sex-ratio in
zebrafish

To determine whether ATR and other endocrine disruptors

might affect NR5A receptor activity in vivo, sexually immature

zebrafish larvae were exposed to different chemicals for their

potential to regulate zcyp19a1. Using quantitative PCR (qPCR) we

found robust increases in expression of zcyp19a1, but not zcyp19a2

after acute exposure to ATR (1 mM) in 17 days post fertilization (dpf)

zebrafish (Fig 1A). As shown previously [31], estradiol (E2), the

phyto-estrogen, genistein, and the industrial chemical bisphenol A,

all elevated the relative expression of zcyp19a2 after 3 days of

exposure consistent with an ERE present in the proximal promoter

(Fig. 1A). The induction of zcyp19a2 by estrogens (E2, genistein) is in

stark contrast to their significant down regulation of zcyp19a1

(Fig 1A, left panel). Further analysis of these two aromatase

transcripts in the zebrafish head and body confirmed that ATR

exposure only affected zcyp19a1, but had no effect on expression of

the brain-enriched zcyp19a2 (Fig 1B). Regulation of zcyp19a1 by

ATR was dose and time dependent with maximal effects detected at

48 hrs, and with 10 mM of drug added (Fig 1C, D). Statistically

significant responses were observed at lower doses of 0.01 and

0.1 mM ATR, which equate to 2.2 to 22 ppb (mg/L), respectively.

Reported ATR concentrations in impacted agricultural areas are

reported to be 6 to 20 ppb [11], illustrating that significant increases

in endogenous aromatase expression are observed at ecologically

relevant levels of this compound.

Given that ATR increased endogenous levels of gonadal

zcyp19a1 after short exposures, we asked if the ratio of male to

female fish would be influenced by chronic exposure (six months)

to this herbicide. Indeed, a dose-dependent increase in the number

of female fish was observed with a corresponding drop in the male

fish after ATR exposure when compared to the control tank with

DMSO (Fig 2A). While we consistently noted a small number of

ambiguous-looking fish by external inspection at 3.5, 4 and 6

months of ATR treatment, histological gonadal analysis after six

months of treatment confirmed the correct sex assignment for all

fish (Fig 2B). Despite previous reports that ATR or estrogen

exposure in either a laboratory or field setting resulted in

feminized male frogs with testicular oogenesis [10], we found no

obvious ovi-testes phenotype in ATR exposed fish. This difference

may reflect the length of ATR exposure or the older age of fish

examined in our study. Similar to our findings, chronic exposure

to estrogens also led to an increase in the ratio of female fish, but

showed no intersex fish [26]. At this time we are unable to

eliminate the possibility that these effects reflect the actions of an

active ATR metabolite, although others showed previously that

ATR persists in similar aqueous conditions at doses of 5 mg/L

[16]. Nonetheless, our results show that exposure to environmen-

tally relevant but high doses of ATR dramatically increased

aromatase levels and increased the percentage of female fish.

ATR activates all NR5A receptors
To determine if ATR might directly affect NR5A receptor

activity, and thus account for the increased levels of endogenous

zcyp19a1 transcripts, cellular reporter assays were performed.

Using JEG3 human placental cells, which contain modest amounts

of SF-1, ATR treatment activated the aromatase promoter in a

dose-dependent manner (Fig 3A). Similar activation was observed

with other SF-1 reporters including those with isolated NR5A

binding sites (Fig S1A). However no activation was observed using

the parent reporter or with mutant SF-1 binding sites (Fig 3A and

S1B) showing that ATR effects depend on DNA binding and

receptor occupancy of the promoter, as suggested previously

[35,38]. Activation by ATR was enhanced greatly by overexpres-

sion of mSF-1 in JEG3 or HepG2 cells (Fig 3A and 5A), similar to

results obtained in human H295R adrenal cortical cells [38].

Figure 2. Chronic exposure to ATR increases the percentage of
female zebrafish. A. The percentage of female zebrafish is shown
after chronic exposure to DMSO and increasing ATR concentrations
(mM). The number of female fish was assessed visually at three, four
(data not shown) and at six months, as shown. Visual inspection for sex-
specific landmarks (body shape, body color, fin shape) at both stages
suggested an increase in the ratio of female to male fish. Following
visual inspection of six month old fish, unambiguous assignment of sex
was determined by morphological inspection of gonads. ATR treatment
began at 17dpf post-hatching. B. Representative pictures of fish treated
with ATR and corresponding gonadal sections stained with hematoxylin
and eosin. Oocytes within the perinuclear follicles of the ovary are
indicated (black arrowhead), and spermatozoa in the testis are indicated
(white arrowhead).
doi:10.1371/journal.pone.0002117.g002
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However, while the response in H295R cells was shown to be

selective for SF-1 [35], we find that in all responsive cell lines ATR

can also activate hLRH-1 (NR5A2) and its close zebrafish ortholog

ff1d, which is expressed in embryonic male gonads [24](Fig 3A).

Moreover, knocking-down hLRH-1 in human HepG2 liver cells

greatly attenuated ATR activation of the aromatase reporter

demonstrating a dependence on this NR5A receptor (Fig S5).

Based on these findings, we suggest that all NR5A subfamily

receptors will be responsive to ATR.

In contrast to the activation of the mammalian and fish aromatase

reporter, ATR failed to activate an ERE-reporter in the presence of

hERa and estradiol (Fig 3B), consistent with ATR inability to

activate the estrogen responsive zcyp19a2 in vivo (this study and

[31]). Furthermore, no significant activation of NR5A was observed

with other estrogenic compounds, although a reproducible but

modest increase in reporter activity was noted with genistein (Fig 3C).

Thus, out of the major classes of EDCs, NR5A receptors appear to

be selectively and highly responsive to ATR.

Further studies aimed at discerning the cellular mechanisms of

ATR revealed that inhibitors of both the MAPK and PI3K

decreased or eliminated activation by ATR, whereas disrupting Gi,

some Gq (PTX), as well as PLC signaling did not block the effects of

ATR (Fig 4A). These results were consistent with ATR’s rapid

activation of the MAPK pathway, followed by peak phosphorylation

of SF-1, and activation of the PI3K pathway as determined by

phosphorylation of Akt/PKB (Fig 4B). Furthermore, because others

have suggested that ATR inhibits phosphodiesterases and elevates

cAMP [9,39], we asked if ATR directly increased cellular levels of

cAMP in JEG3 responsive cells. At activating ATR concentrations

(1 mM) we observed a significant and consistent increase in cellular

cAMP, albeit at levels much lower than those obtained with forskolin

(Fig 4C). Despite these lower levels of cAMP stimulation, forskolin

(10 mM), as well as EGF (50 mg/L), activate the aromatase promoter

to similar levels observed for ATR (Fig S2). We also asked if ATR

might bind directly to SF-1 to either increase DNA binding or act as

a ligand. However, ATR neither enhanced nor repressed DNA

Figure 3. ATR activates NR5A receptors, but does not activate ERa. A. Luciferase activity is shown after transfection of human placental JEG3
cells with ARO-Luc reporter (200 ng) and the parent reporter (pGL3-Luc) with mSF-1, hLRH-1 or zff1d expression vectors (25 ng). Drug treatments
with EDCs at the dose indicated was for 24 hrs. B. JEG3 were transfected with the ERE-Luc (50 ng) and hERa (5 ng) and treated with 17bE2 (0.1 mM)
with or without ATR (0.1–10 mM). Cells were treated with drug for 24 hr. C. Luciferase activities in JEG3 cells following treatment with EDCs,
concentrations are indicated (ranging from 1 nM to 10 mM). All cells were transfected with mSF-1 and Aro-Luc with concentrations as described for
panel A. T-test analysis reveal statistical significance with **p,0.01, *p,0.05.
doi:10.1371/journal.pone.0002117.g003
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binding activity to a high affinity SF-1 binding site (Fig S3B). ATR

also failed to significantly activate a Gal4-SF-1 ligand binding

domain (LBD) fusion constructs at high doses (Fig S3A). Finally,

ATR was unable to exchange for, or displace the bound bacterial

phospholipid ligand present in the LBD (H.A.I, unpublished data).

Collectively, these results suggest that ATR may not directly interact

with NR5A receptors, but instead activates three signaling pathways

known to activate NR5A receptors, including phosphorylation of SF-

1, generation of SF-1 ligands, and increased production of cAMP.

All of these effects would be predicted to activate SF-1 further

[40,41,42,43].

ATR increases a cluster of genes involved in endocrine
signaling in specific cell types

ATR stimulation of reporter activity (Fig 5A) or induction of

endogenous hCyp19A (Fig 5B) were cell-specific with responsive

cell lines largely restricted to endocrine-like cells, including adrenal

cell lines Y1 and H295R, the human liver cell line HepG2, and

primary endometriotic H38 cells; these latter two cell lines express

moderate to high levels of SF-1 or LRH-1 [44,45]. Non-responsive

cell lines such as Ishikawa and HEK293 failed to show an ATR

response even after overexpression of SF-1 or LRH-1 (Fig 5A, data

not shown). The induction of endogenous Cyp19A1 in specific cell

lines is consistent with a previous report showing that 10 mM ATR

induced aromatase expression and activity in JEG3 and H295R

cells, but not in the breast cancer cell line MCF7 [46].

Interestingly, pluripotent cells such as P19 and mouse E14

embryonic stem cells were not responsive to ATR (Fig 5B) despite

expression of either SF-1 or LRH-1 (H.A.I. unpublished result);

again demonstrating that the ATR response is not restored by the

simple addition of exogenous NR5A receptors.

Having surveyed cell lines for their ATR responsiveness, gene

profiling was carried out with a human microarray (HEEBO chip)

to determine which transcripts in human JEG3 cells are most

responsive to ATR (Fig 5C). ATR-responsive genes were

determined with or without overexpression of SF-1. Remarkably,

a cluster of genes involved in hormone signaling was found to be

greatly upregulated following ATR treatment (24hrs, 10 mM).

Two of these are rate-limiting for steroid biosynthesis and include

steroidogenic acute regulatory protein (StAR) and P450 side-chain

cleavage (Cyp11A1), while other responsive genes include known

reproductive peptide hormones (INHa, LRH, GSUa, hCGß).

Among the top genes, several are known to be SF-1 targets and

inspection of other highly induced genes on our list revealed the

presence of NR5A binding sites in their promoter regions (FSTL3,

c15orf48, Insl4). Further analyses of these top genes showed that

their dose-dependent response to ATR treatment (Fig 5D) closely

matched the rank order found in the microarray analysis, with

FSTL3 and c15orf48 showing the highest response to ATR. Other

clusters of ATR-responsive genes relate to metabolism and growth

control (Table S1). Levels of SF-1 or LRH-1 transcripts were

unchanged by ATR (Fig 5D and data not shown).

The response to overexpressing SF-1 varied among these

endocrine ATR-responsive genes. Some ATR targets increased

further after adding SF-1, while others were either slightly repressed

or not affected by additional SF-1 (Fig 6A and Fig S4). For known

SF-1 downstream targets, such as Cyp19A1, the stimulatory effects

of ATR were diminished after knocking-down SF-1 by siRNA

Figure 4. ATR activates the MAPK, PI3K and modestly
stimulates cAMP production. A. Pharmacological inhibitors of
MAPK (U0126), PI3K (LY294002) or Gi (PTX), and PLC (U73122) signaling
were added, with ATR (10 mM) or without (DMSO), and with mSF-1
(25 ng), as indicated (+). All inhibitors were added 60 min prior to ATR
treatment. B. Western blotting was performed using antibodies against
phospho-ERK1/2, total ERK, phospho-SF-1, Flag, phospho-AKT and total
AKT using JEG3 cellular extracts transfected with Flag-tagged mSF-1
(1 mg). Twenty-four hours after transfection, cells were starved for 3 hrs
and treated with 10 mM of ATR for the indicated times (5 min to 24 hrs).
C. Levels of total cellular cAMP (pmol/ml) were determined in lysed
JEG3 cellular extracts according to Materials and Methods. Cells were

treated for 30 min with increasing concentrations of drug (estradiol,
ATR, or forskolin) as indicated (10 nM to 10 mM) following serum
starvation for 24 hrs as described in Materials and Methods. T-test
analysis reveal statistical significance with **p,0.01, *p,0.05.
doi:10.1371/journal.pone.0002117.g004
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Figure 5. ATR is cell-specific and induces a cluster of genes involved in hormonal responses. A. Relative luciferase activities for the ARO-Luc
reporter are shown in responsive (HepG2, human liver) and non-responsive (Ishikawa, uterus, HEK293, embryonic kidney) cell lines following transfection
of mSF-1 (25 ng) with increasing doses of ATR. B. Relative levels of endogenous Cyp19A1 are shown for different cell lines after ATR treatment (10 mM, 24
hrs). Cell lines that showed a statistically significant increase in Cyp19A1 expression when compared to DMSO treatment indicated. C. List of endocrine/
reproductive related genes with their relative rank order as defined by their fold enrichment following ATR treatment. Known SF-1 target genes and those
that are cAMP responsive are indicated as (+). D. Relative expression levels of transcripts in JEG3 cells (without transfection of SF-1) are shown after DMSO
(-) or treatment with ATR (1 to 10 mM). JEG3 cells were treated with the indicated doses of ATR for 24 hrs and RT-qPCR analysis was carried out using
validated primers as indicated in Table S2. T-test analysis reveal statistical significance with **p,0.01, *p,0.05.
doi:10.1371/journal.pone.0002117.g005
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(Fig 6B), similar to the loss of the ATR-response observed in HepG2

cells after siRNA knock-down of LRH-1 (Fig S5). Other genes

continued to show a significant response to ATR with the caveat that

levels of SF-1 persisted at 20% compared to control treated cells.

Nearly all ATR-induced genes identified here are known to be

sensitive to cAMP signaling (Fig 5C); the top three responsive

genes remain uncharacterized. Surprisingly, one of these ATR

targets is the serum glucocorticoid regulated kinase 1 (SGK-1).

This tyrosine intracellular kinase has historically been character-

ized as a glucocorticoid induced gene and regulates sodium

channels in the kidney. However SGK-1 is also expressed in

endocrine tissues and is thought to mediate FSH peptide hormone

signaling in the ovary [47,48,49]. Moreover, SGK-1 itself, is

upregulated by cAMP. Using siRNA to SGK, we found that

reducing cellular SGK-1 also attenuated (HSD11B) or eliminated

(Cyp19A1, Cyp11A1, LHß) further enhancement by ATR

(Fig 6B). These unexpected results suggest that the intracellular

kinase SGK-1, in addition to NR5A receptors, might participate in

ATR signaling.

Discussion

Our in vivo and in vitro analyses of ATR strongly suggest that

this widely used herbicide affects hormone signaling and endocrine

Figure 6. Overexpression of SF-1 enhances ATR effects, while knock-down of SF-1 and SGK-1 diminish or attenuate ATR effects on
selective genes. A. Relative endogenous transcript levels in JEG3 cells are shown with and without mSF-1 and with or without ATR treatment (24
hrs, 10 mM). B. Relative expression of transcripts in human JEG3 cells after transfection with si-RNAs directed to human SF-1 (si-SF-1, 50 nM) and
human SGK-1 (si-Sgk1, 30 nM) in JEG3 cells, with DMSO (black bars) or with ATR treatment (gray bars, as described above). The fold induction with
ATR treatment is indicated above bars. Levels of endogenous human SF-1 and human SGK-1 are shown after si-RNA treatment.
doi:10.1371/journal.pone.0002117.g006
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transcriptional networks in fish and in mammalian cells. Indeed,

we found that acute and chronic exposure to ATR significantly

increased the endogenous levels of zcyp19a1 encoding gonadal

aromatase and altered the normal sex ratio in environmental

conditions in a relevant vertebrate model system. Moreover, our

cellular data illustrate that ATR induces a cluster of endocrine-

related genes, including Cyp19A1. Endocrine-related cell types

with a capacity for steroidogenesis appear to be especially sensitive

to ATR, as demonstrated by the exquisite cellular specificity of the

ATR response. Finally, based on the fact that many of these ATR

responsive endocrine targets are downstream of both SF-1 and

cAMP signaling, we propose that the selective effects of ATR in

endocrine cell types are mediated by convergent regulation of

NR5A receptors and elevated cAMP.

Strong field and laboratory evidence show that low levels of

atrazine (0.1–3 ppb or mg/L) result in gonadal abnormalities [11]

and increase parasitic infections [50,51,52]. In contrast to

unexposed wilderness areas where no detectable ATR can be

found, ATR and its active metabolites easily reach concentrations

of 6–12 ppb [11,53] in shallow ground water near agricultural

fields with some heavily exposed agricultural lands cited to reach

just under 500 ppb [50]. While the precise environmental levels of

ATR can vary greatly, the doses used in our zebrafish study (0.01

to 0.1 mM or 2.1 to 22 ppb) fall within lower levels of ATR

contamination, with our lowest dose just under the acceptable

amounts of 3 ppb allowed in human drinking water (http://www.

epa.gov/safewater/dwh/c-soc/atrazine.html). Based on our data,

we would predict that relatively low doses of ATR might adversely

influence normal hormone signaling in young fish.

The precise mechanism of action of ATR remains controversial.

Consistent with the fact that ATR does not directly interface with

classic estrogen signaling [9], ATR had no effect on the estrogen

responsive zcyp19a2 or an ERE-Luc reporter. While ATR is

suggested to inhibit phosphodiesterase and increases cellular pools

of cAMP; others have suggested that PKA signaling is not essential

for stimulation of aromatase in H295 cells [35]. However, in JEG3

cells, we do find that ATR easily activates a CRE-LUC reporter

(Fig S2B), and can elevate cellular cAMP, albeit at much lower

levels than observed for forskolin. Interestingly, these same

equivalent concentrations of ATR (10 mM) elicit a prominent

effect on aromatase reporter activation, similar to activation

observed by either EGF (50 ng/l) or forskolin (1 mM, Fig S2A).

Interestingly, we also find that ATR induces the cAMP-

phosphodiesterase (PDE) 4D, which is expressed in human fetal

tissues [54] and is proposed to mediate inflammatory responses in

the myometrium [55]. Our findings are consistent with the known

regulation of PDE4D expression by cAMP [55], and suggest that

prolonged ATR stimulation partially dampens cAMP signaling;

thus the degree of PDE4D might account for low cAMP levels

observed after 24 hr treatment with ATR (Fig 4C), and the noted

absence of cAMP in other ATR-treated cell lines [35].

The recent suggestion that ATR binds directly to SF-1 [38]

would easily account for ATR’s cell selectivity that we and others

have observed [46]. While such a straightforward mechanism is

attractive, our data would argue that the mechanism of ATR is

much more complex. Indeed, several lines of evidence suggest that

ATR might not function by directly binding to NR5A receptors, at

least in the cellular and biochemical assays used in this study. First,

introducing or increasing levels of NR5A receptors failed to

recapitulate an ATR response in non-responsive cell lines. Second,

ATR failed to activate a Gal4-LBD SF-1 fusion or increase DNA

binding of SF-1. Third, ATR failed to alter coactivator peptide

recruitment using an alpha screen assay (data not shown). Fourth,

ATR failed to displace the bacterial phosphatidyl glycerol or an

exchanged PIP3 ligand present in the SF-1 ligand binding pocket

(H.A.I, unpublished results). Finally, ATR stimulates SF-1 LBD

pocket mutants (data not shown), which have been designed to

occlude and prevent phospholipid binding in the large 1100 Å3

LBD cavity [56]. Taken together, alternative mechanisms must

account for this cell specific pharmacological response.

ATR also activates PI3K signaling as evidence by the increase

phosphorylation of AKT or protein kinase B. Moreover, inhibitors

of PI3K signaling block the ability of ATR to stimulate an SF-1

cellular reporter. Our findings broaden the actions of ATR to

other signaling pathways, and are consistent with the fact that SF-

1 is responsive to both PKA and PI3K signaling [42], as is the

stress induced kinase SGK-1 [57]. Interestingly, SGK-1 is found in

many steroidogenic endocrine tissues and is expressed highly in

cell lines found to be responsive to ATR, including Y1, JEG3,

H295R, H38 endometriotic cells, but not in HEK293 or Ishikawa

(data not shown). Although knock-downs of SF-1 [38] and SGK-1

attenuate the ATR response on some target genes, overexpression

of SGK-1 and/or SF-1 are insufficient to induce an ATR response

in non-responsive cell lines (Fig 5A and data not shown). These

data show that while SF-1 and SGK-1 participate in ATR actions,

a more comprehensive genome wide survey is needed to identify

the full spectrum of ATR targets in the entire endocrine system.

Our profiling of ATR-treated JEG3 cells now provides new

ATR-responsive genes for thoroughly studying the potential

environmental impact of ATR in wild life and in humans. For

example, SGK-1 is of interest given its noted upregulation in the

endometrium of women with unexplained infertility suggesting

that this kinase is important for implantation and maintenance of

early pregnancy [58]. Another gene implicated in human placental

health is the top ATR-induced gene, follistatin-like 3 (FSTL3).

Elevated FSTL3 transcripts in humans have been linked to

hypoxia [59] and intrauterine growth restriction [60], and in mice

overexpression of FSTL3 results in gonadal defects [61]. Taken

together these findings suggest that further research is needed to

determine whether high and/or chronic exposure to ATR in

humans compromise normal fertility and contribute to reproduc-

tive diseases.

In addition to known endocrine transcripts, it was surprising to

find that ATR also induced expression and weakly activated the

early response NR4A receptors (Nor1 and NGFI-B, Fig 5 and

S2C). It is worth noting that these nuclear receptors promote

gluconeogenesis in vivo, and are directly regulated by cAMP in

HepG2 liver cells [62]. Nor1 is also reported to directly regulate

SGK-1 [63]. In addition to glucose homeostasis, members of the

NR4A family are activated in macrophages as part of the

inflammatory response and are implicated in TCR-mediated cell

death and thymocyte-negative selection [64,65]. Thus, it is feasible

that activation of Nor1 and NGF-IB might account for other

physiological effects noted for ATR including decreased survivor-

ship in amphibians [52,66], and impaired immune responses in

rodents [67,68,69].

Although our in vivo analysis focused solely on Cyp19A1

expression and sex ratios in exposed zebrafish, the fact that ATR

upregulates several peptide hormones and steroidogenic genes in

mammalian cells suggests that the in vivo effects of these triazine

herbicides will be much broader, extending well beyond estrogen

metabolism. Further studies using model organisms, where

genomic approaches are feasible, should help to determine the

full extent of ATR effects on endocrine signaling and other

physiological responses, including the immune response and early

embryonic development [70]. Given the current pervasive use and

persistence of ATR in the environment, our findings support

environmental concerns that ATR poses a potential risk to the
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reproductive health of young fish and other wild life. We also

suggest that further research is needed to determine how this non-

estrogenic EDC influences the mammalian embryonic and adult

endocrine system.

Materials and Methods

Biological Reagents
Antibodies, chemicals, oligonucleotides, plasmids and cell lines

used are specified in Text S1.

Plasmids
Full length mouse SF-1 (mSF-1) was PCR amplified from HA-

mSF-1/pCIneo. Full length human LRH-1 (hLRH-1, cloned from

human ductal carcinoma T47-D cDNA) was PCR amplified and

subcloned into 3x FLAG pcDNA3. Full length zebrafish nr5a ff1d

was isolated from zebrafish cDNA obtained from total body RNA

by PCR amplification, and subcloned into 3x FLAG pcDNA3.

Aromatase-Luc (ARO-Luc) was described previously [56]. ERa
and ERE-TATA-Luc vectors were generous gifts from Dr. S Kato

(University of Tokyo, Japan).

Cell Culture and Cell Lines
JEG3, HepG2 and H295R cells were maintained in DMEM/

H-21, 4.5g/L glucose supplemented with 10% fetal bovine serum

(FBS) and 1x penicillin/streptomycin (P/S). Y1 and human H-38

endometriotic cells were maintained in DMEM/F12 with 15%

Horse serum, 2.5% FBS and P/S, MA10 cells were maintained in

Waymouth’s with 15% horse serum and P/S, p19 cells were

maintained in aMEM with 10% FBS, E14 were maintained in

DME/H-21 with 15% fetal calf serum and P/S.

For transient transfections, cells were plated at a density of

20,000 cells/well in 24-well plates in phenol red-free DME H-21,

4.5 g/L glucose with 4% charcoal-dextran-stripped (CDS) FBS.

Cells were co-transfected with 200 ng ARO-Luc reporter plasmid

and 3x FLAG-mSF-1 expression vectors using FuGENE 6 (Roche,

Indianapolis, IN). Cells were treated with indicated drugs for 6 hr

before harvesting. Thereafter, luciferase activity was determined

using the Ventas Microplate Luminometer (Turner Biosystems,

Sunnyvale, CA). All transfections were performed in triplicate and

repeated at least three times.

Western blot analysis was carried out in JEG3 cells transfected

(24 hr) with 3x FLAG-mSF-1 and serum starved in phenol red-free

medium. Following serum starvation, cells were treated with drugs

for various times as indicated, washed with ice cold phosphate

buffered saline (PBS) and lysed with ice cold 20 mM Tris-HCl

pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1%

NaDeoxycholate, 1% Triton X-100, 0.1% SDS, Complete

Protease Inhibitor Cocktail (Roche), 1 mM phenylmethylsulpho-

nyl fluoride, 1x Phosphatase Inhibitor Cocktail I and II (Sigma-

Aldrich, St. Louis, MO). Protein concentration was determined

using Pierce Coomassie Protein Assay Kit (Pierce, Rockford, IL).

Twenty five micrograms of total protein was electrophoresed on

NuPAGE 4%–12% Bis-Tris gels (Invitrogen) and separated

proteins transferred and probed with antibodies against phos-

pho-Akt (Ser473) (1:1,000), Akt (1:1,000), phospho-p44/p42

(1:1,000), p44/p42 (1:1,000), pSF-1 (1:2,500) and Flag M2

(1:5000). Signal was detected using SuperSignal West Femto

Maximum Sensitivity Substrate (Pierce).

Levels of cellular cAMP were determined on whole cell extracts

prepared by the protocol provided with the R&D Systems ELISA

cAMP Parameter Assay Kit (Minneapolis, MN). All values were

normalized to internal standards with a standard curve ranging

from 0.78 to 200 pmol/mL, and were measured on a Thermo

Malti-Skan Ex plate reader at 450 nm. Two independent assays

were carried out with each experimental condition done in

triplicate.

Zebrafish and EDCs exposure
Adult zebrafish (Danio rerio) were maintained in recirculating

aquarium tank at 28 C on a 14h:10h light:dark cycle. Fertilized

eggs were harvested and juveniles were raised until 17 days post

fertilization (dpf). Fifteen zebrafish at 17dpf were exposed together

in the glass beaker containing 500 mL of aquarium water for 3

days with either DMSO vehicle (0.1%, v/v) as the control group

or with multiple classes of EDCs. Total RNAs from 5 fish were

pooled and purified using TRIzol (Invitrogen, CA). For assessing

ATR effects on the percentage of male and female zebrafish, 17dpf

zebrafish was exposed for 6 months to either DMSO, or 1027 M,

1026 M and 1025 M ATR. ATR was diluted from a stock

solution and added to fish water; tanks were changed three times

per week with fresh ATR. All research involving zebrafish were

approved and carried out according to guidelines of the UCSF

IACUC committee.

For gonadal histology, fish were anesthetized with 100 mg/L

tricaine methanesulphonate (Sigma) and fixed with 95% of EtOH,

4% of formalin and 2% of glacial acetic acid, sectioned (4 mm),

and stained with H & E.

RNA Analysis
Total RNA from cultured cells was extracted using TRIzol. For

quantitative PCR (qPCR), cDNA was synthesized from 2 mg of

total RNA with Superscript III Reverse Transcriptase (Invitrogen)

using random hexamer primers (Amersham Biosciences). RT-

qPCR was performed using the SYBR Green PCR Master Mix kit

(Applied Biosystems, Foster City, CA) with gene-specific primer

pairs. All primer sets were designed by Primer Express v2.0;

Applied Biosystems and validated to ensure amplification of a

single product with appropriate efficiency. Data obtained from the

PCR reaction was analyzed using the comparative CT method

(User Bulletin No. 2, PerkinElmer Life Sciences). All primer

sequences are listed in Table S2.

Microarray Analysis
HEEBO (Human Exonic Evidence Based Open-source) arrays

were printed in-house at the Center for Advanced Technology

(UCSF, CA). Total RNAs from JEG3 cells were prepared using

RNeasy (Qiagen, Valencia, CA). For each array, total RNA

(12.5 mg) obtained for each sample was reverse transcribed and

labeled with amino-allyl dUTP using reverse transcriptase III and

Oligo-dT/random primer mixture (Invitrogen, Carlsbad, CA).

cDNA was purified using MinElute PCR Purification Kit (Qiagen,

CA). Two mg of cDNA was coupled to Cy3 or Cy5 dye

(Monofunctional NHS-ester Dye, Amersham, Piscataway, NJ).

Cy3/Cy5 labeled cDNAs were purified, combined, and hybridized

in a sealed chamber at 65 C for 48 hrs. Slides were washed in

Solution I (3x SSC, 0.2% SDS) at 55C 1 min, Solution II (1x SSC)

1min twice at room temperature (RT), Solution III (0.2x SSC)

1 min at RT and quickly dried by centrifugation. Hybridized

slides were scanned using Axon Slide Scanner 4000B and data

were analyzed by Genepix 6.0 software (Molecular Devices, CA).

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0002117.s001 (0.02 MB

DOC)
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Figure S1 A. Luciferase Activity is shown for different reporters, as

indicated above bar graphs with or without SF-1 and with increasing

concentrations of ATR added. B. Luciferase activity is shown with a

hypothalamic SF-1 target gene using a wild type and mutant

promoter. The SF-1 binding site is mutated in the mutant promoter

(mutant SF-1 RE). The promoter is ataxin 2 binding protein.

Found at: doi:10.1371/journal.pone.0002117.s002 (0.11 MB PDF)

Figure S2 A. Luciferase activity in JEG-3 cells following

treatment with ATR (10 mM), EGF (50 mg/L) or Forskolin

(10 mM) for 24 hrs. All cells were transfected with 25 ng of

mSF-1 and 200 ng of Aro-Luc reporter plasmid. B. Luciferase

activity for JEG-3 cells transfected with the pCRE-Luc (200 ng,

pCRE-Luc, Clontech) and with indicated amount of ATR added

for 24 hrs. C. JEG-3 cells were transfected with 5x OH-Luc

reporter (200 ng) and NGFIB (10 ng), treated with indicated

amount of ATR added for 24 hrs.

Found at: doi:10.1371/journal.pone.0002117.s003 (0.14 MB PDF)

Figure S3 A. GAL-4 fused luciferase activity is shown using

200 mg of GAL-4 reporter, pFR-Luc (Stratagene), as indicated

with 100 mg of mSF-1 (hinge-LBD aa105 to 462) or hLRH-1

(aa198 to 562), with increasing concentrations of ATR added. B.

EMSA assay. For EMSA binding assays, the mMIS SF-1 binding

site was used. Sequences are described in Text S1. The

concentration of ATR is indicated, and was added to binding

buffer and then incubated with purified mSF-1 containing the

entire DNA binding domain.

Found at: doi:10.1371/journal.pone.0002117.s004 (0.22 MB PDF)

Figure S4 A. Cluster analysis of significant (P,0.001) changes in

gene expression after ATR (10 mM, 24 hrs) compared to DMSO,

and with or without transfection of mouse SF-1 (SF-1+ or SF-1-).

The relative fold change is indicated on the bar legend to the left.

B. Relative expression levels in JEG3 cells (with/ without

transfection of mSF-1) after DMSO (-) or treatment with ATR

(10 mM). JEG3 cells were transfected with 5 mg of mSF-1 and treated

with the ATR for 24hrs with RT-qPCR analysis carried out using

validated primers as indicated in Table S2. Endogenous expression

levels of hSF-1 are shown by RT-qPCR (right upper panel).

Found at: doi:10.1371/journal.pone.0002117.s005 (0.19 MB PDF)

Figure S5 HepG2 liver cells were transfected with 200 ng of

ARO-Luc and with either 100 ng siRNA of control (sicRNA) or

hLRH-1 (si-hLRH-1), left panel. Relative luciferase activities after

drug treatment are shown as mean values +/2s. d. Endogenous

transcript levels of hLRH-1 are shown as determined by RT-

qPCR, right panel.

Found at: doi:10.1371/journal.pone.0002117.s006 (0.09 MB PDF)

Table S1

Found at: doi:10.1371/journal.pone.0002117.s007 (0.05 MB PDF)

Table S2

Found at: doi:10.1371/journal.pone.0002117.s008 (0.06 MB

DOC)
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