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Efficacious vaccines are needed to control genital chlamydial diseases in humans and the
veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising
recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and
immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-
Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we
investigated the immunomodulatory effect of the hematopoietic progenitor activator
cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-
Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential
mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized
and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified
rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results
revealed that co-administration of the vaccine with FL enhanced antigen-specific
cellular and humoral immune responses and protected against live Cab genital
infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and
systemic immune inductive tissue sites following immunization revealed that co-
administration of rVCG-Pmp18.1 with FL significantly enhanced the number of
macrophages, dendritic and NK cells, gd and NK T cells in the spleen (systemic) and
iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-
Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+
B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the
immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells
and subsequent activation of robust antigen-specific immune effectors in mucosal and
systemic lymphoid tissues.
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INTRODUCTION

Chlamydia abortus is an obligate intracellular gram-negative
bacterium and a major cause of placental infection in farm
animals, including sheep resulting in Ovine Enzootic Abortion
(OEA) (1). Infection is also found in goats, pigs and cattle leading
to considerable economic losses in animal husbandry worldwide
(1–4). It has been shown that natural infection of ewes does not
result in apparent immediate clinical effect, the infection
remaining latent until the animal becomes pregnant, after which
the organism invades the placenta, multiplies, and eventually
causes abortion (5). Oral inoculation or targeted administration
of C. abortus over the tonsils of pregnant ewes has been shown to
induce a placental infection (6, 7). Also, Gutierrez et al. (8) have
induced placental infection following the oral administration of a
high dose (5 x 109 inclusion-forming units, IFU) of C. abortus
prior to pregnancy, thus establishing latency. We recently found
107 IFU of C. abortus strain AB7 caused tubal dilatation in mice
after a single intranasal infection whereas intravaginal inoculation
with 2 x 107 IFU did not induce genital tract pathology
(unpublished observation). These reports implicate the oral-
nasal route as the natural port of entry for C. abortus in OEA.
C. abortus infection also poses a zoonotic risk to pregnant women.
Zoonotic infections are frequently asymptomatic and infected
individuals are therefore often untreated leading to the
development of complications, including severe septicemia with
disseminated intravascular coagulation (DIC), resulting in
spontaneous abortion of the fetus, preterm labor or stillbirth (9–
11). Although antibiotics are effective against Chlamydia, most
infections are asymptomatic and so many infected individuals do
not seek treatment resulting in the onset of pathology being the
first indication of an infection. It is therefore the considered
scientific opinion that a vaccine capable of protecting against
infection or even lessening severe disease would be the most
effective approach for controlling these infections and the
resulting complications (12, 13).

The currently available live attenuated C. abortus vaccines are
based on the 1B strain and include, Enzovax® and CEVAC
Chlamydophila®. Although a single dose of each vaccine is
effective, they are expensive, requiring microbe culture in tissue
cells or embryonated eggs. They are thus labor-intensive,
hazardous to produce, and challenging to manufacture in large
quantities. Importantly, though these live attenuated 1B vaccines
were initially thought to be safe and effective in preventing
infection in sheep, they have been implicated in cases of
abortion (14) prompting their discontinued use by farmers.
The association of single nucleotide polymorphisms (SNPs)
with the 1B vaccine strain in a recent study confirmed that this
strain was not really attenuated and was being transmitted via
vaccinated animals (15, 15). More recently, the 1B vaccine strain
has been reported to produce placental pathology
indistinguishable from wild type C. abortus infection (16).
Besides, following vaccination, it is impossible to distinguish
infected from vaccinated animals by serology alone (17), making
it difficult to monitor vaccination practices. In addition,
inactivated and DNA vaccines while promising in principle,
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have not been as effective as native antigen in protecting sheep
against C. abortus (18) calling for alternative strategies to develop
safe and effective vaccines.

The use of whole chlamydial agents as vaccine candidates has
not been favorable due to the potential existence of
immunopathogenic components as revealed in early human
trials with inactivated whole chlamydial agents in which
vaccinated individuals suffered exacerbated disease during
subsequent infection (19, 20). Also, the recently developed
genetic tools to generate stably attenuated and safe chlamydial
vaccine strains are yet to be widely applied for generating
attenuated chlamydial strains for human vaccine use (21).
Thus, our current focus is to develop vaccines based on
chlamydial subunit components. In addition to the chlamydial
outer membrane protein, MOMP, several immunogenic proteins
have been predicted that may serve as potential vaccine
candidates. Among these is a unique family of proteins, the
polymorphic membrane proteins (Pmps) (22). Genome
sequencing of C. abortus has revealed the presence of 18 pmp
genes as opposed to the 9 in C. trachomatis (23). The Pmps have
been associated with virulence and resemble autotransporters of
the type V secretion system (24, 25). In C. trachomatis, PmpD is
a major protective antigen found on the surface of chlamydial
elementary bodies (EBs) (24, 26, 27) and capable of generating
neutralizing antibodies (28). This protein is evolutionarily
conserved and involved in chlamydial attachment to host cells.
Similarly, the Pmp18D of C. abortus is a highly conserved and
immunogenic outer membrane protein that is expressed
throughout the chlamydial developmental cycle making it a
viable vaccine and diagnostic candidate.

Unfortunately, the choice of a subunit vaccine approach
imposes certain design constraints, including the requirement
for a delivery and adjuvant system that would effectively present
antigens to the immune system and bolster protective immunity
against Chlamydia. In this respect, the Vibrio cholerae ghost
(VCG) vaccine delivery platform has been shown to be an
effective delivery system for chlamydial vaccine antigens,
eliciting antigen-specific immune responses and substantial
protective immunity (29–32). Several adjuvants and
immunomodulators have been employed to bolster the
protective immune responses of a variety of chlamydial vaccine
antigens (33–37). Targeting antigens to dendritic cells (DCs) is
also important for inducing protective immunity against
Chlamydia due to their proclivity for activating the Th1
immune response that is vital for chlamydial immunity (38–
41). The Fms-like tyrosine kinase 3 ligand (Flt3L; FL) is a
cytokine and growth factor, which binds to the fms-like
tyrosine kinase receptor Flt3/Flk2 (CD135) to stimulate the
proliferation and differentiation of several hematopoietic
progenitors, including DCs (42, 43). Intranasal immunization
of mice with FL and the non-typeable Haemophilus influenzae
(NTHi) P6 protein increased dendritic cell numbers in the nasal-
associated lymphoid tissue and enhanced antigen-specific long-
term mucosal immune responses in the nasopharynx (44).
Intramuscular immunization of mice with a recombinant
rabies virus expressing mouse Flt3L enhanced DC maturation
June 2021 | Volume 12 | Article 698737
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in vitro and in vivo, and significantly increased the induction of
follicular helper T cells (45). A combination of FL and
Granulocyte macrophage-colony stimulating factor (GM-CSF)
was found to significantly increase splenic DC maturation and
function (42) and elicited mucosal immunity to influenza in aged
mice (46). Furthermore, adoptive combination therapy involving
T cells expressing FL substantially increased host DC and T cell
activation and enhanced antitumor immunity (47). Consequently,
in this study, we investigated the immunomodulatory effect of co-
administration of FL with the rVCG-Pmp18.1 vaccine as a strategy to
enhance the protective efficacy and the potential mechanism of
immunomodulation. We show that co-administration of FL
adjuvant with rVCG-Pmp18.1 vaccine enhanced the cellular and
humoral immune responses and protection against Cab infection.
The immunomodulatory action of FLwas associated with its ability to
mobilize innate and adaptive immune cells into the mucosal and
systemic immune inductive sites.
MATERIALS AND METHOD

Ethics Statement
In this study, the recommendations contained in the Guide for
the Care and Use of Laboratory Animals of the National
Institutes of Health were followed. The Institutional Animal
Care and Use Committee (IACUC) of Morehouse School of
Medicine (MSM) (Assurance number A3381-01) approved the
study protocol (Protocol Number: 16-15). MSM-IACUC adheres
to the National Institute of Health (NIH) guidelines for the care
and 184 use of laboratory animals, the Public Health Service
(PHS) policy, and the Animal Welfare Act.

Reagents
Chlamydia abortus strains P16 and B577 (ATCC VR-656) are
laboratory stocks generated by propagating elementary bodies
(EBs) in BGMK cells. EBs were purified by density gradient
centrifugation over renografin as reported previously (48) and
stored at -70°C. Purified mouse Fms-like tyrosine kinase 3 ligand
(FL) was purchased from R&D Systems, Minneapolis, MN. All
mice used in these studies were of the C57BL/6J strain (female,
aged 6 to 8 weeks) from The Jackson Laboratory (Bar Harbor,
ME). They were housed in the animal facility of Morehouse
School of Medicine and animal study protocols were performed
in compliance with institutional IACUC and federal guidelines.

Construction of Vaccine Vectors and
Expression of Recombinant Proteins
The vaccine vectors, pST-Pmp18.1 and pET-Pmp18.1 expressing
the N-terminal fragment of the polymorphic membrane protein,
Pmp18D and subsequent purification of recombinant protein
has been described (49). Protein expression was detected by SDS-
PAGE and immunoblotting analysis as previously described (32)
using purified rabbit anti-Pmp18D polyclonal antibody.
Production of VCG expressing the vaccine antigen from pST-
Pmp18.1 was by gene E-mediated lysis of the growing culture
following induction of protein expression by addition of IPTG
Frontiers in Immunology | www.frontiersin.org 3
essentially as previously described (50). Lyophilized VCG
preparations were stored at regular refrigeration temperature
(4-8°C) until used.

Immunization, Challenge, and Analysis of
Protective Immunity
Groups of mice (12/group) were immunized intranasally (IN)
with lyophilized rVCG-Pmp18.1 (1.5 mg) with or without FL
(150 ng) or 10 mg of purified rPmp18.1 in 20 µl of PBS per mouse
and boosted twice, at 2-week intervals (Figure 1D). Other groups
were immunized with PBS alone (medium control) or 1.5 mg of
lyophilized rVCG-gD2 (antigen control). A 1.5 mg dose
of lyophilized rVCG-rPmp18.1 contains approximately 3 mg of
purified rPmp18.1 antigen. Mice were immunized while under
isoflurane anesthesia, induced with 2-4% isoflurane (Henry
Schein Animal Health, Dublin, OH) in 100% oxygen in an
anesthetic chamber for 30 min. Three weeks after the last
booster dose, mice (6/group) were injected subcutaneously
with Depo Provera (2.5 mg/mouse; UpJohn Co., Kalamazoo,
MI) to synchronize the estrous cycle and facilitate a productive
infection and then challenged intravaginally one week later with
live C. abortus strain B577 (1 x 106 IFUs). After challenge, mice
were observed twice daily to monitor health status, such as
clinical signs of adverse reaction to infection. To assess the
level of infection, cervicovaginal swabs were collected from
each animal every 3 days following the challenge and
chlamydiae were isolated from swabs in tissue culture by
standard methods (48). Experiments were repeated to contain
10-12 mice per group.

Sample Collection
Four weeks after the last booster immunization, animals
designated for immunogenicity studies (6 mice/group) were
sacrificed and the spleens (51) and iliac lymph nodes (ILN)
draining the genital tract were harvested. Single-cell suspensions
were obtained from the tissues using the gentleMACS
Dissociator (Miltenyi Biotech, Auburn, CA). Following
dissociation, the tissues were filtered, centrifuged, and
resuspended in PBS/BSA EDTA buffer. The Pan T Cell
Isolation Kit II and the Midi magnetic bead-activated cell-
sorting (MidiMACS) separator (Miltenyi Biotech, Auburn, CA)
was used to purify total T cells by negative selection. A distinct
pool of g-irradiated (2000 rad) splenocytes prepared from naive
animals served as a source of antigen-presenting cells (APCs).
Two weeks after the 2nd and two and four weeks after the 3rd
immunization, blood samples were collected by submandibular
bleeding and centrifuged to obtain serum, while vaginal lavage
was obtained by washing the vaginal vault with 100 µl of PBS.
Samples were stored at -80 °C until analyzed.

Assessment of Th1/Th2 Cytokines by
Cytokine ELISA
The level of Pmp18.1-specific Th1 and Th2 response was assayed
by measuring the antigen-specific IFN-g, IL-12, IL-4 and IL-10
cytokine production by T cells isolated from spleen and ILN as
previously described (30). Briefly, purified T cells were plated in
June 2021 | Volume 12 | Article 698737
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quadruplicate wells of 96-well tissue culture plates at 1×106 cells/
well and cultured with APCs (1×106/well) and 5 mg/ml of
rPmp18.1. Control cultures contained APCs and T cells
without antigen. After incubation for 72 h, the Bio-Plex
cytokine assay kit in combination with the Bio-Plex Manager
software (Bio-Rad, Hercules, CA) was used to measure cytokine
concentrations in harvested supernatants. The concentration of
the cytokines in each sample was obtained by extrapolation from
a standard calibration curve generated simultaneously. All assays
were performed in quadruplicate and were repeated for
validation. The mean and SD of all quadruplicate cultures
were calculated.

Assessment of T Cell Proliferation
The ability of purified immune T cells to proliferate in response
to in vitro restimulation in culture with Pmp18.1 was assessed
using the 5-Bromo-2’-deoxy-uridine (BrdU) cell proliferation
assay according to the manufacturer’s instructions (Roche
Molecular Biochemicals, Indianapolis, IN) and described
previously (30). Briefly, gamma-irradiated (2000 rad)
splenocytes (106/ml) purified from naive animals were co-
cultured with purified T cells (106 cells/ml) and 5 mg/ml of
Frontiers in Immunology | www.frontiersin.org 4
rPmp18.1 at 37°C in 5% CO2. After 3 days, the plates were
incubated with BrdU labeling solution for 18 h followed by
incubation with peroxidase labeled anti-BrdU antibody for 1 h at
37°C. Plates were then developed with 2,2’-azino-bis (3-
ethylbenzthiazoline-6-sulfonic acid) (ABTS) substrate for
30 min and BrdU incorporation was detected using a scanning
multi-well spectrophotometer (Spectra-Max 250 ELISA reader,
Molecular Devices, Sunnyvale, CA). The stimulation index (SI)
was calculated as the ratio between stimulated and non-
stimulated cells for triplicate cultures. The experiment was
repeated twice for confirmation.

Measurement of Antibody Concentrations
A standard ELISA procedure described previously (52) was used
to measure the concentration of Pmp18.1-specific antibodies
(IgG, IgG2a, and IgA) in sera and vaginal washes obtained at
different time points. Briefly, 96-well microtiter plates (Nunc Life
Technologies, Rochester, NY) coated overnight with rPmp18.1
(2 mg/well) in PBS were blocked with 5% Non-fat dry milk (Bio-
Rad, Hercules, CA) and incubated with vaginal wash or twofold
serial dilutions of serum at room temperature. Following
incubation with horseradish peroxidase-conjugated goat anti-
A B

D

C

FIGURE 1 | Construction of vaccine vectors and expression of recombinant proteins. (A) The pST-18.1 vaccine vector was constructed by genetically inserting the
amplified 1317 bp fragment of the N-terminal Pmp18D coding sequence in frame with the N-terminal LppOmpA and C-terminal FLAG in plasmid vector pSTV66.
The pET-18.1 expression vector was similarly constructed by inserting the 1317 bp fragment into vector pET-32a and rPmp18.1 was purified using the Ni-NTA
Purification System. (B) Coomassie stained SDS-PAGE gel. Lane 1, MW markers; Lane 2, 200 ng of purified rPmp18.1; Lane 3, 200 µg of Pmp18.1 expressed from
plasmid pST-18.1; Lane 4, Unstimulated control; Lane 5, Empty; Lane 6, PBS dialyzed rPmp18.1. (C) Protein expression was detected by immunoblotting analysis
using purified rabbit anti-Pmp18D polyclonal antibody. Lane 1, MW markers; Lane 2, purified rPmp18.1; Lane 3, rPmp18.1-Flag fusion protein expressed from
plasmid, pST-18.1; Lane 4, Empty. (D) Schematic diagram of the experimental design outlining the immunization, challenge, and sample collection schedules.
June 2021 | Volume 12 | Article 698737
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mouse IgA, IgG, or IgG2c isotype (Southern Biotechnology
Associates, Inc., Birmingham, Ala.), plates were developed with
3, 3’, 5, 5’-Tetramethyl Benzidine (TMB; Sigma, St Louis, MO)
substrate and the absorbance was read on a Microtiter plate
reader at 492 nm. The results were generated simultaneously
with a standard curve, and the data sets representing the mean
values from triplicate wells are shown as mean concentrations
(ng/ml) ± SD.

Immune Cell Isolation From Spleen and
Lymph Nodes
In a separate experiment, spleen and ILN were harvested from
mice (5/group) immunized with rVCG-Pmp18.1 with or without
FL as described above, 2 weeks postimmunization. Single cell
suspensions were prepared by homogenization using the
gentleMACS™ Dissociator (Miltenyi Biotech, Auburn, CA)
and filtration through 70-mm cell strainers (Corning Life
Sciences, Edison, NJ). Splenic erythrocytes were lysed by
resuspending the cell pellet in 5 ml of RBC lysis buffer
(Biolegend, San Diego, CA) for 5 min. The cells were washed
twice with Cell Staining Buffer, counted using a TC20 cell
counter (BioRad, Hercules, CA) and used for flow cytometry.

Flow Cytometry
Cells (1.5 x 106/well) were suspended in Cell Staining Buffer
(Biolegend, San Diego, CA) and stained for 30 min at 4°C with
Mouse BD Fc Block (purified rat anti-mouse CD16/CD32; Clone
93) (BioLegend San Diego, CA) to reduce non-specific FcR-
mediated binding. BD Horizon Fixable Viability Stain 700
(FSV700) (BD Biosciences, San Jose, CA) was then added to
exclude dead cells before staining with fluorophore-conjugated
antibodies. The following anti-mouse antibodies (clones) were
used: anti-CD11c-PerCP-Cy5.5 (Clone N418), anti-F4/80-APC
(Clone BM8), anti-CD49b-PerCP-Cy5.5 (Clone HMa2)
(Biolegend, San Diego, CA), anti-MHC II-FITC (Clone 10-3.6),
anti-CD68-BV421 (Clone FA/11), anti-Ly6C-BV605 (Clone AL-
21), anti-CD3-BUV395 (Clone 145-2C11), anti-CD4-FITC
(Clone Gk1.5), anti-CD8-APC (Clone 53-6.7), anti-CD44-
PeCy7 (Clone IM7), anti-NK1.1-PE (Clone PK136), anti-TCR
g/d-BV421 (Clone GL3) and anti-CD19-PE (Clone 1D3) (BD
Biosciences, San Jose, CA). After staining, cells were washed
twice with Cell Staining Buffer and fixed with 2%
Paraformaldehyde for 10 min. Following an additional wash,
cells were resuspended in Cell Staining Buffer and analyzed by
Flow Cytometry on a BD FACSAria Fusion cell sorter in
combination with BD FACSDiva software (BD Biosciences,
San Jose, CA), and data was analyzed with FlowJo version
10.7.1 (BD Biosciences, San Jose, CA). Anti-mouse CompBeads
(BD Biosciences, San Jose, CA) were used for compensation.

Gating Strategy
Gates were set using the fluorescence-minus-one (FMO) gating
strategy. Cells were gated first on a forward (FSC) and side
scatter (SSC). Live cells were then isolated from total single cells
based on the viability staining. This gating strategy allows for the
selection of all live immune cells while eliminating doublets from
analysis. CD4, CD8, NKT and gd positive T cells were gated from
Frontiers in Immunology | www.frontiersin.org 5
CD3 positive parent population. CD44 positive cells were gated
from the CD4+/CD8+ T cell population. NK 1.1 positive NK
cells, Ly6C positive monocytes, CD11c MAC II positive dendritic
cells and CD68/F4/80 positive macrophages were gated from
non-B and non-T cells. CD19 positive B cells were gated from the
non-T cell population.

Statistical Analysis
Statistical analyses were performed with the GraphPad Prism 9
package (GraphPad Software, Inc. La Jolla, CA, USA) on a Mac
computer. Statistical differences between two groups (IFUs) were
evaluated by a Two-tailed Paired t-test and between more than
two groups (cytokine and antibody concentrations, T cell
proliferation) by one-way ANOVA. Differences were
considered to be significant at p* < 0.05.
RESULTS

Generation and Expression of Vaccine
Antigens
The pST-18.1 vaccine vector was constructed such that the 1,317
bp fragment of the N-terminal Pmp18D coding sequence was
inserted in frame with the C-terminal FLAG contained in
plasmid pSTV66 (Figure 1A). Sequencing results of the newly
generated plasmid construct confirmed that the cloned gene
fragment was in frame with FLAG. Also, the pET-18.1
expression vector was constructed to contain the same gene
fragment of N-terminal Pmp18D sequence inserted into vector
pET32a and rPmp18.1 was purified using the Ni-NTA
Purification System. Purity of the purified protein was
determined by Coomassie staining (Figure 1B). Following
transformation of V. cholerae 01 or E. coli BL21 competent
cells with plasmid pST-18.1 or pET-18.1 respectively, expression
of the recombinant rPmp18.1 protein was confirmed by Western
immunoblotting analysis using polyclonal antibody to
Pmp18D (Figure 1C).

FL Enhanced the Antigen-Specific Th1
Cytokine Response Profile Stimulated by
Immunization With rVCG-Pmp18.1
To examine the immunomodulatory effect of FL on Th1
response induced by the vaccine, total immune T cells purified
from SPL and ILN draining the genital tract of immunized mice
obtained 4 weeks postimmunization (Day 56) were analyzed for
specific Th1 and Th2 cytokine (IFN-g, IL-4, IL-10 and IL-12)
secretion upon restimulation with rPmp18.1. As expected, T cells
from SPL and ILN of mice immunized with PBS or rPmp18.1 or
VCG expressing the Cab irrelevant antigen, rVCG-gD2 did not
generate significant levels of cytokines in response to rPmp18.1
stimulation. On the other hand, T cells from both SPL and ILN of
mice immunized with rVCG-Pmp18.1 with and without FL
induced high levels of IFN-g and basal levels of IL-4 and IL-10
(Figures 2A, B). Significantly higher (p< 0.05) amounts of
antigen-specific IFN-g were produced by both splenic
(Figure 2A) and ILN (Figure 2B) immune T cells from mice
June 2021 | Volume 12 | Article 698737
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immunized with rVCG-Pmp18.1 co-delivered with FL compared
to those from mice immunized with rVCG-Pmp18.1 vaccine
alone. The secretion of significantly higher (p< 0.001) levels of
IFN-g compared to IL-4 by these T cells following immunization
with the rVCG-Pmp18.1 vaccine indicates the induction of
antigen-specific Th1 responses in both mucosal and systemic
tissues. These results indicate that FL boosted the Th1 inducing
ability of the vaccine.

FL Enhanced the Antigen-Specific T Cell
Activation Following Co-Delivery With the
rVCG-Pmp18.1 Vaccine
The ability of immune T cells purified from the SPL and ILN of
immunized mice to proliferate in response to in vitro
restimulation in culture with rPmp18.1 was assessed by the
BrdU incorporation assay. The magnitude of T cell
proliferation was expressed as stimulation index (SI), defined
as the ratio of the absorbance values of stimulated and non-
stimulated cells. As shown in Figures 2C, D, mice immunized
Frontiers in Immunology | www.frontiersin.org 6
with rVCG-Pmp18.1 had significantly higher (> 5-fold higher)
(p< 0.01) T cell proliferative responses in both SPL and ILN as
indicated by the SI values compared to the rVCG-gD2 antigen
control. Furthermore, the magnitude of splenic T cell
proliferation induced by the FL adjuvanted rVCG-Pmp18.1
vaccine in both systemic and mucosal compartments was
significantly higher (~ 2-fold higher) (p< 0.05) than that of the
rVCG-Pmp18.1 alone. The results indicate that the T cell
stimulating capacity of the rVCG-Pmp18.1 vaccine was
enhanced following co-delivery with FL.

FL Enhanced the Antigen-Specific
Antibody Responses in Mice Immunized
With the rVCG-Pmp18.1 Vaccine
Specific antibody responses elicited 2 weeks after the last
immunization (day 42) were measured by titrating the serum
and vaginal secretions of vaccinated and control mice against
rPmp18.1. Figure 3 shows that in general, significantly higher
(p < 0.0001) levels of rPmp18.1-specific IgG2c antibodies were
A B

D
C

FIGURE 2 | Antigen-specific genital mucosal and systemic cytokine and proliferative responses. T cells purified from the SPL and ILNs of immunized mice and
controls 4 weeks postimmunization, were restimulated in vitro with 5 mg/ml of rPmp18.1 for 72 h. Control cultures contained APCs and T cells without antigen. The
concentration of Th1/Th2 cytokines in the spleen, SPL (A) and ILN (B) contained in supernatants of culture-stimulated cells was measured using the Bio-Plex
cytokine assay kit. All assays were performed in quadruplicate and were repeated for validation. Data were calculated as the mean values (± S.D.) for quadruplicate
cultures for each experiment. The cultures without antigen did not contain detectable levels of cytokine and so the data were excluded from the results. The data
shown is a representative of two assays with similar results. The antigen-specific proliferative responses in the SPL (C) and ILN (D) were determined 4 weeks after
the last immunization using the BrdU cell proliferation assay kit. BrdU incorporation was detected by addition of anti-BrdU antibody, and the absorbance was read at
405 nm. The experiment was repeated twice for confirmation. The results are expressed as the stimulation index (SI), the ratio between absorbance values of
stimulated and non-stimulated cells and the bars represent the mean and S.D. of six replicates from two independent experiments. Significant differences between
groups were evaluated by One-way ANOVA with Tukey’s post multiple comparison test at p* < 0.05 and p** < 0.01.
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detected in serum (A) and vaginal wash (B) of mice
immunized with both vaccine formulations compared to the
rVCG-gD2 control. Also, these levels were significantly higher
(~2-fold higher) in serum (p < 0.001) and (~2-fold higher) in
vaginal wash (p < 0.0001) of mice immunized with rVCG-
Pmp18.1/FL compared to those immunized with rVCG-
Pmp18.1. Similarly, immunization with rVCG-Pmp18.1
generated significantly higher (~10-fold higher) serum (p <
0.01) (C) and (5-fold) vaginal wash (p < 0.0001) (D) IgA
antibody levels compared to the rVCG-gD2 control, which
were increased (~10- to 19-fold higher) following co-delivery
with FL. This implies that FL enhanced the magnitude of
antigen-specific antibody responses elicited by the rVCG-
Pmp18.1 vaccine.

FL Enhanced the Protective Efficacy of the
rVCG-Pmp18.1 Vaccine Candidate Against
Heterologous Genital C. abortus Challenge
The ability of the C. abortus strain P16-derived vaccine
candidates to protect against infection was evaluated by
enumeration of genital chlamydial inclusions following
intravaginal challenge of immunized mice with live C. abortus
Frontiers in Immunology | www.frontiersin.org 7
strain B577 four weeks after the last immunization. Figure 4A
shows that mice immunized with rVCG-Pmp18.1 with and
without FL controlled C. abortus replication and shedding and
had shorter duration of infection compared to controls. By day 9
postimmunization, mice immunized with the rVCG-Pmp18.1/
FL vaccine shed approximately 2-log lower chlamydial IFUs
compared to controls and about 1-log lower IFUs compared to
rVCG-Pmp18.1-immunized mice (Figure 4A). Furthermore, by
day 21 postchallenge, rVCG-Pmp18.1/FL-immunized mice had
cleared the infection while the rVCG-gD2 control-immunized
mice were still shedding high numbers of IFUs. The rVCG-
Pmp18.1-immunized mice shed low numbers of C. abortus IFUs
at this timepoint, but by day 24 postchallenge, it had also
completely cleared the infection. The results indicate that FL
enhanced the immune effectors elicited by the vaccine to control
the replication of C. abortus. To quantify the magnitude of the
effect of the adjuvant and assess its precision on the protective
immunity of the rVCG-Pmp18.1 vaccine, the two means were
compared using an estimation plot (Figure 4B). The effect size is
represented as the difference of means (0.57) at a 95% confidence
interval (CI). This indicates that FL contributed to the protection
of vaccinated mice.
A B

DC

FIGURE 3 | Antigen-specific IgG2c and IgA antibody responses induced in serum and vaginal wash samples. Groups of mice were immunized IN three times, 2
weeks apart. Serum and vaginal lavage samples were obtained from individual mice in each group 2 weeks after the last immunization. ELISA procedure was used
to assess the concentration of IgG2c and IgA antibodies elicited in serum (A–C) and vaginal lavage (B–D) samples. The results were generated simultaneously with a
standard curve and display data sets corresponding to absorbance values as mean concentrations (ng/ml) ± SD of triplicate wells for each experiment. The results
are a representative of two independent experiments with similar results. Significant differences between groups were evaluated by One-way ANOVA with Tukey’s
post multiple comparison test at p** < 0.01, p*** < 0.001 and p**** < 0.0001.
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FL Enhanced the Mobilization of Innate
and Adaptive Immune Cells to Mucosal
and Systemic Tissues by the rVCG-
Pmp18.1 Vaccine
To examine the role of immune cell infiltration as a possible
mechanism for Th1 enhancement by FL, we assessed the
magnitude of specific innate and acquired immune cells
recruited into mucosal and systemic immune inductive tissues
after vaccination. For that, we isolated total cells from spleen and
ILNs draining the genital tract and characterized their
phenotypes and numbers following immunization with rVCG-
Pmp18.1 with and without FL using flow cytometry. In general,
the number of innate immune cells (expressed in percentages)
were higher in the ILNs than in the spleen after immunization
with rVCG-Pmp18.1 vaccine with and without FL (Figure 5).
There were significantly higher numbers of dendritic cells (DCs)
(p < 0.01) (Figure 5A), macrophages (p < 0.001) (Figure 5B),
NK cells (p < 0.05) (Figure 5C) and monocytes (p < 0.01)
(Figure 5D) in the ILNs of mice immunized with rVCG-
Pmp18.1/FL compared to rVCG-Pmp18.1 vaccine alone.
Additionally, co-delivery of FL with the vaccine significantly
(p < 0.05) enhanced the percentage of DCs and NK cells in the
spleens of immunized mice. However, in the spleen, the number
of monocytes were significantly higher (p < 0.01) in mice
immunized with rVCG-Pmp18.1 compared to those that
received the FL adjuvanted vaccine. The results indicate that
co-delivery of FL with vaccine boosted the infiltration of the
innate immune cells important for induction of adaptive
immunity, especially in the mucosal inductive sites draining
the genital tract.
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A higher number of immune CD3+ T cells were found in the
ILN compared to the spleen (Figure 6A). Co-delivery of FL with
the vaccine significantly (p < 0.001) enhanced the percentage
number of antigen specific CD4+ T cells in the spleen, but not in
the ILNs (Figure 6B). In contrast, significantly higher (p < 0.05)
numbers of CD8+ T cells were mobilized in the spleen of mice
immunized with the rVCG-Pmp18.1 vaccine alone (Figure 6B).
The number of CD4+ (CD4+CD44+) and CD8+ (CD8+CD44+)
memory T cells were higher in the ILN compared to the spleen
irrespective of the vaccine administered (Figure 6C). However,
while the rVCG-Pmp18.1 vaccine induced significantly higher
numbers of CD4+ memory T cells in both the spleen (p < 0.05)
and ILN (p < 0.01) of immunized mice compared to rVCG-
Pmp18.1/FL, comparable numbers of CD8+ memory T cells
were found in both the spleen the ILNs of mice receiving either
vaccine (Figure 6C). Furthermore, co-delivery of vaccine with FL
resulted in significant (p < 0.001) increase in the percentage
number of gd (Figure 7A) and NK (NK1.1) (Figure 7B) T cells in
the ILN compared to rVCG-Pmp18.1 alone. These cell numbers
were comparable in the spleen following immunization with and
without FL. The number of B cells were higher in the spleen
compared to the ILN, irrespective of the vaccine administered
(Figure 7C). Co-delivery of vaccine with FL resulted in a
significant (p < 0.01) increase in the number of B cells
infiltrating the spleen compared to vaccine alone. However, in
the ILN these numbers were significantly (p < 0.01) higher
following immunization of mice with rVCG-Pmp18.1 alone
compared to with adjuvanted vaccine. The results indicate that
varying numbers of innate and adaptive immune cells were
mobilized in mucosal and systemic immune inductive sites
A B

FIGURE 4 | Cross protection against heterologous intravaginal challenge with C. abortus B577. Groups of mice immunized IN were challenged intravaginally with
1 x 106 IFU of live heterologous C. abortus B577 4 weeks after the last immunization. Infections were monitored by cervicovaginal swabbing of individual animals at the
indicated time points after infection and C. abortus was isolated from swabs in tissue culture and enumerated. The data show (A) the mean recoverable IFUs
expressed as log10 IFU/ml ± S.D. and (B) the mean difference between rVCG-Pmp18.1 and rVCG-Pmp18.1/FL in an unpaired t test estimation plot. Group means at
the different time points are plotted on the left axes; the mean difference is plotted on the right Y axis. The adjuvant effect size, the mean difference between means ±
SEM (-0.5700 ± 1.244) is depicted as a bar. Precision of the calculated effect size as a 95% confidence interval (right axis) is indicated by the ends of the vertical error
bar. Differences in the mean recoverable IFUs between rVCG-Pmp18.1 and rVCG-Pmp18.1/FL were compared by paired Student’s t test at p* < 0.05 and p** <0.01.
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A

B

C

FIGURE 6 | Immunization of mice with rVCG-Pmp18.1 vaccine with and without FL adjuvant induced immune CD4+ and CD8+ T cell infiltrating into mucosal and
systemic tissues of immunized mice. Single cell suspensions were isolated from harvested spleens and ILN obtained from immunized mice as described above.
Isolated cells were labeled with anti-CD4, -CD8, -CD4+CD44+ and –CD8+CD44+ antibodies and analyzed by flow cytometry. Representative flow cytometric images
(left) and bar graphs (right) showing percentages of CD3+ T cells (A), CD4+ and CD8+ T cells (B) and CD4+CD44+/CD8+CD44+ (C) memory cells. Data are shown
as mean ± SD and represent two independent experiments (five mice in each group) with similar results. *p < 0.05, **p < 0.01, ***p < 0.001.
A B DC

FIGURE 5 | Enhanced mobilization of innate immune cells to mucosal and systemic tissues following immunization of mice with FL adjuvanted rVCG-Pmp18.1
vaccine. Groups of mice (5/group) were immunized three times IN at 2-week intervals. Four weeks postimmunization, single cell suspensions were isolated from
harvested spleens and ILN and labeled for 30min at 4°C with fluorophore-conjugated antibodies. Immune cell phenotypes and numbers were characterized by flow
cytometry. Representative flow cytometric images (top) and bar graphs (bottom) showing percentages of dendritic cells (A), macrophages (B), NK cells (C) and
monocytes (D) infiltrating the spleen and ILN after immunization. The results are shown as mean ± SD and represent two independent experiments (five mice in each
group) with similar results. *p < 0.05, **p < 0.01, ***p < 0.001.
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following immunization with rVCG-Pmp18.1 in the presence
and absence of FL adjuvant (Supplementary Table 1).
DISCUSSION

The current commercially available inactivated vaccines have
been reported to afford marginal efficacy against infection and
the live attenuated C. abortus vaccines cause disease leading to
abortion in sheep (14). Thus, safer and cheaper efficacious
vaccine alternatives would be highly desirable. Based on the
shortcomings of the inactivated and live attenuated whole
chlamydial vaccine candidates, the current focus is to develop
vaccines based on chlamydial subunit components. As subunit
vaccine candidates often require the addition of adjuvants to
augment protective immunity, various adjuvants have been used
to boost protective immune responses to subunit chlamydial
vaccine antigens (33, 53, 54). Since DCs are important for
inducing protective immunity against Chlamydia due to their
proclivity for activating Th1 immune responses (38, 39), we
examined the immunomodulatory ability of a DC function
activator, the Fms-like tyrosine kinase 3-ligand (FL) when co-
administered with the rVCG-Pmp18.1 vaccine as a strategy to
enhance protective efficacy. Previous reports indicated that FL
singly or in combination with other adjuvants enhanced the
protective immunity of diverse antigens following mucosal
delivery without any toxic effects (44, 46, 49, 55–57).

Immunologic evaluation revealed that IN immunization of mice
with the rVCG-Pmp18.1 vaccine activated a strong local mucosal
Frontiers in Immunology | www.frontiersin.org 10
and systemic Th1-mediated immune response that was enhanced
when co-administered with FL. These cellular responses were
characterized by antigen-specific CD4+ T cells secreting high
levels of IFN-g and IL-12, but low levels of IL-4 and IL-10, which
indicated a Th1 cytokine profile. The proliferative responses
induced by the rVCG-Pmp18.1 vaccine against restimulation with
rPmp18.1 antigen were similarly enhanced by FL, indicating the
adjuvant effect of FL on rVCG-Pmp18.1-induced cellular immune
responses. The importance of IFN−g−secreting CD4+ T cells during
Chlamydia infection has previously been demonstrated in both
human clinical and experimental animal model studies (13, 58–60).
The key role of IFN−g in Chlamydia vaccine-induced protective
immunity has also been reported (54, 61, 62).

Our results also show that IN delivery of the FL-adjuvant
vaccine enhanced the local mucosal and systemic anti-
chlamydial IgA and IgG2c antibody responses elicited by the
rVCG-Pmp18.1 vaccine that were detected in serum and vaginal
lavage of immunized mice. As in our previous studies with C.
trachomatis immunization, higher levels of IgG2c compared to
secretary IgA were elicited in vaginal secretions, highlighting the
significance of the Th1-associated IgG2c antibody isotype with
Chlamydia immunity (63, 64). While these antibodies may play a
protective role against Chlamydia, their precise role may likely be
supplementary to T cell and cytokine effector mechanisms that
have been established to be crucial for chlamydial immunity.
This conclusion is corroborated by studies showing that high
titers of Chlamydia-specific antibodies, including those that
neutralize chlamydial infectivity in vitro do not necessarily
correlate with protection in vivo (65, 66). Accordingly, the
A B C

FIGURE 7 | Impact of co-delivery of FL adjuvant on the gd T cells, NK T cells and B cells infiltrating the mucosal and systemic immune inductive sites of mice
immunized with rVCG-Pmp18.1 vaccine. Cells were isolated from spleens and ILN of immunized mice 4 weeks postimmunization. The cells were labeled with
fluorophore-conjugated anti-gd TCR, NK1.1 and CD19 antibodies and analyzed by flow cytometry. Representative flow cytometric images (top) and bar graphs
(bottom) showing percentages of gd T cells (A) NK T cells (B) and B cells (C) infiltrating the spleen and ILN after immunization are shown. The results are shown as
mean ± SD and represent two independent experiments (five mice in each group) with similar results. **p < 0.01, ***p < 0.001.
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presence of antigen-specific IgG2c and IgA neutralizing
antibodies might be beneficial and contributory in an ancillary
manner to controlling genital chlamydial infection (67). Among
their functions, these antibodies may provide protection by
blocking the initial attachment of Chlamydia to epithelial cells
thereby limiting its spread to the upper genital tract and
enhancing chlamydial clearance. Furthermore, other studies
have indicated that the predominant role of antibodies in
chlamydial clearance is in resistance to re-infection by
enhancing rapid Th1 activation (66, 68, 69).

This study revealed that FL enhanced the ability of the rVCG-
Pmp18.1 vaccine to protect mice against genital challenge with live
C. abortus strain B577 based on its ability to reduce genital
chlamydial burden and the length of C. abortus shedding. The
specificity of vaccine efficacy of rVCG-Pmp18.1 was addressed by
the inclusion of rVCG expressing the HSV-2 gD2, a C. abortus
irrelevant antigen and PBS (carrier control). The results showed that
mice immunized with rVCG-Pmp18.1 with and without FL were
significantly protected from challenge, with the FL adjuvanted
vaccine showing a protective advantage without any toxicity. By
day 21 post challenge, mice immunized with the rVCG-Pmp18.1/
FL had successfully resolved the genital challenge infection while the
unadjuvanted vaccine still shed bacteria at this time point. However,
mice immunized with PBS or rVCG-gD2 were not protected,
indicating the antigen specificity of the protection afforded by the
rVCG-Pmp18.1 +/- FL vaccines. These findings confirm our
previous results indicating that FL could enhance the protective
immunity induced by a VCG-based multisubunit vaccine
expressing the C. trachomatis PmpD and PorB antigens following
rectal mucosal and intramuscular systemic delivery without any
toxic effects (49, 70). The immune stimulating ability of FL has been
attributed to its propensity to target and expand DCs in mucosal
and systemic tissues (46, 56) and subsequent recruitment to the
immunization site (71, 72).

To investigate the mechanism of Th1 immune enhancement
for C. abortus control by co-delivery of vaccine with FL, we tested
the hypothesis that the immunomodulatory effect of FL involves
the bolstering of innate and acquired immune responses at
mucosal and systemic immune inductive sites following
vaccination. Therefore, we compared the ability of the rVCG-
Pmp18.1 vaccine in the presence and absence of FL to induce the
mobilization of innate and adaptive immune cells to mucosal and
systemic tissues following immunization. Enumeration of
infiltrating immune cells showed that co-delivery of FL with
vaccine boosted the infiltration of the innate immune cells
(specifically macrophages, monocytes, dendritic and NK cells)
that are important for induction of adaptive immunity, especially
in the mucosal inductive sites draining the genital tract. Among
the innate immune cells, DCs are the most potent APCs and are
essential for the initiation of primary immune responses,
specifically those critical for priming the differentiation of naïve
T cells to Th1 or Th2 subsets (73, 74). DCs are highly efficient in
the acquisition and presentation of antigens for stimulation of
adaptive immunity, including anti-chlamydial immunity (40, 41,
75, 76) through expression of a combination of cell surface and
secreted molecules that influence the type of immune response
Frontiers in Immunology | www.frontiersin.org 11
stimulated. A previous report indicated that VCG stimulated DC
activation and maturation leading to enhanced chlamydial antigen
presentation to immune CD4+ T cells that resulted in increased T
cell proliferation and Th1-type immunity (39). Macrophages are
professional antigen-presenting and proinflammatory cells (77)
that were found in higher numbers in both spleen and ILN
following immunization with the rVCG-Pmp18.1/FL vaccine.
NK cells are effector lymphocytes of the innate immune system
that control several microbial infections, including C. abortus by
limiting their spread and subsequent tissue damage (78). While
numbers of monocytes found in the spleens of mice immunized
with rVCG-Pmp18.1/FL were lower compared to rVCG-Pmp18.1,
they were comparably higher in the ILN draining the genial tract.
Monocytes, like dendritic cells play a central role in pathogen
sensing, phagocytosis, and antigen presentation to T cells (79). The
finding that they constituted the highest population of APCs in the
ILNs highlights their significance in antigen presentation. These
results indicate that the FL adjuvant-containing vaccine enhanced
the infiltration of the innate immune cells important for antigen
presentation and stimulation of T cells in vivo, especially in the
ILN draining the genital tract (mucosal tissues) following
immunization. This stimulation causes T cells to proliferate,
develop effector function, and subsequently differentiate into
memory cells (73, 80). This suggests a cellular mobilization
mechanism for the enhanced protective immunity induced by
the FL-adjuvanted rVCG-based Chlamydia abortus vaccine.

Our study shows that IN immunization of mice induced the
infiltration of high numbers of CD4+ and CD8+ effector T cells
in the mucosal draining ILN and systemic splenic tissues,
indicating that this route of immunization induced immune
effectors according to the common mucosal and general
immune system. Co-delivery of FL with vaccine enhanced the
number of infiltrating CD4+ T cells in the spleen. The obligatory
requirement and sufficiency of CD4+ T cells for protective
immunity against C. trachomatis infection has been established
(81). Our results showed the infiltration of higher numbers of
CD4+ and CD8+ memory T cells in the ILN compared to the
spleen following immunization with the rVCG-Pmp18.1 vaccine
with and without FL adjuvant. Also, memory T cells of the CD8+
phenotype in the ILN were ~2-fold higher than those in the
spleen. Memory CD4+ T cells play an important role in
protection against subsequent chlamydial infections (82).
Although in mice, CD8+ T cells are mostly associated with
immunopathology (83, 84), except the evidence of partial
protection in genital infection (85, 86), there is also evidence of
the induction of protective CD8+ T cells by a trachoma vaccine
in macaques (87). Moreover, the identification of CD8 + T cell
epitopes that correlate with resolution of natural infection in
humans has been reported (88). An interesting finding was the
significantly higher percentage of both gd and NK T cells
infiltrating the ILN following immunization with the FL
adjuvanted rVCG-Pmp18.1 vaccine compared to the similar
numbers infiltrating the spleen, irrespective of whether the
vaccine was administered with or without FL. Previous studies
reported that gamma delta T cells may play an accessory role in
acquired immunity to chlamydial infection (89). NK T cells have
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been shown to promote Th1-type cell immunity essential for
protection against primary C. muridarum infection through
modulation of dendritic cell function (90). They also
contribute to protective T cell-mediated memory immunity to
chlamydial re-infection by modulating the T cell cytokine
environment and inhibition of regulatory T cells (91). Lastly,
we showed that the number of CD19+ B lymphocytes infiltrating
the spleen was 4- to 5-fold the number in the ILN of vaccine
immunized mice, and co-delivery of FL with vaccine enhanced
the number of infiltrating B cells in the spleen. While the role of
T cells in chlamydial immunity has long been established, a
similar role for B cells has been controversial, with some studies
supporting (92–97) and others contradicting the protective role
of antibodies in chlamydial immunity (69, 98–100). The
significance of the recent report (101) of non-antibody-
dependent mechanisms of B cells in controlling primary
Chlamydia infection in vaccine development is yet to be clarified.

In conclusion, we have demonstrated that immunization with
the Cab rVCG-Pmp18.1 vaccine effectively stimulated specific
mucosal and systemic immune effectors that afforded protection
in mice against challenge with live C. abortus. Co-delivery of
vaccine with FL further enhanced the immune effectors elicited by
the vaccine to controlC. abortus replication and shedding.We also
showed that co-delivery of FL with vaccine boosted the infiltration
of the innate immune cells important for induction of adaptive
immunity, especially in the mucosal inductive sites draining the
genital tract. These results indicate that the immunomodulatory
effect of FL is associated with its ability to mobilize innate immune
cells and subsequent activation of robust antigen-specific immune
effectors in mucosal and systemic lymphoid tissues. The role of
specific cell types in vaccine-mediated protection and the ability of
the vaccine to protect against C. abortus infection-induced upper
genital tract pathology, including abortion are being addressed in
ongoing studies.
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