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Explainable machine learning 
for real‑time deterioration alert 
prediction to guide pre‑emptive 
treatment
Aida Brankovic1,4*, Hamed Hassanzadeh1,4, Norm Good1, Kay Mann1, Sankalp Khanna1, 
Ahmad Abdel‑Hafez2 & David Cook3

The Electronic Medical Record (EMR) provides an opportunity to manage patient care efficiently and 
accurately. This includes clinical decision support tools for the timely identification of adverse events 
or acute illnesses preceded by deterioration. This paper presents a machine learning-driven tool 
developed using real-time EMR data for identifying patients at high risk of reaching critical conditions 
that may demand immediate interventions. This tool provides a pre-emptive solution that can help 
busy clinicians to prioritize their efforts while evaluating the individual patient risk of deterioration. 
The tool also provides visualized explanation of the main contributing factors to its decisions, which 
can guide the choice of intervention. When applied to a test cohort of 18,648 patient records, the tool 
achieved 100% sensitivity for prediction windows 2–8 h in advance for patients that were identified at 
95%, 85% and 70% risk of deterioration.

Globally, hospitals have begun the transition to becoming fully digital environments, prompting a revolutionary 
change in the way healthcare is delivered and patients are monitored. Capturing patient data in Electronic Medi-
cal Records (EMR) presents an opportunity to manage patient care efficiently and accurately. One example is to 
use digital tools to monitor patient vital signs and subsequent algorithms to automate and improve the detection 
of clinical deterioration in a ward setting, generally associated with adverse events such as unplanned transfer 
to an Intensive Care Unit (ICU), cardiac arrest or death1–3.

Current hospital workflows rely on the use of clinical scoring and rule-based track and trigger tools such as the 
Australian Between the Flags (BTF), National Early Warning Score (NEWS), and Queensland Adult Deterioration 
Detection System (Q-ADDS) to alert against the risk of clinical deterioration1,4,5. These tools have evolved as a 
response to clinical need and are somewhat lacking in methodological rigor and validation4,6. Other limitations 
of track and trigger systems are discussed in7–9. Nonetheless, they are an important part of maintaining patient 
safety standards and are used to trigger escalation of care including attendance of a rapid response team (RRT) or 
medical emergency team with the intention of avoiding preventable deterioration. Various statistical modelling 
and machine learning based approaches have recently been proposed as replacements and/or improvements to 
these existing clinical track and trigger tools2,3,7,10–12. These statistical or machine learning based approaches, 
however, present two problems that are yet to be overcome by existing efforts in this space. Firstly, the use of 
historical patient data from hospitals where the clinical workflow already includes a particular track and trig-
ger protocol confounds the subsequent development of alternate criteria-based algorithms. This is because the 
existing protocols would have resulted in alerts that would have been raised and acted upon by the clinical teams, 
distorting the true relationship between vital sign derangement and any potential adverse outcome. Identifying 
such actions in the EMR and accounting for them in risk prediction algorithm development is also not straight-
forward. Secondly, these approaches are hard to trial and validate in settings where the use of existing systems 
like BTF, NEWS and Q-ADDS is already mandated. Recent reviews suggest that there is limited evidence of 
uptake and impact from such existing algorithms1.

We have adopted an approach to “predict the alert”, and aim to identify clinical deterioration earlier, before 
activation of the rapid or emergency response protocols currently in use. We have developed and validated a 
machine learning algorithm that predicts the current mandated track and trigger protocol before the escalation 
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criteria is triggered. A pre-emptive, rather than reactive, process therefore allows the clinical response team 
additional time to intervene and prevent clinical deterioration within existing workflows. Addressing clinical 
patient deterioration earlier, before activation of existing (and possibly different) rapid or emergency response 
and intervention also helps mitigate the confounding effects from the treatment and/or intervention that can be 
hard to identify in the data. Secondly, this approach allowed for the use of model explainability to provide insight 
into the likely causes of predicted deterioration events to support clinical decision making when responding to 
alerts. This explainability provides a guide as to the pathway and likely observations that will allow recognition 
of clinical deterioration, and hence infer the underlying mechanisms and inform treatment options.

To the best of our knowledge, this is a novel approach aimed at anticipating deterioration early by pre-empting 
alerts from existing track and trigger systems in clinical practice, rather than predicting death, cardiac arrest 
or ICU transfer.

To achieve these aims, we present the development and validation of an explainable real-time machine learn-
ing (ML) algorithm denoted as the Encounter-based Forest-like (EF) ensemble model for Predicting the Risk 
of Deterioration (PRoD) of a patient within a ward setting. The EF model was designed to employ Australian 
acute care EMR data in real-time and to provide an explainable prediction of a deterioration risk alert being 
triggered up to 8 hours before the actual event. We also introduce a novel ensemble model that used hospital 
encounter-based sampling and discuss how this approach was better suited to the class of problems being solved. 
The BTF alert was employed as the predicted trigger protocol for this study given its mandated use within the 
Princess Alexandra Hospital (PAH), a large Tertiary hospital in Queensland, Australia. Based on BTF, safe or 
normal value ranges are defined for each vital sign. Patients’ vital signs charts are tracked over time to check 
whether they are in normal or abnormal ranges. A yellow or red flag is triggered every time vital signs derange 
or exceeds threshold of normal 13. Models were trained on vital signs data collected from n = 48, 298 patients 
(75, 846 hospital encounters) admitted to a hospital bed for acute care between January 2016 and December 
2018 at the PAH. A historical window of 24 h was used to anticipate the stability of a patient’s condition in the 
following 2, 4, 6 and 8 h. Predictive performance of all trained models was evaluated retrospectively on a test 
dataset consisting of n = 14, 387 patients (18, 683 encounters) admitted to the same hospital between 1 January 
2019 and 30 September 2019 for prediction windows of 2, 4, 6 and 8 h ahead. Though developed for the BTF 
protocol, the workflow and model process of the EF is easily re-adjustable to fit any other early warning system.

Results
Data characteristics.  Baseline characteristics of the considered cohort are reported in Table 1. The train 
and test datasets consisted of 2,418,646 and 818,955 records, respectively. Mean age was 59 years (STD 17 years) 
with 62% of patients being male. The proportion of BTF red flags varied between 5 and 8% for the 2 to 8 h predic-
tion windows respectively across the train and test datasets (Fig. 1). As shown, just 5% of patients triggered red 
flag within 2 h prediction window, 6% within 4 h, 7% within 6 h and 8% within 8 h ahead of the red flag event.

Predictive performance.  Logistic regression (LR), Decision Tree (DT), Random forest (RF), Boosted trees 
(XGB), and a novel Encounter-based Forest-like (EF) ensemble model were trained to predict the likelihood of 
triggering a BTF red flag 2, 4, 6 and 8 h before an actual event. The final values of the hyperparameters for the 
aforementioned algorithms are reported in Supplementary Table S1. The performance of the trained models 
was evaluated on the test data (January–September 2019). Whilst a range of metrics, including Area Under the 
Receiver Operating Curve (AUC-ROC), Area under the Precision-Recall Curve (AUC-PRC), Positive Predictive 

Table 1.   Vital signs, demographics data and patient consciousness for analyzed cohort represented by mean 
and standard deviation (STD). *Calculated for training and test partition using two-sample t tests for normally 
distributed for descriptive purpose. **Standardised mean difference (SMD).

Variable name Variable range

Train Test

p value* SMD**

2016–2018 Jan 2019–Sept 2019

(n = 2,418,646) (n = 818,955)

Systolic blood pressure (SBP) mmHg, mean(STD) [0, 300] 126.69 (21.16) 126.50 (20.92) < 0.001 0.009

Diastolic blood pressure (DBP) mmHg, 
mean(STD) [0, 250] 73.14 (11.12) 73.24 (11.24) < 0.001 0.009

Mean arterial pressure (MAP) mmHg, mean(STD) [20, 261] 91.08 (12.98) 91.07 (12.92) 0.662 0.001

Heart rate min
−1 , mean(STD) [0, 200] 79.31 (15.92) 78.93 (15.76) < 0.001 0.024

Temperature degC , mean(STD) [30, 42.2] 36.70 (0.40) 36.70 (0.39) < 0.001 0.018

Respiratory rate min
−1 , mean(STD) [0, 60] 17.37 (2.70) 17.31 (2.57) < 0.001 0.022

Oxygen saturation (SpO2) % , mean(STD) [50, 100] 96.52 (2.33) 96.55 (2.28) < 0.001 0.013

Level of consciousness (AVPU) Count Yes ( %) Yes/No 1,139,246 (47.1) 604,482 (73.8) < 0.001 0.568

Oxygen flow rate measurement count yes ( %) Yes/No 870,033 (36.0) 275,136 (33.6) < 0.001 0.05

Sex male(%) Male/female 1,494,810 (61.8) 508,377 (62.1) < 0.001 0.006

Age years, mean(STD) [1, 106] 59.89 (17.23) 59.76 (17.20) < 0.001 0.008

Length of stay min, mean(STD) [0, 1,280,016] 13,468.90 (27828.52) 12,188.85 (22409.22) < 0.001 0.051
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Value (PPV), Negative Predictive Values (NPV), Recall and F1 score, were employed and reported, AUC-PRC 
was used as the guiding criteria for hyperparameter tuning and model selection given the class imbalance in the 
dataset. The key findings are reported in this section.

Tree‑based methods superior to logistic regression.  Average AUC-PRC performances and the corre-
sponding 95% confidence intervals (CIs) of individual LR, DT, RF and XGB models, trained on 1000 boot-
strapped sub-samples for prediction horizons of 2 to 8 h were 0.405(0.404, 0.405)− 0.387(0.386, 388) , 
0.562(0.561, 0.562)− 0.459(0.459, 0.46) , 0.632(0.632, 0.633)− 0.536(0.536, 0.537) and 
0.628(0.628,0.629)− 0.519 (0.519, 0.52), respectively (Supplement, Table S2). While AUC-ROC and NPV per-
formances were high and somewhat comparable across all models across the considered prediction windows, LR 
performed poorly on Precision and Recall, and consequently had a lower AUC-PRC score.

Comparable AUC‑PRC for all tree‑based methods, though the highest precision was obtained with EF 
model.  AUC-PRC for EF and selected LR, DT, RF and XGB models across the considered prediction windows 
ranges were 0.6179(0.6177, 0.6181)− 0.5262(0.526, 0.5263) , 0.4048(0.4046, 0.405)− 0.3837(0.3836, 0.3839) , 
0.5919(0.5917, 0.5921)− 0.4727(0.4726, 0.4729) , 0.6362(0.636, 0.6364)− 0.542(0.5418, 0.5421) , 
0.631(0.6308, 0.6312)− 0.5222(0.522, 0.5223) , respectively (Supplement, Table S3). While Recall performance 
of EF was comparable to DT and slightly lower than XGB and RF, it offered significantly improved precision, 
especially where the prediction window was larger. At the 8 h prediction window, 12% higher precision than RF 
was performed whilst sacrificing recall performance by 6%, and 24% higher precision than XGB whilst sacrific-
ing recall performance by 7%.

All performance metrics and corresponding CIs obtained with EF and selected DT, RF and XGB models 
on 1000 bootstrapped samples drawn with replacement from the test dataset across the considered prediction 
horizons are reported in Supplement, Table S3.

EF identifies correctly above 90% patients at highest risk across the time windows.  High precision, comparable 
NPV and comparable AUC-PRC across the prediction horizons led to selection of EF as the best performing 
model and the candidate algorithm for any future trial in a clinical setting. To better understand it’s performance 
at identifying patients at high risk of triggering a BTF alert, precision and recall performance of this algorithm 
were evaluated specifically for the patient cohort that scored a Deterioration Risk Index 1, 2 and 3, representing 
patients in the top 5%, 6%-15% and 16%-30% risk groups respectively (Table 2). Precision of predicting the Risk 
Index 1 ranged from 92% to 95% across the prediction windows, and dropped to between 75% and 82% for Risk 
Index 3 group. Recall performance was 100% across these high-risk patient cohorts.

EF is well calibrated at high probabilities.  Calibration plots (Fig. 2) show that ET calibrates well at high prob-
abilities. For the 4, 6, and 8 h prediction windows the confidence intervals associated with the risk groups at 
highest risk cross the expected calibration curve indicating close to perfect calibration, hence provide statistical 
confidence in the obtained results. In contrast the model does not calibrate well around the lower probabilities, 
particularly for the 2 h prediction window however, this does not diminish the value of the results as the study 
aimed target patients who were at higher risk.

Figure 1.   Class distribution per alerting horizon in train and test data partitions.

Figure 2.   Calibration plots of EF for 2, 4, 6, and 8hr window.
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Model and prediction explainability.  Being accountable for treatment mistakes, clinicians must be able 
to understand the underlying reasoning of models so they can trust the prediction14. Therefore, that transpar-
ency and explainability are an absolute necessity for the widespread introduction of ML/AI into clinical practice. 
Clifton et al.15 discuss instances where deterioration alerts may be raised when patients appear “normal”, and 
this potentially creates an overhead for the clinicians responding to the alert. Our interaction with clinicians 
on developing similar algorithms for use in clinical settings has also reinforced the need for predictions to be 
explainable. Our approach incorporates both, population level explainability and individual prediction-level 
explainability. An interpreter module was built during the training phase and to allow insight into the rationale 
behind the predicted output for an individual, i.e. patient-specific, and a population-based perspective. Fig. 3 
shows the top 10 contributors for predicting a triggering of the BTF red flag from the population perspective. 
The variables in Fig. 3a and b are sorted in descending order in both plots in relation to their mean relevance 
computed as the mean absolute value of the Shapley values for each feature Each horizontal blue bar in Fig. 3a 
indicates the mean relevance of the variable for the considered population (i.e., a relative global importance). 
Figure 3b shows a summary of the all individual contributions that are colored based on variable value and 
sorted by the mean relevance.

Figure 4 shows the interpretations for two randomly selected samples corresponding to patients who were 
predicted to have a red flag event within 4 h. It displays information in three ways: (1) Top ten contributors to 
these particular patients that drive the evolving risk of emergency calls in the next 4 h are shown in descending 
order (top to bottom), (2) the colour of the dot for each feature indicates the value of the corresponding feature 
for that data sample, such that extremes of the color-bar (red and blue) represent the highest and lowest value of 
the corresponding feature respectively, (3) the distance from the vertical axis is determined by the Shapely value 
computed for that feature, i.e. the more distant point is the bigger is Shapely value and hence its relevance in the 
prediction. In Fig. 4a, low respiratory rate was the main contributor along with oxygen saturation, supplemental 
oxygen delivery and low systolic blood pressure. This would inform the attending clinician that the mode of risk 
was respiratory failure, characterized by low respiratory rate, such as would occur with opiate excess. In Fig. 4b, 
particularly low systolic pressure with low temperature, low heart rate and oxygenation were contributing. This 
scenario of phenotype would be indicative of sepsis or infection.

Discussion
The aim of this study was to develop a prediction tool to identify patients that were at high risk of triggering a 
deterioration alert 2–8 h before it was actually triggered within the clinical setting. Our work predicts the BTF 
red-alert, this being the protocol of choice in a dataset from a large tertiary Hospital in Australia. A BTF red alert 
event occurs when a vital sign measurement falls outside the threshold of normal or moderate derangement.

Table 2.   EF model assessment for 2, 4, 6 and 8hr prediction window: Precision and recall computed for 
defined deterioration risk index.

Prediction window risk index

2 h 4 h 6 h 8 h

Precision Recall Precision Recall Precision Recall Precision Recall

1 (Top 5 %) 0.9218 1 0.9323 1 0.9408 1 0.9465 1

2 (Top 6–15 %) 0.8241 1 0.8491 1 0.8690 1 0.8767 1

3 (Top 16–30 %) 0.7531 1 0.7735 1 0.8130 1 0.8174 1

Figure 3.   Output of the interpreter module showing the global variable importance (a) and the individual 
explanation summary (b) for the patients predicted to trigger the EWS in the next 4 h.
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We present a novel forest-like ensemble machine-learning algorithm, called an Encounter Forest (EF), which 
employs hospital encounter-level bootstrapping to avoid a bias towards sicker and longer staying patients, a DT 
architecture for each bootstrapped sub-sample, and bootstrap aggregation for obtaining the final probability 
predictions. This approach was compared to existing state of the art LR, DT, XGB and RF algorithms which 
were also trained on encounter-level bootstrapped sub-samples for fair comparison. Our evaluation showed 
that EF offers comparable or better performance than other models across a range of performance metrics, 
while offering significantly higher precision than other methods at the expense of a much lower loss in recall. 
Operationally, a higher precision translates to a lower rate of false alarms which is a desirable attribute for an 
algorithm to be used in a busy clinical setting. When evaluated on a higher risk patient cohort, the EF algorithm 
also offered very high recall performance, which translates operationally to a very low rate of missed high risk 
patients, another desirable attribute for the chosen clinical environment. The study explored various prediction 
horizons that would allow clinicians to evaluate a patient’s risk of deterioration 2–8 h before an actual event. 
Time windows are aligned with workflows and clinical and bedside planning activities and are chosen to have 
high implementable value. These were chosen to fit with bedside workflows and are a balance between the clini-
cal urgency and dynamic resource allocations during a clinical shift, and the technical constraints of the ability 
to model event rates. 8 h is the length of a typical shift for nursing staff, and there are three such windows in a 
day. Thus an 8 h window would have visibility for the next shift of possible arising problems with deteriorating 
patients. 4 h is half a shift but is also approximately the time period of a medical session (morning afternoon 
or evening) which is the workflow duration for an outpatient clinic, or a theatre session. This means that the 
horizon of interest is approximately the duration of the next activity that would take the doctor off the wards 
with other clinical tasks. 1 h is too short, and few observations are to occur in the next hour, and even fewer if 
patients are not already sick (i.e. activating a medical response criteria). 2 h is the shortest useful time frame, 
where the event rate is common enough to plausibly be modelled. So, while we could have used 2.5 h, or 10 h or 
continuous scales or any arbitrary time window, it would have been only based on event rates and mathematical 
criteria. The challenge would be how to integrate these into practice.

The findings in recent systematic reviews show that the main focus of current approaches is to predict an 
incident of deterioration, such as, cardiac arrest, transfer to ICU, or death1,2. However, our approach of “predicting 
the alert”, that is, the output of an early warning system, is novel and can be distinguished from such algorithms 
in the literature. This approach is useful, in practice, as it directs allocation of resources to review, and some 
direction to what interventions would be directed towards. Though not directly comparable, we discuss current 
state of the art approaches in this domain, particularly efforts utilizing EMR data for predicting early deterio-
ration in the context of acute critical illnesses such as sepsis, acute kidney injury (AKI) and acute lung injury 
(ALI)14, physiological deterioration after gastrointestinal cancer surgery15 and unplanned transfer to the ICU3. 
Lauritsen et al.14 reported results obtained for prediction window of 3, 6, 12 and 24 h ahead using laboratory data 
and vital signs. Although not directly comparable with our model, mean AUC-PRCs of 0.088, 0.068 and 0.134 
were reported for a model predicting the risk of sepsis, AKI and ALI 6 h before their onset. These performance 
measure were remarkably lower to our model at 6 h prediction window before onset. The study presented in 
Clifton et al.15 was restricted to a postoperative ward at a cancer center with only 200 patients included in the 
study. Models were limited to four vital signs (SPO2, HR, BP and RR) and obtained partial AUC-ROC 0.28 for 
False positive Range FPR = [0, 0.15]. Kinipis et al.3 evaluated the performance of a regression model to predict 
the risk of an unplanned transfer to the ICU within the next 12 h (AUC 0.82, sensitivity 49). This study used 
laboratory tests, vital signs, neurological status checks, open source composite indices for severity of illness, lon-
gitudinal comorbidity burden end of life care directives and health care utilization services indicators (e.g. length 
of stay) as predictors. While employing similar data, with a common objective to identify and intervene early to 
prevent deterioration, we argue our approach offers the advantage of not having been developed on potentially 
confounding data (from a clinical setting where a different intervention strategy was likely used) and is easy to 
implement as it aligns with the protocols already mandated for use in the clinical setting.

Figure 4.   Interpreter output for two individual patients predicted to trigger the red flag in the next 4 h with the 
computed probabilities and the corresponding deterioration risk index.
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Unlike work presented by Clifton et al.15 and Kinipis et al.3, our approach also incorporates explainability 
and provides clinicians with an insight into how the predicted deterioration is likely to manifest. This allows the 
clinical team to focus on the likely cause and react accordingly.

Figure 3 is an example of which influential features for an observation predicted a deterioration. In the con-
text of the patient diagnosis, an awareness of how a patient deteriorates provides an important guide on how to 
pre-emptively address this and guide doctors on appropriate treatment options. The two cases shown in Fig. 4 
illustrate individual interpretation. For Patient 1 (Fig. 4a), respiratory rate and O2 saturation were the features 
with greatest importance. For the Patient 2 (Fig. 4b), blood pressure and temperature were the features of impor-
tance. The first patient was, therefore, a greater risk of an emergency caused by respiratory failure, while the 
second patient was more likely to develop an emergency looking like a septic episode. Having this information 
several hours before it was identified by current protocols can give clinicians significant opportunity to deliver 
improved patient care and outcomes.

We have shown that data collected in EMRs can be leveraged to provide real-time decision support and sup-
port improved patient outcomes within the scope of existing mandated clinical protocols. The novel EF algorithm 
offers high precision and recall performance for the patient cohort of interest while identifying patients likely 
to deteriorate several hours before existing clinical protocols trigger. It also offers insight into factors likely to 
contribute to the deterioration. While developed on the BTF protocol, the approach is extendable to any clinical 
deterioration protocol. Further research is planned to assess the developed algorithm in a trial clinical setting. 
An illustration of the PRoD pipeline in the clinical settings for such a study is shown in Fig. 5. The current work 
is limited in that it is developed on data from a single hospital and employs a limited cross section of data col-
lected in the clinical setting (i.e. vital signs and some demographic information). Future research is required to 
explore the inclusion of other real or near real-time data such as pathology test results and the generalizability 
to other hospitals and health care settings. Lastly, once the algorithm is implemented and shown to be effective 
in reducing alerts, any algorithm refinements on new data will be confounded. The current algorithm could be 
by using similar iEMR data from peer hospitals with similar casemix and workflow not participating in the trial.

Methods
Study and data description.  The data for this study was sourced from a major metropolitan hospital 
in Queensland, Australia. The study was approved by the Metro South Hospital and Health Service Human 
Research Ethics Committee (HREC Ref No HREC/18/QPAH/525) and CSIRO Health and Medical Human 
Research Ethics Committee (CHMHREC Proposal 2019_015_RR). The study protocol including all methods 
was reviewed and approved by the Metro South Health Service Human Research Ethics Committee (HREC 
identifier HREC/18/QPAH/525). All methods were performed in accordance with the relevant guidelines and 
regulations. The data provided for this study had all formal identifiers removed and was reviewed by the Metro 
South Hospital and Health Service Human Research Ethics Committee (HREC Ref No HREC/18/QPAH/525) 
and CSIRO Health and Medical Human Research Ethics Committee (CHMHREC Proposal 2019_015_RR) as 
low or negligible risk and the requirement for informed consent by subjects or their guardians was waived.

Data were extracted from the Integrated Electronic Medical Record (ieMR) clinical data repository that 
provides access to near real-time patient information records. Ensuring availability of near real-time access to 
the candidate predictors helped ensure our future aim of deploying and trialing the developed algorithms for 
near real-time clinical decision support. All hospital patient encounters (defined as a hospital admission) from 
1 January 2016 to 31 December 2019 were included along with their movements, treatments, and physiological 
and clinical conditions throughout their stay (e.g., wards admission, vital signs, pathology orders, medication 
orders, etc.). Figure 6 shows the inclusion/exclusion criteria for selecting the cohort of interest for this study.

In total, 442,536 hospital encounters (unique admissions) were collected throughout the four-year study 
period. Hospital encounters were restricted to “Acute Care” admission, given the nature of the target problem 
in this study (n=408,172). The encounters with admission types such as “Mental health care”, “Rehabilitation 
care”, “Maintenance Care” were excluded. Due to certain engineered features requiring an adequate number of 
observations to calculate a value (e.g. standard deviation), only encounters with a length of stay greater than 
24 h were employed for model development and validation (LOS ≥ 24, n=114,032). The vital signs that were 
measured during the hospital stay were recorded and used for identifying risk of deterioration. As a result, only 
encounters with corresponding records of vital signs in our data (n=111,230) were retained. A final validation 

Figure 5.   PRoD pipeline: With every appearance of a new observation in ieMR, data are fed into the model 
and the interpreter simultaneously. The Predictive Model is translated into Risk Index showed as a circle where 
colour and an associated number represents level of risk. The Interpreter provides a list of the top contributors 
in descending order explaining the prediction. Blue implies low values and red high values of the listed variable. 
With every new prediction dashboard is updated.
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was performed to only include encounters where a BTFs alert (our response variable) could be calculated from 
available data. This resulted in a total of 100,822 hospital encounters from 62,011 patients over the study period 
to be included in the analysis.

Modeling pipeline.  Data for modeling and evaluation.  Three years of data from January 2016 to Decem-
ber 2018 (inclusive) were used as the training and development sets. The final year (i.e., 2019) of data were held 
out as the test set. While the initial aim was to use the full 2019 calendar year as the testing period, exploratory 
analysis of the data revealed a change in vital sign data collection patterns from October 2019. Further investiga-
tion revealed that corresponded with a change in business processes at the hospital. This period was quarantined 
in consultation with clinical experts and data from January 2019 to September 2019 (inclusive) were used as the 
test set for this study.

Model features.  The following seven vital signs typically used in EWS like BTF in clinical settings were 
employed as potential predictors (risk factors) in the developed model: Systolic and Diastolic Blood Pressure, 
Mean Arterial Pressure, Heart Rate, Temperature, Respiratory Rate, Oxygen Saturation (SpO2), and Oxygen 
flow rate (O2 flow rate). A measure of a patient’s level of consciousness (known as the AVPU scale) was also 
employed. The AVPU scale consists of 4 possible values: Alert, Verbal, Pain and Unresponsive patient, one of 
which is selected by a clinician when assessing a patient’s level of consciousness. Table 1 reports covariance bal-
ance analysis between these variables on training and test data. Trends and variations of the selected vital signs in 
a given historical time window were calculated and used as input features to the predictive models. Specifically, 
a historical window of 24 h was defined to collect observations and to monitor the stability of a patient’s condi-
tion. The measured values of all vital signs in any time window were analysed and the patterns of changes were 
quantified into a number of variables. The following features were calculated for each of the aforementioned 
vital signs (excluding O2 flow rate) in the past 24 h historical window: minimum, maximum, mean, median, 
standard deviation, frequency, number of measured vital signs (at the current observation date-time), number of 
overall observations in the historical 24-h window, last (most recent) valid value, interval in between the last two 
observations and slope between the two most recent observations. The slope feature was defined as the change of 
a given vital sign over its two most recent observations divided by the time interval between these observations, 
i.e., Slope = (y2 − y1)/(t2 − t1) , where y2 is the current observation of a vital sign and y1 is the previous observa-
tion, t2 and t1 are the corresponding timestamps for these two observations, respectively. Due to the incomplete 
nature of the O2 flow and AVPU vital signs, two binary flags for each of them were defined. An O2 Flow flag 
denoted if any O2 flow had been measured in the past 24 h, while an AVPU flag denoted if any AVPU status had 
been assigned in the past 24 h. Demographic information inclusing age, gender and the patients’ length of stay at 
the point of prediction were also considered as additional predictors. While selecting potential predictors, care 
was taken to avoid using information that was not available in real-time in the ieMR system. This ensured the 
feasibility of our model as a bedside decision support system.

Response variable.  As we employed a “predict the alert” approach, the response variable was defined as whether 
any one of the seven vital sign measurements triggered a “between the flags” red alert. A red alert indicates the 
potential for a moderate or high risk derangement of a patient within existing clinical workflows in the Hospital.

Machine learning models.  Clinical data often include a higher frequency of vital sign measurements from sicker 
patients due to the need for increased monitoring of such patients and an expected longer length of stay. We 
proposed an encounter-level sampling approach to guide bootstrapping wherein each bootstrapped sub-sample 
takes only one observation per unique encounter. This minimises potential biases towards observations from 
sicker patients and accounts for temporal correlation between observations from individual patient encounters. 

Figure 6.   Cohort selection procedure.
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The bootstrap sub-sampling was also driven by inverse-probability factor to enforce even sampling between “no-
deterioration-event” and “deterioration-event” observations.

The encounter-level bootstrapping was repeated 1000 times to obtain 1000 bootstrap sub-samples (Fig. 7, step 
C). Logistic regression using lasso regularisation (LR), Decision Trees (DT), Random Forest (RF) and XGBoost 
(XGB) were chosen as candidate machine learning algorithms (Fig. 7, step D-2). A novel forest-like ensemble, 
called an Encounter-based Forest (EF) (Fig. 7, step D-1), was also constructed featuring the chosen encounter-
level bootstrapping, a decision tree architecture for each sub-sample, and bootstrap aggregation for obtaining 
the final probability predictions. The performance of this EF ensemble was also compared to the other chosen 
ML algorithms (Fig. 7, step E).

To find the best set of hyperparameters for all model candidates, we performed training on the first two years 
of the training data and evaluation of the AUC-PRC score on the remaining year of the training data, referred to 
as the validation partition. For each model candidate, we chose the set of hyperparameters that maximized AUC-
PRC and refit it on whole training partition. All models were re-trained on each of 1000 generated encounter-
based bootstrap sub-samples. The steps of the adopted approach are illustrated in Fig. 7, steps A, B.

Retrospective evaluation.  Data split on training and test partition was performed following the TRIPOD rec-
ommendation for time series data. We evaluated the performance of the all considered models on a held-out 
portion of data kept for testing, dating from January 2019 up to October 2019. As our primary benchmark we 
compared algorithm predictions to the red alerts reported in the considered data extract. In line with the TRI-
POD statement, model performance was assessed on the held-out test dataset (encounters dated Jan 2019 to 
September 2019) using the Area Under the Receiver Operator Characteristic Curve (AUC-ROC) as the measure 
of performance. Though AUC-ROC is popularly used to quantify the discriminative power of predictive mod-
els developed for clinical applications, research also indicates that it is a misleading performance indicator for 
imbalanced datatsets16,17 and may provide an inaccurate measure of targeted clinical utility as it assumes that 
positive and negative predictions are equally important and is insensitive to the dominance of a minor class, 
patients at risk of deterioration in our case. Hence, in addition to AUC-ROC, we also computed AUC-PRC 
which has been shown to be more informative than AUC-ROC18. Additionally, precision, recall, NPV and f1 
score metrics are computed as they are more suitable for evaluation of model performance on imbalanced data. 
The discriminative power of the selected model for each susceptibility group was assessed by validating the pre-
dicted outputs for each susceptibility group individually against the corresponding ground-truth and computing 
the precision and recall.

Deterioration risk index computation.  Assessment of the calibration curve was used to gain insight into the 
performance of the model when predicting a range of outcome probabilities. It was obtained by grouping pre-
dictions into quantiles (we used 10) which were then represented as points such that the proportion of true out-
comes lies on the x-axis and mean predicted probability on the y-axis. We used the calibration curve to translate 
probabilistic output values of EF model into susceptibility groups 1, 2 and 3 (Risk Index 1, 2 and 3) by grouping 
the predicted probabilities into the top 5% (i.e. predicted p > 0.95 ), 15% (i.e. predicted p > 0.85 ) and 30% i.e. 
predicted ( p > 0.70 ) risk levels based on the calibration curve analysis (Fig. 7, step F).

Figure 7.   Detailed modeling procedure: (A) Once data are split on training and test, training data (Jan 2016–
Dec 2018) are additionally partitioned on two subsets. (B) Model candidates (LR, RF, DT and XGB) are trained 
for specified hyper-parameter grid on data Jan 2016-Dec 2017 and evaluated with AUC-PRC on validation 
partition. The set of parameters producing the best AUC-PRC score is selected. (C) 1000 bootstrapped 
sub-samples are generated. (D-1 and D-2) 1000 individual LR, RF, DT and XGB models are trained along 
Encounter-based Forest-like (EF) ensemble model. (E) EF ensemble and selected LR, RF, DT, XGB models are 
evaluated on 1000 bootstrapped samples drawn with replacement from the test set. (F) Threshold for Risk index 
1, 2 and 3 determined for selected EF model are computed based on the calibration curve.
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Explainability module.  Explainability of predictions was the second aim of this study. By understanding the 
most influential feature changes that drive the deterioration, we are proposing the route or phenotype of clinical 
deterioration. Unlike transparent models such as regression models, which do not require an external model to 
interpret the association between the input and predicted output like logistic regression, ML models require an 
external explanability module. In the presented work, to evaluate the feature relevance and association to pre-
dicted outcome we adopted explainer method initially developed for tree-based models19, based on computing 
Shapley values adopted from game theory. This method calculates the marginal contribution of each feature by 
computing the difference between the predictive performance of a model with and without each feature included 
in the model. The level of relevancy of a single feature is obtained by averaging the marginal contribution of 
that feature across all feature subsets in which it was included. We constructed an explainer module for each 
individual model of the EF ensemble individually on training data. The prediction explanation for a tested sam-
ple was computed by averaging the relevance of features computed by explainer module constructed for every 
model individually across all 1000 models.

Statistical analysis.  To assess covariate balance between the test and training sets, two-sample t-tests for nor-
mally distributed variables were employed and chi-square test of proportions were employed for categorical 
data. The p values reported in Table 1 are presented for descriptive proposes and not intended to assess statistical 
significance of the comparison. The Standardised Mean Difference (SMD) was calculated for continuous and 
discrete variables as proposed in20. Reported means and 95% confidence intervals (CIs) of 1000 bootstrapped 
models obtained on test data were calculated by averaging and computing the CIs using the Student t-test. To 
evaluate selected population average models and EF we computed the mean for each metric using 1000 boot-
strapped samples drawn with replacement from the test set. Each sub-sample had the same class distribution as 
the original test set. CIs are computed with two paired t-test. All analyses were performed using Python version 
3.6 and R version 4.0.4. Scikit-Learn’s implementation of DT, RF, and XGB was employed in this study (version 
0.23.221).

Data availability
The datasets analysed in the current study are not publicly available. Due to reasonable privacy and security 
concerns and requirements imposed by the ethics approval process, they are not redistributable to researchers 
other than those engaged in the ethics committee approved research protocol. Correspondence and requests for 
data should be addressed to A.B. (email: aida.brankovic@csiro.au).

Code availability
In this work we used following open-source libraries to conduct our experiments: For development of machine 
learning model we used sklearn (https://​scikit-​learn.​org/) library developed for Python programming language. 
Shaply values used for explanations of the model were calculated with SHAP package (https://​github.​com/​slund​
berg/​shap) . The analysis, training and tests were performed with custom code written in Python 3.6. Statistical 
analysis of model performance is conducted with scipy.stats Python module. All procedures and implementations 
are in Methods and supplement and allow identical replication. Any inquiry regarding the technical details of the 
specific models can be made by relevant parties to the corresponding author (email: aida.brankovic@csiro.au).
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