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Abstract. Growth differentiation factor 15 (GDF15), a member 
of the transforming growth factor‑β family, is a stress‑induced 
cytokine. Under normal circumstances, the expression of 
GDF15 is low in most tissues. It is highly expressed during 
tissue injury, inflammation, oxidative stress and cancer. GDF15 
has been established as a biomarker in patients with cancer, 
and is associated with cancer cachexia (CC) and poor survival. 
CC is a multifactorial metabolic disorder characterized by 
severe muscle and adipose tissue atrophy, loss of appetite, 
anemia and bone loss. Cachexia leads to reductions in quality 
of life and tolerance to anticancer therapy, and results in a poor 
prognosis in cancer patients. Dysregulated GDF15 levels have 
been discovered in patients with CC and animal models, where 
they have been found to be involved in anorexia and weight 
loss. Although studies have suggested that GDF15 mediates 
anorexia and weight loss in CC through its neuroreceptor, 
glial cell‑lineage neurotrophic factor family receptor α‑like, 
the effects of GDF15 on CC and the potential regulatory 
mechanisms require further elucidation. In the present review, 
the characteristics of GDF15 and its roles and molecular 
mechanisms in CC are elaborated. The targeting of GDF15 as 
a potential therapeutic strategy for CC is also discussed.
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1. Introduction

Cachexia is a fatal disease that is associated with several 
conditions, including acquired immunodeficiency syndrome, 
multiple sclerosis, chronic obstructive pulmonary disease 
(COPD), tuberculosis, congestive heart failure, chronic 
kidney disease and cancer (1,2). Cancer‑associated cachexia 
is a serious wasting syndrome characterized by a continuous 
reduction in skeletal muscle mass, with or without the loss of 
fat mass. Distinct from hunger and nutritional deficiencies, 
cancer cachexia (CC) cannot be reversed by food supple‑
ments, and leads to progressive functional impairment (3,4). 
It is prevalent in 50‑80% of patients with advanced cancer (5). 
Unfortunately, cancer treatments such as chemotherapy and 
radiotherapy aggravate cachexia (6). CC can have a negative 
impact on physical function, tolerance to anticancer treatment, 
overall survival and well‑being in patients with cancer (7). 
Moreover, it can also increase psychological stress and the 
financial burden on patients and their families (2,8).

In 2011, an international panel of experts identified a 
weight loss of >5% over 6 months, any degree of weight loss 
>2% in an individual with a body mass index <20 kg/m2, or 
sarcopenia, defined as a skeletal muscle index <7.26 kg/m2 
in men and <5.45 kg/m2 in women, as diagnostic criteria for 
CC (3). CC can be divided into three clinical stages according 
to the degree of weight loss and metabolic changes, namely 
pre‑cachexia, cachexia and refractory cachexia (3). The main 
clinical symptoms of CC include anorexia, asthenia, fever, 
anemia, edema and wasting (7,9). The occurrence of CC 
has been attributed to systemic inflammation generated by 
tumor‑host interactions and tumor‑derived catabolic factors 
such as proteolysis‑inducing factor, zinc‑α2‑glycoprotein 
(ZAG), parathyroid hormone‑related protein and microRNAs 
(miRNAs) (6,7). Systemic inflammation is characterized by 
increased circulating levels of cytokines, including tumor 
necrosis factor (TNF)‑α, TNF‑like weak inducer of apoptosis, 
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interleukin (IL)‑1, IL‑6, IL‑8, IL‑20, interferon‑γ, leukemia 
inhibitory factor, myostatin, activin and growth differentiation 
factor 15 (GDF15) (10‑13). These factors drive metabolic disor‑
ders in multiple tissues and organs during CC, including the 
muscles (10,11,13,14), adipose tissue (10‑12,15,16), heart (17), 
brain (10,11), liver (10,18‑21), gallbladder (19), bone (22), 
pancreas (21), spleen (18), intestines (23), gonads (24) and 
blood (18,22,25). Table I summarizes the cytokines involved 
in the damage of various organs or tissues associated with CC. 
In addition, other factors such as cancer type, stage, tumor 
size, inter‑individual genetics and sex can also influence the 
development and progression of CC (3,26,27). The current 
treatment protocol advocated for CC is a comprehensive 
treatment system based on drug therapy, including anti‑inflam‑
matory drugs, and measures to increase metabolism, inhibit 
catabolism and stimulate appetite, supplemented by nutrition, 
exercise and psychological support (28). However, the effec‑
tiveness of these treatment options for CC is unclear. Thus, an 
in‑depth understanding of the key factors associated with CC 
is crucial for the early identification and development of novel 
therapeutic options.

GDF15 is a stress‑induced cytokine that regulates food 
intake, energy metabolism and body weight (29). Its levels 
have been shown to be upregulated in patients with CC, as 
well as in animal models of pancreatic, colon, head and neck, 
breast and prostate cancers (30‑33). Elevated circulating levels 
of GDF15 may lead to anorexia, weight loss and decreased 
survival in cases of CC (32). Notably, GDF15 plasma levels 
have been reported to be significantly higher in patients 
with pre‑cachexia than in those with cachexia and refractory 
cachexia (30). These studies imply that GDF15 is closely asso‑
ciated with CC. The present review aims to clarify the role and 
molecular mechanisms of GDF15 in CC.

2. Characteristics of GDF15

GDF15 is a novel transforming growth factor (TGF)‑β 
superfamily member that was first identified in activated 
macrophages (34). It is also known as macrophage inhibitory 
cytokine‑1, nonsteroidal anti‑inflammatory drug activated 
gene‑1, prostate‑derived factor, placental TGF‑β and placental 
bone morphogenetic protein (29,35). The human GDF15 gene 
is located on chromosome 19p13.1‑13.2 and consists of two 
exons separated by an intron (36). GDF15 is synthesized as an 
inactive precursor protein consisting of a chain of 308 amino 
acids, including a signal peptide comprising 29 amino acids, a 
pro‑peptide comprising 167 amino acids and a mature peptide 
comprising 112 amino acids (29,35). Following removal of 
the signal peptide, the remaining GDF15 pre‑peptide dimer‑
izes in the endoplasmic reticulum through specific disulfide 
bonding to form a pro‑GDF15 dimer precursor. This precursor 
is subsequently cleaved by furin‑like proteases at the RXXR 
site (amino acid 196), thereby releasing the C‑terminal dimeric 
mature homodimer GDF15. Mature GDF15 eventually diffuses 
into the circulation as a 25‑kD dimer (Fig. 1) (29,35).

GDF15 is widely expressed in body tissues at different 
levels under normal conditions, with high expression in the 
placenta, medium expression in the prostate and bladder, and 
low expression in the kidney, liver, colon, pancreas, stomach, 
gallbladder, breast, lung and endometrium (37‑39). It has 

multiple biological functions (Fig. 2). The circulating concen‑
trations of GDF15 range between 0.2 and 1.2 ng/ml in healthy 
individuals (38). These levels increase with age, pregnancy, 
exercise, smoking and obesity, and are also influenced by 
genetic and environmental factors (29,40). GDF15 is highly 
expressed in vascular smooth muscle cells, cardiomyocytes, 
endothelial cells, macrophages and adipocytes during oxida‑
tive stress, inflammation, tissue damage and cancer (41,42). 
GDF15 is elevated in a variety of cancers, including those of 
the prostate, colon, pancreas and breast (31,39). In one study, 
the mean value of serum GDF15 was almost two‑fold higher 
in cancer patients compared with that in healthy controls (32). 
GDF15 plays a number of roles in tumorigenesis. In the initial 
stages of cancer, it induces tumor cell apoptosis and inhibits 
cancer progression (43). In later stages of cancer, it promotes 
tumor cell proliferation and metastasis (44,45). GDF15 has 
been recognized as a tumor biomarker that is closely implicated 
in tumor progression, cachexia and reduced survival (31,46).

As a member of the TGF‑β superfamily, GDF15 
signals through both Smad and non‑Smad pathways. In 
the former pathway, GDF15 binds to the type II TGF‑β 
receptor (TGFβRII) and activates the type I TGF‑β receptor 
(TGFβRI), also known as activin receptor‑like kinase (47,48). 
Subsequently, TGFβRII and TGFβRI form a heteromeric 
complex that induces the phosphorylation of Smad2/3 and 
Smad1/5/8. The phosphorylated Smad2/3 and Smad1/5/8 are 
then able to bind to co‑Smad (Smad4) and enter the nucleus to 
regulate gene expression (47,48). In addition, GDF15 exerts its 
biological functions through non‑Smad‑dependent pathways 
such as phosphoinositide 3‑kinase/Akt/mammalian target of 
rapamycin and TGF‑β‑activated kinase‑1 (TAK‑1)/nuclear 
factor‑κB (NF‑κB), or through other receptors such as glial 
cell‑derived neurotrophic factor receptor α‑like (GFRAL) and 
epidermal growth factor receptor 2 (Fig. 3) (16,45,49,50).

3. GDF15 and anorexia in CC

A clinical study evaluated the association between serum 
levels of GDF15 and anorexia in patients with cancer and 
reported that GDF15 levels were significantly higher in 
anorexic patients than in non‑anorexic ones (51). This implies 
that high levels of GDF15 in patients with cancer are associ‑
ated with anorexia. There is a body of evidence suggesting 
that GDF15 induces anorexia in patients with CC (16,33,51). 
Johnen et al (33) originally described the role of GDF15 in CC 
and anorexia. They observed that food intake was reduced in 
tumor‑bearing mice that were transgenically modified to over‑
express GDF15. Lower food intake indirectly resulted in fat 
loss, tibial and gastrocnemius muscle atrophy and 28% weight 
loss in tumor‑bearing mice (33). These effects were blocked 
by the administration of a GDF15 monoclonal antibody and 
reproduced by the injection of recombinant GDF15 (33). 
Johnen et al (33) further demonstrated that GDF15 promoted 
anorexia by interacting with TGFβRII to induce the phos‑
phorylation of extracellular signal‑regulated kinase (ERK) 1/2 
and transducer and activator of transcription 3 (STAT3) in the 
hypothalamus. This process ultimately inhibited orexigenic 
neuropeptide Y (NPY) neurons and stimulated anorexigenic 
pro‑opiomelanocortin (POMC) neurons (Fig. 4). GFRAL is 
a specific receptor for GDF15 that is uniquely expressed in 
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the hindbrain area postrema and nucleus tractus solitarius (52). 
The binding of GDF15 to GFRAL induces the activation of 
its co‑receptor Ret proto‑oncogene (RET), which further 
promotes the phosphorylation of ERK, Akt and phospho‑
lipase C γ, resulting in decreased appetite in cachectic mice 
(Fig. 4) (16). The GDF15/GFRAL/RET pathway therefore is 
considered a novel therapeutic target for anorexia and weight 
loss in CC (16).

GDF15 may also influence CC anorexia through other 
mechanisms. It has been shown that GDF15 activates the hypo‑
thalamic‑pituitary‑adrenal (HPA) axis in a GFRAL‑dependent 
manner, leading to the secretion of corticotropin‑releasing 
hormone (CRH) and glucocorticoids (53). CRH has been 
found to promote anorexia in CC, due to the inhibition of NPY 
neurons (Fig. 4) (54).

4. GDF15 and muscle atrophy in CC

As GDF15 is a myokine, its circulating levels are nega‑
tively correlated with muscle mass in numerous diseases, 
including COPD, intensive care unit‑acquired weakness 
(ICUAW), Crohn's disease, pulmonary hypertension (PH) 

and CC (30,55‑58). Muscle atrophy, including that of skeletal, 
chest, diaphragm and cardiac muscle, is a hallmark of CC and 
a major cause of mortality in patients with cancer (4,59).

One study indicated that GDF15 indirectly induced 
muscle atrophy in CC via the inhibition of feeding centers 
in the hypothalamus (33). However, in other in vitro studies, 
GDF15 increased the expression of muscle ring finger 1 
(MuRF1) and muscle atrophy F‑box (MAFbx)/atrogin‑1 
and decreased myotube diameter (55,57). Researchers also 
found that the expression of GDF15 and MAFbx/atrogin‑1 
was elevated in the atrophied rectus abdominis muscle of 
patients with ICUAW (55). The muscle‑specific E3 ubiquitin 
ligases MuRF1and MAFbx/atrogin‑1 are primary factors 
that drive muscle protein degradation in CC (2). These 
studies indicate that GDF15 may contribute to muscle 
atrophy in CC, independently of food intake. It has been 
reported that GDF15/GFRAL/RET directly induces muscle 
atrophy in CC (16). In addition, GDF15 has been shown to 
directly regulate muscle mass in CC through other mecha‑
nisms. Lerner et al (30) demonstrated that the activation of 
mitogen‑activated protein kinase 11 (MAP3K11) by GDF15 
promoted gastrocnemius and flounder muscle reduction in 

Table I. Cytokines involved in organ or tissue damage during CC.

Organ or tissue Alterations in CC Relevant cytokines (Refs.)

Muscle Increased muscle proteolysis,  TNF‑α, TWEAK, IL‑6, LIF, IL‑1‑β, IFN‑γ, GDF15, (10,11,13,14)
 increased myocyte apoptosis,  IL‑8, myostatin, activin 
 reduced muscle synthesis,   
 decreased regeneration, impaired   
 mitochondrial metabolism  
Adipose Increased lipolysis, reduced  IL‑6, LIF, TNF‑α, IFN‑γ, IL‑1‑β, IL‑8, GDF15, IL‑20 (10‑12,15,16)
 synthesis, white adipose tissue   
 browning  
Heart Atrophy, mitochondrial  IL‑6, TNF‑α, TWEAK (17)
 dysfunction, heart failure  
Brain Anorexia TNF‑α, IL‑1β, IL‑6, IFN‑γ, LIF, GDF15 (10,11)
Liver Increased acute phase response,  IL‑6, myostatin, activin, TNF‑α (10,18‑21)
 increased gluconeogenesis,   
 increased bile acid metabolism,   
 mitochondrial dysfunction  
Gallbladder Cholestasis IL‑6 (19)
Bone Osteoclast activation, bone loss,  IL‑6 (6,22)
 hypercalcemia  
Pancreas Insulin resistance TNF‑α (13,21)
Spleen Splenomegaly Myostatin, activin (18)
Intestine Intestinal barrier dysfunction,  IL‑6 (23)
 increase in Enterobacteriaceae  
Gonad Decreased testis size,  IL‑6 (24)
 hypogonadism  
Blood system Decreased hemoglobin, increased  IL‑6, TNF‑α, myostatin, activin (18,22,25)
 platelets  

CC, cancer cachexia; TNF‑α, tumor necrosis factor‑α; TWEAK, TNF‑like weak inducer of apoptosis; IL, interleukin; IFN‑γ, interferon‑γ; LIF, 
leukemia inhibitory factor; GDF15, growth differentiation factor 15.
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Figure 1. Synthesis process of GDF15. The GDF15 gene is located on chromosome 19p 13.1‑13.2 and consists of two exons and an intron. In response to 
oxidative stress, inflammation, tissue damage and cancer, GDF15 is synthesized into pre‑pro‑GDF15, an inactive precursor protein, by intracellular translation. 
Pre‑pro‑GDF15 is a 308‑aa peptide that comprises a 29‑aa signal peptide, 167‑aa pro‑peptide and 112‑aa mature peptide. After removal of the signal peptide, 
the residual pro‑GDF15 is dimerized, cleaved by furin‑like proteases at an RXXR site and secreted into the circulation as a mature GDF15 dimer. Another 
member of the transforming growth factor superfamily, GDF11, promotes GDF15 synthesis by inducing Smad2/3 to bind to the GDF15 promoter. GDF15, 
growth differentiation factor 15; GDF11, growth differentiation factor 11; aa, amino acid.

Figure 2. Biological functions of GDF15. GDF15, growth differentiation factor 15; EMT, epithelial‑mesenchymal transition.
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a genetically engineered mouse model of cachexia. These 
cachectic mice exhibited weight gain and the retention of 
skeletal muscle when treated with anti‑GDF15 antibody (30). 
Subsequently, Zhang et al (60) showed that elevated GDF15 
levels in the serum exosomes of mice with colon cancer 
caused the loss of gastrocnemius muscle mass via the B cell 
lymphoma‑2/caspase‑3 pathway (Fig. 4).

Despite these studies, the mechanism by which 
GDF15 facilitates the loss of skeletal muscle mass in CC 
remains unclear. It has been reported that GDF15 reduces 
muscle mass in patients with PH and ICUAW through 
TAK‑1/NF‑κB/atrogin‑1 signaling, and downregulates the 
expression of various miRNAs, including miR‑1, miR‑133a 
and miR‑499, in muscle (55,57). In one study, the upregulated 
phosphorylation of Smad2/3 was observed in the muscles of 
patients with ICUAW, suggesting that GDF15 may mediate 
muscle atrophy via the classical Smad pathway; however, 
this was not observed in C2C12 murine cell‑based myotubes 
exposed to GDF15 in vitro (55). In addition, high levels of 
GDF15 are known to inhibit the expression of hepcidin and 
lead to iron overload (61). A recent study revealed that iron 
overload induced muscle atrophy in patients with gastric 
cancer and cachexia (62). Moreover, GDF15/GFRAL signaling 

has been shown to activate the HPA axis and trigger the release 
of glucocorticoids (53). Animal models of colon, Lewis lung 
carcinoma (LLC) and pancreatic CC have shown that dysregu‑
lated glucocorticoid levels increase the expression of MuRF1 
and MAFbx/atrogin‑1 in skeletal muscle, driving the break‑
down of muscle protein (63). Additional studies are warranted 
to identify whether GDF15 regulates muscle atrophy in CC 
through these mechanisms (Fig. 4).

5. GDF15 and adipose tissue depletion in CC

GDF15 is expressed in adipose tissue and secreted by adipo‑
cytes (64). Physiological concentrations of GDF15 trigger 
lipolysis in human adipose tissue (64). Although skeletal 
muscle is the main tissue that is affected by CC, a study found 
that fat loss occurs rapidly and earlier than muscle tissue 
depletion in CC (65).

The molecular mechanisms of GDF15‑induced fat loss in 
CC have not been well studied, and pre‑clinical models have 
mainly been used. In one study, for example, mice with pros‑
tate CC and high GDF15 expression lost all retroperitoneal fat 
and exhibited a reduction of fat in the groin and epididymis of 
54 and 89%, respectively, due to decreased food intake (33). 

Figure 3. GDF15‑mediates Smad and non‑Smad signaling pathways. In the Smad pathways (left), GDF15 binding to TGFβRII activates ALK1/2/3/6 and 
ALK4/5/7, leading to the phosphorylation of Smad2/3 and Smad1/5/8. The phosphorylated Smads form complexes with Smad4 and thereby regulate gene 
transcription. In the non‑Smad pathways (right), GDF15 exerts neuroprotective effects via PI3K/Akt/mTOR pathway and promotes intestinal inflammation 
through the TAK‑1/NF‑κB pathway. In addition, GFRAL interacts with RET receptors after binding to GDF15 to initiate ERK, Akt and PLCγ phosphorylation 
which induces anorexia. GDF15 also interacts with the receptor ErbB2 to activate the MAPK/ERK1/2 pathway and promote cancer cell proliferation. GDF15, 
growth differentiation factor 15; TGFβRII, type II transforming growth factor‑β receptor; ALK, activin receptor‑like kinase; PI3K, phosphoinositide 3‑kinase; 
mTOR, mammalian target of rapamycin; TAK‑1, transforming growth factor‑β‑activating kinase‑1; NF‑κB, nuclear factor‑κB; GFRAL, glial cell‑derived 
neurotrophic factor receptor α‑like; RET, ret proto‑oncogene; ERK, extracellular signal‑regulated kinase; PLCγ, phospholipase C γ; ErbB2, epidermal growth 
factor receptor 2; MAPK, mitogen‑activated protein kinase; p, phosphorylation.
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In addition, in another study GDF15 increased the expression 
of differentiation and thermogenic genes in brown adipocytes; 
the upregulated expression of iodothyronine deiodinase 2, 
β3‑adrenergic receptor (β3‑AR), and very long chain fatty 
acid‑3 through GFRAL/RET signaling in cachectic mouse 
adipose tissue led to a loss of fat and body weight (Fig. 4) (16). 
The therapeutic monoclonal antibody 3P10, which is a GFRAL 
antagonist and RET signaling inhibitor, has been reported to 
reverse lipid hyperoxidation and prevent CC in mice (16). 
Furthermore, ZAG is known to be a lipid‑mobilizing factor 
and has been demonstrated to stimulate lipolysis via β3‑AR 
during CC (66). Glucocorticoids have been shown to increase 
ZAG expression and thereby promote lipolysis (67), suggesting 

that GDF15 may increase adipose tissue depletion in CC via 
the HPA axis (Fig. 4).

6. GDF15 and bone loss in CC

Bone loss is caused by an imbalance between bone‑resorbing 
osteoclasts and bone‑forming osteoblasts, which can result in 
decreased bone mineral density (BMD), bone mass and bone 
strength (68). Abnormal activation of osteoclasts is the cause 
of various bone diseases, including osteoporosis, rheumatoid 
arthritis, multiple myeloma and metastatic cancers (69). A link 
between CC and bone loss has been established in patients 
with CC and in animal models (5,70‑72). Elevated levels of 

Figure 4. Roles and mechanisms of GDF15 in CC. Solid lines indicate demonstrated mechanisms and dashed lines indicate possible mechanisms. GDF15 
initiates the phosphorylation of ERK, Akt and PLCγ via GFRAL/RET signaling to mediate anorexia, muscle atrophy and fat loss in CC; the antibody 3P10 can 
inhibit these processes. Binding of GDF15 to TGFβRII and TGFβRI leads to the phosphorylation of ERK1/2 and STAT3. This pathway downregulates NPY 
and upregulates POMC to induce anorexia. Reduced food intake indirectly contributes to muscle wasting and fat depletion in cancer cachexia. Activation of 
MAP3K11/GDF15 and Bcl‑2/caspase‑3 apoptotic pathways is responsible for CC muscle atrophy, but their specific receptors are unknown. GDF15 may also 
reduce muscle mass through the TAK‑1/NF‑κB signaling pathway, and downregulates the expression of miR‑1, miR‑133a and miR‑499 in muscle. In addition, 
GDF15 may promote muscle atrophy and fat loss by stimulating the HPA axis. Moreover, the GDF15/Smad2/3 pathway may be involved in CC‑induced 
anemia. High levels of GDF15 directly inhibit the expression of hepcidin, which could further trigger anemia and muscle wasting in CC. GDF15, growth differ‑
entiation factor 15; CC, cancer cachexia; ERK, extracellular signal‑regulated kinase; PLCγ, phospholipase C γ; GFRAL, glial cell‑derived neurotrophic factor 
receptor α‑like; RET, ret proto‑oncogene; TGFβRII, type II transforming growth factor‑β receptor; TGFβRI, type I transforming growth factor‑β receptor; 
ERK1/2, extracellular signal‑regulated kinase1/2; STAT3, signal transducer and activator of transcription 3; NPY, neuropeptide Y; POMC, pro‑opiomelano‑
cortin; MAP3K11, mitogen‑activated protein kinase 11; Bcl‑2, B cell lymphoma‑2; TAK‑1, transforming growth factor‑β‑activating kinase‑1; NF‑κB, nuclear 
factor‑κB; miR, microRNA; HPA, hypothalamus‑pituitary‑adrenal; CRH, corticotropin‑releasing hormone; GC, glucocorticoids; ZAG, zinc‑α2‑glycoprotein; 
β3‑AR, β3‑adrenergic receptor; MuRF1, muscle ring finger 1; Bax, Bcl‑2 associated X protein; RANK, receptor activation of NF‑κB; RANKL, RANK ligand; 
CCL2, CC motif chemokine ligand 2; p, phosphorylation.



ONCOLOGY LETTERS  26:  462,  2023 7

C‑telopeptide of type I collagen (CTX‑1) in serum have been 
demonstrated to be indicative of increased bone resorption 
and accelerated bone loss (73). Also, studies in humans have 
shown that serum CTX‑1 is significantly elevated in patients 
with ovarian, lung and gastrointestinal CC compared with 
non‑cachectic controls (70‑72). In a retrospective study, 

patients with pancreatic CC were found to have significantly 
lower BMD than control patients who underwent benign gall‑
bladder surgery, and those patients with pancreatic CC with 
osteopenia exhibited lower median and 2‑year postoperative 
survival times than those without osteopenia (74). In an animal 
model of LLC‑induced CC, Yu et al (5) observed a reduction 

Table II. Clinical trials targeting GDF15 in patients with cancer and CC.

Clinical trial  Start Compound/dr Participants,      
identifier  year ug  n Disease Phase Status Results Locations (Refs.)

NCT05865535 2023 AV‑380 30  Colorectal and  I Recruiting NA USA NA
   (estimated) pancreatic CC     
NCT05546476 2022 Ponsegromab 168  Non‑small cell, II Recruiting NA Spain, Taiwan, NA 
   (estimated) pancreatic and    USA,  
    colorectal CC    Australia, 
        Bulgaria,  
        Canada, China, 
        Czechia, 
        Hungary,  
        Japan,  
        Poland,  
        Slovakia 
NCT04803305 2021 Ponsegromab 18 (actual) Non‑small cell I Completed NA Canada, USA NA
    lung,     
    pancreatic,     
    colorectal,      
    prostate,      
    breast and     
    ovarian CC     
NCT04299048 2020 Ponsegromab 11 (actual) Non‑small cell Ib Completed Compared USA (92)
    lung,    with controls,  
    pancreatic   patients  
    and colorectal   treated with  
    CC   ponsegromab  
       had lower  
       circulating   
       GDF‑15   
       levels and   
       increased   
       body weight,  
       physical  
       activity and 
       appetite  
NCT04725474 2020 CTL‑002 155  Adult solid  I/II Recruiting NA Germany,  NA
   (estimated) tumor    Spain,  
        Switzerland 
NCT05397171 2022 AZD8853 16 (actual) Bladder,  II Terminated NA Canada, USA NA
    colorectal and     
    non‑small cell     
    lung cancers     

Data in the table are from ClinicalTrials.gov. CC, cancer cachexia; GDF15, growth differentiation factor 15; NCT, National Clinical Trial; NA, 
not available.
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in bone trabecular volume and BMD, and an increase in 
osteoclast activation. This result was consistent with the find‑
ings of a previous study regarding cachectic mice with colon 
cancer (71). The researchers further established that the bone 
loss was induced via the Janus kinase/STAT3 pathway, with 
the involvement of glucocorticoids (5). Surprisingly, bone loss 
preceded the onset of muscle and fat loss in the LLC‑induced 
model of cachexia (5). These studies all demonstrate that bone 
loss is closely associated with CC.

It has been demonstrated that GDF15 increases osteoclast 
differentiation and inhibits osteoblast differentiation in vivo 
and in vitro, leading to disturbances in bone metabolism and 
bone loss (75,76). Wakchoure et al (77) injected a Du‑145 
human prostate cancer cell line overexpressing GDF15 into 
the tibias of C57/B6 mice, and found that increased GDF15 
was associated with osteoclast activation and cachexia. 
This result implies that GDF15 is involved in bone loss in 
CC, but the biological mechanism underlying this has not 
yet been identified. In a hypoxic mouse model induced by 
right femoral artery ligation, the upregulation of GDF15 
expression in osteoblasts was observed, which stimulated 
the receptor activator of NF‑κB ligand (RANKL)‑induced 
NF‑κB signaling pathway and promoted osteoclast activa‑
tion in the mice, resulting in decreased bone mass (76). 
An anti‑GDF15 antibody inhibited this process and the 
associated bone loss (76). Moreover, Siddiqui et al (78) 
demonstrated that elevated GDF15 in prostate cancer 
upregulated the expression of C‑C motif chemokine ligand 
2 and RANKL through the GFRAL/RET pathway, thereby 
activating osteoclasts and leading to decreased bone mass. 
Other studies have reported that the GDF15/GFRAL/RET 
receptor signaling complex in the brain mediates anorexia 
in CC (16,79). GFRAL and RET receptors have also been 
shown to be expressed in the tibiae (Fig. 4) (78). These find‑
ings indicate that GDF15 may activate GFRAL and RET 
receptors expressed on osteocytes, thereby inducing bone 
loss in CC.

7. GDF15 and anemia in CC

A recent retrospective cohort study conducted across multiple 
centers indicated that patients with CC had lower hemoglobin 
levels than those without cachexia (80). The study demon‑
strated that patients with CC developed anemia. However, the 
molecular mechanisms underlying the CC‑induced anemia 
remain unclear. A study in mice with lung CC found that 
TGF‑β activated the Smad2/3 signaling pathway and inhibited 
hematopoietic stem cell and erythropoietic cell production. 
The mice exhibited a significant reduction in hemoglobin and 
erythrocyte levels in the peripheral blood (81). Additionally, 
GDF15 is produced by erythroid precursor cells, and high 
levels of GDF15 are known to inhibit effective erythropoiesis 
and the expression of hepcidin, leading to anemia and iron 
overload (61). Hepcidin is a hepatic peptide hormone that 
coordinates the systemic homeostasis of iron. Jiang et al (82) 
showed that increased serum levels of GDF15 in patients with 
cancer are associated with downregulated hepcidin levels 
and cancer‑related anemia. According to these findings, we 
hypothesize that GDF15 may play a role in CC‑associated 
anemia (Fig. 4).

8. GDF15 and other TGF‑β superfamily factors in CC

The TGF‑β superfamily is a class of secreted peptide 
cytokines with multiple members that are involved in the 
development of CC (83). They are categorized into four 
main subfamilies based on sequence similarity, namely 
bone morphogenetic proteins/GDFs, activins/inhibins/nodal, 
TGF‑βs and others (84). GDF8, which is also known as 
myostatin, and activin A have been reported to bind to activin 
receptor type 2B on skeletal muscle to promote the phos‑
phorylation of Smad2/3 and inhibit Akt phosphorylation, 
leading to activation of the ubiquitin‑proteasome system 
that eventually leads to muscle atrophy (54). Greco et al (85) 
demonstrated that blocking TGF‑β reduces skeletal muscle 
catabolism and weight loss in mouse models of pancreatic CC, 
and decreases phosphorylated Smad2/3 signaling in muscle 
tissues. This suggests that TGF‑β is also involved in skeletal 
muscle atrophy in CC, via activation of the Smad2/3 signaling 
pathway. Another member of the TGF‑β superfamily, GDF11, 
is highly homologous to GDF8 (86). GDF11 directly increases 
the expression of MuRF1 and MAFbx/atrogin‑1 in skeletal 
muscle, leading to muscle atrophy and cachexia (87). In addi‑
tion, Zimmers et al (88) demonstrated that elevated circulating 
levels of GDF11 are associated with cardiac atrophy.

CC is accompanied by a complex pro‑inflammatory envi‑
ronment in the body (Table I). Therefore, it is possible that 
proteins of the TGF‑β superfamily may coordinate with one 
another to promote the development and progression of CC. 
One preclinical study found that GDF11 induced the upregula‑
tion of GDF15 expression by activating the binding of Smad2/3 
to the GDF15 promoter (Fig. 1) (87). The upregulated GDF15 
further suppressed appetite and indirectly induced weight 
loss (87). However, no further studies have identified the rela‑
tionships between GDF15 and other TGF‑β family members 
that may be involved in cachexia, such as GDF8, activin A 
and TGF‑β. It would be of great significance to investigate the 
associations and roles of these proteins in CC in future clinical 
studies.

9. Targeting GDF15 in CC

CC is a complex syndrome of multiple organ and tissue 
depletion (6). Despite advances in cancer treatment, there 
are no effective therapies for CC. To improve the quality of 
life of patients, it is currently advocated to take a multimodal 
approach to treatment, based on medication supplemented by 
nutrition, exercise and psychological counseling (28). As the 
basis for the treatment of CC, pharmacotherapeutic strate‑
gies can stimulate appetite, reduce inflammation, increase 
anabolism and decrease catabolism (54). During conferences 
on cachexia, researchers have also reported some novel thera‑
peutic targets for the treatment of CC, such as ZRT/IRT‑like 
protein14, fibroblast growth factor‑inducible receptor 14, 
serum amyloid A1, MuRF1 and GDF15 (89,90).

Several clinical trials have been conducted to investi‑
gate the role of GDF15 antibodies in CC. Ponsegromab is a 
human monoclonal antibody that targets GDF15 (91). It binds 
to GDF15 and prevents it from binding to GFRAL, thereby 
blocking GDF15/GFRAL‑mediated signaling. A recent 
phase‑1b clinical trial (NCT04299048) conducted by Pfizer 
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evaluated the safety and efficacy of ponsegromab in patients 
with non‑small cell lung, colorectal and pancreatic cancers 
accompanied by cachexia. In addition to standard anticancer 
treatments, patients with cachexia received ponsegromab 
subcutaneously every 3 weeks for a total of 12 weeks (92). The 
results showed that the median circulating GDF15 levels in 
patients treated with ponsegromab were lower than the those 
in healthy controls (92). Moreover, ponsegromab treatment 
significantly increased weight, physical activity and appetite 
in patients with CC (92). Clinical studies of ponsegromab in 
CC remain ongoing and are currently in phase II (91). Table II 
summarizes clinical trials regarding GDF15 that have been 
conducted in patients with cancer and CC (https://clinical‑
trials.gov/). The information obtained from these studies may 
ultimately enable patients with CC to benefit from these treat‑
ments, and also guide future studies.

Animal experiments further illustrate that the inhibi‑
tion of GDF15 is an effective strategy for the treatment of 
CC (30,33,93). In several animal models, including prostate, 
ovarian, colon and breast cancer, leukemia and fibrosarcoma 
models, cachectic mice treated with GDF15 antibodies exhib‑
ited increased food intake, muscle mass and adipose tissue, 
ultimately leading to weight gain (30,33,93). These studies 
illustrate that targeting GDF15 alleviates CC via the preven‑
tion of anorexia, and the loss of muscle and fat. In addition, 
Hinoi et al (76) demonstrated that an anti‑GDF15 antibody 
inhibited bone loss and osteoclast activation in the tibias 
of hypoxic mice. The inhibition of GDF15 has also been 
observed to inhibit ineffective erythropoiesis and improve 
anemia in patients with cancer (94). Thus, GDF15 may be a 
potential target for the treatment of bone loss and anemia in 
CC. Moreover, one study revealed that the combination of an 
anti‑GDF15 antibody with the angiogenesis inhibitor tivozanib 
significantly increased body weight and survival in mice with 
CC, when compared with tivozanib alone (30). This implies 
that the inhibition of tumor growth and amelioration of CC 
may prolong the lifespans of patients with this condition. The 
strategy represents a new therapeutic prospect, but requires 
translation into clinical studies.

10. Discussion and future prospects

In the present review, the roles and mechanisms of GDF15 in 
CC are summarized. Studies have indicated that the effects of 
GDF15 on CC are associated with inhibition of the feeding 
center. However, since GFRAL was identified as an exclusive 
receptor for GDF15, further studies have demonstrated that 
GDF15 also induces metabolic effects that are independent of 
food‑intake behavior. It has been established that GDF15 inter‑
acts with GFRAL in the brainstem to suppress appetite, promote 
fat loss and reduce muscle mass in CC. GDF15 also directly 
promotes muscle atrophy in CC via the apoptotic pathway 
and MAP3K11, but the receptors involved in these processes 
are currently unknown. It also appears that GDF15 may have 
a role in bone loss and anemia in CC. However, it remains 
uncertain whether other GDF15 receptors or pathways, such 
as the GDF15/GFRAL/HPA axis, promote the development of 
CC. Therefore, the roles and potential molecular mechanisms 
of GDF15 in CC, particularly its receptors and downstream 
signaling pathways, require further investigation. In addition, 

GDF15 is a potential therapeutic target for CC, and clinical 
trials are being conducted to study the safety and therapeutic 
value of GDF15 antibodies in patients with CC. Notably, since 
CC is attributed to complex interactions between tumor cells 
and the host, it may be necessary to combine GDF15‑targeting 
antibodies with anticancer therapies such as immunotherapy 
or targeted therapy to improve the outcomes of patients with 
CC.
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