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Purpose: High dose–rate brachytherapy is a method of radiotherapy for cancer treatment in which
the radiation source is placed within the body. In addition to give a high enough dose to a tumor, it is
also important to spare nearby healthy organs [organs at risk (OAR)]. Dose plans are commonly eval-
uated using the so-called dosimetric indices; for the tumor, the portion of the structure that receives a
sufficiently high dose is calculated, while for OAR it is instead the portion of the structure that
receives a sufficiently low dose that is of interest. Models that include dosimetric indices are referred
to as dose–volume models (DVMs) and have received much interest recently. Such models do not
take the dose to the coldest (least irradiated) volume of the tumor into account, which is a distinct
weakness since research indicates that the treatment effect can be largely impaired by tumor under-
dosage even to small volumes. Therefore, our aim is to extend a DVM to also consider the dose to
the coldest volume.
Methods: An improved DVM for dose planning is proposed. In addition to optimizing with respect
to dosimetric indices, this model also takes mean dose to the coldest volume of the tumor into
account.
Results: Our extended model has been evaluated against a standard DVM in ten prostate geometries.
Our results show that the dose to the coldest volume could be increased, while also computing times
for the dose planning were improved.
Conclusion: While the proposed model yields dose plans similar to other models in most aspects, it
fulfils its purpose of increasing the dose to cold tumor volumes. An additional benefit is shorter solu-
tion times, and especially for clinically relevant times (of minutes) we show major improvements in
tumour dosimetric indices. © 2019 The Authors. Medical Physics published by Wiley Periodicals,
Inc. on behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13533]
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1. INTRODUCTION

High dose–rate brachytherapy (HDR BT) is a modality of radi-
ation therapy used for cancer treatment. In HDR BT, the radia-
tion is delivered from within the body using applicators and/or
catheters (hollow needles) which are temporarily inserted,
close to or within the tumor, to guide a small, sealed photon-
emitting source of ionizing radiation. At treatment delivery,
the single radiation source, commonly of the isotope 192Ir, is
driven through the catheters, programmed to rest in the
selected dwell positions along the catheters for predetermined
dwell times (corresponding to bixels in external beam radiation
therapy, EBRT). The combination of dwell positions and the
dwell times in these determines the dose distribution within
the patient’s body. The task of planning is performed before
treatment delivery during the dose planning stage. See Fig. 1
for an overview of the HDR BT treatment process.

In HDR BT, the positions of the catheters are determined
first, followed by the dwell time pattern. The roles of the

catheters and the dwell time patterns in these are the HDR
BT equivalent to the fields and fluence maps in EBRT. Clini-
cally used treatment planning systems offer both graphical
tools and automated algorithms which are based on optimiza-
tion (such as IPSA1 and HIPO2) to perform the dose plan-
ning. The dose plan evaluation, according to clinical
treatment guidelines, is based on the dose–volume histogram
(DVH) concept and the so-called dosimetric indices that are
derived therefrom, see Ref. [3] for HDR BT guidelines for
prostate cancer. The automated methods available today are
based on linear penalties and have been shown to possess
weaknesses such as producing fewer and longer dwell times
than manual methods,4,5 and to correlate weakly with the
dosimetric indices.6 Furthermore, the automated methods
based on linear penalties require the user to calibrate penalty
parameters which can be a difficult and time consuming task.

The above-mentioned weaknesses of current methods have
resulted in a research focus on finding improved automated
methods for dwell time optimization, capable of using the
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dosimetric indices (or an approximation thereof) as the actual
quality measures for the optimization.7–10 While the advan-
tage of using the dosimetric indices as quality measures is
obvious (due to the clinical guidelines), it is important to be
aware of the pitfalls and weaknesses of this approach, which
can be severe if not foreseen. In the DVH-based models that
have been proposed a weakness is that the dose to the coldest
(least irradiated) volume of the tumor is not taken into
account. (This volume is not necessarily contiguous, which is
how the expression coldest volume is used in the following.)
To give an example, if the objective is to maximize the lowest
dose received in 95% of the tumor, an optimization algorithm
will strive solely to fulfil this aim and will not, unless explic-
itly instructed, consider the dose to the remaining 5% of the
volume. If necessary, it will sacrifice (reducing the dose to)
the 5% of the tumor that receives the lowest radiation dose,
even for a negligible gain in its objective.

The aim of this work is first to develop an improved and
safer DVH-based optimization model for dose planning. Our
starting-point is published DVH-based models7,9 that have
been evaluated positively against clinical dose plans.8,10 How-
ever, our work offers no comparison with such plans but
focuses solely on the extension of the model. Published
DVH-based models are extended by the addition of a compo-
nent to mitigate severe underdosage to the part of the target
that receives a dose that is lower than the prescription level;
the added component works as a safeguard against such
underdosage. Secondly, the aim is also to carefully describe
the reasoning leading up to our suggested remedy and to con-
tribute to an increased awareness and understanding of possi-
ble pitfalls in a straightforward use of mathematical
optimization methods for DVH-based models.

2. PROBLEM FORMULATION

Like other radiotherapy modalities, HDR BT is today
planned using three-dimensional, anatomical patient informa-
tion derived from images on which target and organs are con-
toured (see Fig. 1). The goal of the treatment is local tumor
control balanced with an acceptable risk of normal tissue
complications. Tumor control is (most likely) achieved by
delivering a sufficiently high dose to the planning target vol-
ume (PTV), which is the tumor with an extra margin. The

healthy organs and tissues [organs at risk (OAR)] present in
the proximity of the PTV should be spared, if possible, to
reduce the risk of complications. The contoured PTV and
OAR are in the following technical context referred to as
structures. For the sake of the dose planning, the structures
are represented as dose points (corresponding to voxels in
EBRT), where the absorbed doses (in Gray, Gy) to the tissue
in these small volumes (in BT approximated by values of
absorbed dose in water) are calculated11 and used for the con-
struction and evaluation of dose plans. For an introduction to
radiation therapy and HDR BT see, for example, Ref. [12].

An important tool for the dose plan evaluation is the (cu-
mulative) DVH. For each level of radiation dose, the DVH
states how large a portion of the PTV (or OAR) that receives
at least (or at most) this level of radiation. One such point on
the DVH curve is called a dosimetric index (DI) and corre-
sponds to two types of indices, Vs

x and Ds
y. The index Vs

x is
the portion of the volume of structure s that receives at least
x% of the prescribed dose if s is the PTV, or receives at most
x% of the prescribed dose if s is an OAR. The index Ds

y is the
smallest dose that is received by the y% of the volume of
structure s which receives the highest dose. Figure 2 shows
an example of a DVH curve and indices Vs

x and Ds
y. Guideli-

nes3 for HDR BT for prostate cancer recommend that
DPTV

90 � 100% of the prescription dose and that VPTV
100 is at

least 95%. In the following, if no structure is specified, Vx

and Dy refer to the PTV.
Because of the central role of DIs in dose plan evaluation,

according to the clinical treatment guidelines, optimization
models that explicitly include them are of high interest and
have been a topic of recent research. To mathematically
model the DIs, a Heaviside step function is used for each
dose point to indicate whether the dose is high enough (for
PTV) or low enough (for OAR). Each PTVor OAR Heaviside
function can be modeled using a binary indicator variable,
taking the value one if the criterion is satisfied and zero other-
wise. A model based on DI criteria yields a mixed-integer
program (MIP) and such a model is referred to as a dose–vol-
ume model (DVM). A DVM for HDR BTwas first proposed
by B€elien et al.13 Models of this type were further studied by
Siauw et al.7 and Gorissen et al.8 Because these models are
computationally hard to solve to optimality, heuristics are

FIG. 2. Example of a dose-volume histogram.

FIG. 1. Overview of the HDR BT treatment process. The first step (I) is
image-guided insertion of catheters and outlining of target and organs on
images. The second step (II) is the dose planning, in which a large part is to
decide the dwell times to obtain a good dose distribution for the anatomy of
the patient. The final step (III) is the treatment delivery. All steps are typically
performed while the patient is under some form of anesthesia.
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often used to find good solutions to practical instances.7,9,13

(Heuristics are algorithms with no guarantees of finding an
optimal solution and no information about the quality of an
optimal solution, but which in practice often are able to
quickly find good solutions.) The DVM formulation devel-
oped by Guthier et al.10 approximated the Heaviside functions
with smooth, nonconvex functions and find good solutions in
short solution times (a few seconds). With their approxima-
tions there are, however, no guarantees of optimality or even
feasibility in dosimetric index constraints.

The DIs are in clinical practice mainly used in the evalua-
tion of dose plans and DVMs are not commonly used in clini-
cally available treatment planning software. The DVMs have,
however, been shown to produce dose plans which are clini-
cally acceptable.8,10 Reference [8] includes the opinion from
an expert on the dose plans, and Ref. [10] compares dose
plans from a number of optimization models, including mod-
els based on dose–volume criteria, with dose plans from
manual planning.

The dosimetric index Vs
x is a rather rough way of evaluat-

ing a dose plan. Because the contribution to a DI (which is
based on the discontinuous Heaviside step function) from
each dose point is either zero or one, small variations in the
dose distribution can have a large effect on the DI. For exam-
ple, if the prescription dose is 10 Gy, anything above 10 Gy
is considered equally acceptable while anything below 10 Gy
is equally poor, with no differentiation made between values
that are below 10 Gy. Further, two dose distributions can
have very different DVH curves but the same value of several
DIs or vice versa. In particular, even if a DI requirement for
the PTV is satisfied there might be volumes of the PTV
where the dose is much too low for the intended treatment
effect.

This adverse property of a DI for the PTV constitutes a
weakness in any DVM, because in such models, the dose to
the underdosed volume of the PTV is not in any way consid-
ered in the optimization model, as long as the specified DIs
are satisfied. Hence, there is a risk that the treatment effect is
lower than intended, and lower than what is indicated by only
the DI. This is due to the fact that optimization models only
take explicit aspects into account and that there is no implicit
consideration of other aspects of a good solution.

DIs are examples of evaluation criteria that consider solely
physical dose, while radiobiological effects of the dose distri-
bution are captured only indirectly. An example of an index
that is based on a radiobiological model is the tumor control
probability (TCP). The TCP estimates the probability of local
tumor control, which is the probability that no malignant cell
survives the radiation dose.

Tom�e and Fowler14 studied the effect on TCP when vol-
umes of the PTV, of various sizes, received a lower dose than
the prescription dose. They found that underdosage has a
large impact on TCP, even when the underdosed volume was
as small as 1% of the PTV. They also found that this was still
the case when 80% of the PTV received a 10% boost in addi-
tion to the prescription dose. Their conclusion is that it is not
enough to specify a prescription dose, which should be

received by, for example, 95% of the PTV unless some addi-
tional means ensure the dose to the coldest volume of the
PTV to be high enough.

The aim of this paper is to extend a DVM model to also
take the dose to the coldest volume of the PTV into account.
This is motivated by the fact that underdosage to parts of the
volume of the PTV can be present even though DI require-
ments are fulfilled and the above mentioned observation of
Tom�e and Fowler.14 For our extension, we consider the mean
dose to the coldest volume of the tumor, also referred to as
cold mean-tail-dose.

An outline for the remainder of the paper is as follows: the
complete optimization model and its settings are presented in
Section 3, results and analyses are given in Section 4 and
discussed in Section 5, and finally conclusions are given in
Section 6.

3. MATERIALS AND METHODS

A measure that is related do the DVH and the DIs is the
conditional value-at-risk (CVaR), which was introduced as a
financial measure for risk assessment.15 In finance, CVaR is
the expected loss for the a% worst outcomes, while in radia-
tion therapy the interpretation is the mean dose to a portion a
of a volume. In the context of radiation therapy, CVaR has
been referred to as mean-tail-dose. For our purpose, we are
interested in the portion that receives the lowest dose, compa-
rable with the worst outcomes. For a specified portion
(1�a)% of the volume, CVaRð1�aÞ quantifies the mean dose
to the (1�a)% of the volume that receives the lowest dose. It
has been shown that CVaR can be modeled with linear
expressions,15 either to maximize (or lower bound) the mean
dose to a specified portion of the volume that receives the
lowest dose or to minimize (or upper bound) the mean dose
to a specified portion of the volume that receives the highest
dose. In intensity-modulated radiation therapy (IMRT),
Romeijn et al.16 were the first to formulate a model for dose
planning with CVaR constraints; a recent study in IMRTwith
CVaR constraints can be found in Ref. [17]. An optimization
model for HDR BT with CVaR constraints is proposed in
Ref. [18].

The following optimization model for dose planning is
adopted from the DVMs in Refs. [7] and [9], with an addi-
tional CVaR component for the PTV added to the objective
function. The CVaR component is added to explicitly address
the identified weakness of the DVM. CVaR has previously
been used as a convex approximation of dosimetric indices.16

Worth noting is that the criteria V100 and CVaR are not in
conflict. The DVM in Ref. [9] contains an additional dwell
time modulation restriction component which we omit. The
inclusion of dwell time modulation restriction is common to
mitigate the long dwell times occurring with linear penalty
models.5 However, whether such restrictions are beneficial or
not is a complex question, which is analysed in, for example,
Ref. [19].

The indices, sets, parameters and variables that are used in
the optimization model are introduced in Table I.
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max w1
1
jT j
X
i2T

yi

 !
þ w2 fa � 1

ð1� aÞjT j
X
i2T

gi

 !

(1)

subject toX
j2J

dijtj � Lyi; i 2 T (2)

X
j2J

dijtj �Us þMsð1� vsi Þ; i 2 OARs; s 2 S (3)

X
i2OARs

vsi � ssjOARsj; s 2 S (4)

gi � fa �
X
j2J

dijtj; i 2 T (5)

gi � 0; i 2 T (6)

yi 2 f0; 1g; i 2 T (7)

vsi 2 f0; 1g; i 2 OARs; s 2 S (8)

tj � 0; j 2 J (9)

Here, |�| denotes the cardinality of a set. The objective,
given in formulation (1), is to maximize the weighted sum of
the value of DI V100 for the PTV and the CVaRð1�aÞ value.
The indicator variable for each dose point in the PTV equals
one if the dose is high enough, and zero otherwise, and is
defined by constraint (2). The first part of the objective func-
tion is thus the portion of the PTV (dose points) receiving at
least the prescription dose. For OAR, the DIs are defined by
constraints (3) and (4), where the first constraint ensures that
each indicator variable takes the correct value, while the sec-
ond imposes a lower bound on the DI, that is, on the portion
of the OAR which receives a dose that is low enough. This
mathematical formulation of the DIs is used in Ref. [9].

The CVaR component of the model consists of the second
term in the objective function (1), in which the auxiliary vari-
ables gi; i 2 T , are defined by constraints (5) and (6), which
are a linear formulation of the definitional constraint
gi ¼ maxð0; fa �Pj2J dijtjÞ, i 2 T. The auxiliary variable
fa takes the value of the highest dose that is received among
the (1�a)% dose points receiving the lowest dose. Variables
gi, i 2 T, equal the dose deficits compared to the value fa (if
positive). Hence, the second term in the objective function is
the mean dose that is received by the (1�a)% that receives
the lowest dose. This (standard) formulation of CVaR is the
same as in Romeijn et al.16

To give an example on how V100 and CVaR are calculated,
assume that we have a dose distribution consisting of ten dose
points receiving 5, 7, 8.5, 8.5, 8.5, 10, 12, 13, 15, and 17 Gy,
with 8.5 Gy as the prescription dose. Then the value of V100

is 80% and the value of CVaR20 is 6 Gy (mean value of the
20% dose points receiving the lowest dose).

In the remainder of this section, we introduce the data and
the settings that we have used for the computer simulations.
We have tested our model’s performance against the DVM ret-
rospectively on clinical implants, using contoured PTV, OAR
and catheter placement information from ten patients earlier
treated for prostate cancer. The number of dose points in the
optimization models was in the range 4369–7939 and dis-
tributed according to Ref. [20], while the number of dose
points for the evaluation of dose plans was in the range
51 974–134 509 and distributed uniformly with a volume of
1mm3 per dose point. (The latter sets of dose points were used
for calculating dosimetric indices and all other studied quanti-
ties.) The number of dwell positions was in the range 190–
352, and the number of catheters in the range 14–20. On the
medical images, the PTV, urethra, and rectum were already
outlined, according to the practice of the clinic that provided
the patient data. In addition, according to the standard proce-
dure, we added artificial, healthy tissue surrounding the PTV.

Gurobi (Gurobi Optimization, Inc., Houston, USA) ver-
sion 7.0.121 is a state-of-the-art software for linear optimiza-
tion problems. We used its implementation of the simplex
algorithm for solving all linear programs (see Ref. [22]) and
its branch-and-bound implementation for solving all MIPs

TABLE I. Indices, sets, parameters and variables used in the optimization
model.

Indices

i Index for dose points

j Index for dwell positions

s Index for OAR

Sets

T Set of dose points in the PTV

S Set of OAR

OARs Set of dose points in OAR s, s 2 S

J Set of dwell positions

Parameters

dij Dose rate contribution from dwell position j 2 J, to dose point
i 2 T [ ð[s2SOARsÞ

L Prescription dose to the PTV

Us Upper dose bound for OAR s, s 2 S

Ms Maximum excess dose (above Us) to OAR s, s 2 S

ss A portion of the volume of OAR s, s 2 S, that should satisfy the
dose bound, Us

a A portion of the volume of the PTV

w1 Non-negative weight for V100

w2 Non-negative weight for CVaR

Variables

yi Indicator variable for dose point i 2 T, which equals one if the
dose is at least L, and is zero otherwise

vsi Indicator variable for dose point i 2 OARs; s 2 S, which equals
one if the dose is at most Us, and is zero otherwise

fa Auxiliary variable used for finding the CVaR value

gi Auxiliary variable for the maximum of two values

tj Dwell time in dwell position j 2 J
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(see Ref. [23]). The computer simulations were performed on
a PC with an Intel(R) Core(TM) i7-6500U CPU, 2.50 GHz
processor, 16 GB RAM, and a 64-bit Windows 10 operating
system.

In Table II, we introduce the models that we compare.
Model DVM is the standard DVM (in the actual implementa-
tion, the CVaR constraints and variables are not included at
all), while the mean-tail dose model (CVaR) has only the
CVaR component in the objective function. The objective
of the dose-volume mean-tail-dose model (DVMCVaR)
includes both the V100 component and the CVaR component,
the purpose of the latter being to increase the dose to the
coldest volume. We found that the specific choice of value
for w2 in this model had no significant impact. The solution
progress was very similar for all weights w2 [ 0 that we
tried and thus it is unlikely that any particular tuning of the
weights is necessary. Model MTDM is included because it
gives an upper bound on how much the dose to the coldest
volume can be improved.

The values used for the dose bounds and the parameters
for the DI are given in Table III. For CVaR, we chose
1�a = 1% because it was shown in Ref. [14] that even such
a small volume with a too low dose could have a significant
impact on the TCP. In the following, we drop the subscript
on CVaR, because the portion 1�a is fixed (to 1%).

To get an indication of the effect from cold volumes in the
PTV we have used TCP in the analysis. For the calculation of
TCP, we implemented the algorithm in Ref. [24] with the
parameters values:14 NC ¼ 8:423 � 108, rpop ¼ 0:135,
rind ¼ 0:045, and SF2 ¼ 0:48. Further, the parameter a/b
was set to 1.5, which is a suggested value for prostate
cancer.25

A full prostate cancer treatment typically includes both
EBRT and two sessions of HDR BT. To simulate a full treat-
ment, we have rescaled the absolute dose values in the TCP
calculation by a constant factor, so that a TCP value of 95%
corresponds to a uniform dose distribution equalling the

prescription dose. The calculated TCP values should thus not
be seen as an exact representation of the treatment effect, but
rather as a means for comparing dose plans. (The use of TCP
has been discussed26,27 and there is both a need for better
estimates of parameter values and for more clinical studies on
the correlation with the treatment outcome.)

The equivalent uniform dose (EUD), also known as the
generalized mean dose, is another measure of the biological
effect from a dose distribution. It is meant to summarize a
heterogeneous dose distribution into a single value which cor-
responds to the homogeneous dose that would give the same
treatment effect.28 The EUD that we have used is defined
as29

f�1 1
jTj
X
i2T

f
X
j2J

dijtj

 ! !
:

To compare dose plans we computed the EUD, using
f ðxÞ ¼ xa with a = �10, as used in the optimization models
in Refs. [29] and [30] in dose planning for prostate cancer.

Because the dose planning in HDR BT is often performed
when the patient is anesthetized, it is important to find a dose
plan within a short time. Therefore, we present results for the
optimization models for time limits of 3 and 15 min, and for
benchmarking purposes we also present results for a time
limit of 2 h.

4. RESULTS

In the major part of this section, we present and compare
results for the two models, DVM and DV-MTDM, but we
also give some results for model MTDM. The difference in
CVaR value between the DVM and DV-MTDM models is
shown in Fig. 3, for each of the ten patients and for comput-
ing times of 3 min, 15 min and 2 h. The values in the boxplot
are the differences between the results of the DV-MTDM and
the DVM models. A positive value thus means that the solu-
tion from model DV-MTDM has a better (higher) CVaR
value than the solution from model DVM. For all solution
times and patients, model DV-MTDM finds solutions which
are better in terms of CVaR value, that is, dose distributions
with a higher dose to the coldest volume. The reason for the
large difference after 3 min is that model DVM has not yet
found any nontrivial feasible solution for several patients (that
is, a solution in which not all dwell times are zero). Even after
2 h, the average difference is 0.26 Gy, which is an increase
of 5% with model DV-MTDM compared to model DVM.

To study how much it is possible to improve the value of
CVaR we used model MTDM (see Table II). The Gurobi sol-
ver is always able to find and prove optimality for this model
(within a short time), and thus this result is an upper bound
on the attainable value of CVaR. The differences between the
results from model DV-MTDM and this upper bound on
CVaR are very small, and on average within only 0.1%. The
upper bound on CVaR from model MTDM holds for the dose
points used in the optimization model, but is not valid for the
dose points used for evaluation of the obtained dose plan.

TABLE II. Specification of the tested models with corresponding objective
function weights.

Model w1 w2

DVM 1 0

DV-MTDM 1 1

MTDM 0 1

TABLE III. Values used for prescription dose and dose bounds. Values for
planning target volume (PTV) and organs at risk are adopted from Deist and
Gorissen.9

Volume Dose target (Gy) Dose bound (Gy) Portion (%)

PTV 8.5

Urethra 10.0 10.6 90

Rectum 7.2 8.0 90

Artificial tissue 8.5
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This upper bound is however a strong indication that the
CVaR value cannot be improved much. To significantly
increase the CVaR value, relaxations of the model are neces-
sary, by allowing a higher dose to the OAR.

Figure 4 is constructed in the same way as Fig. 3 and
shows the difference in V100 between models DV-MTDM and
DVM, for each patient and for the three computing times.
Model DV-MTDM is better in terms of V100 for all patients
after 3 min and for all but one patient after 15 min. However,
after 2 h the results are very close (with an average difference
in V100 \ 1%).

To test for statistical significance of the differences in
CVaR and V100 we used the Wilcoxon signed-rank test.31 Still
after 2 h, CVaR was significantly better using model DV-
MTDM (P = 0.002) while there was no significant difference
in V100 (P = 0.38).

Figures 5 and 7 show the correlation between V100 (on the
x-axis), and EUD and TCP (on the y-axis) respectively. The
corresponding Figs. 6 and 8 show the correlation between
CVaR (on the x-axis), and EUD and TCP (on the y-axis),
respectively. The used models are DVM (marked with “x”),
DV-MTDM (marked with “+”) and MTDM (marked with
“*”) and an additional model that was used only to generate
dose plans for this comparison (marked with “o”). The latter
model has constraints on all DIs (including V100) and its
objective is to minimize the dose to a selected subset of dose
points of the PTV. The only purpose of this model was to
generate dose plans with significant underdosage. In
Figs. 5–8, there is a data point for each of the ten patients
and for each of the four models, after a solution of 2 h. These
figures are meant to illustrate a trend for which evaluation cri-
teria are closely correlated. Comparison of Figs. 5 and 7 with
Figs. 6 and 8 clearly indicates that there is a higher correla-
tion between CVaR and the two radiobiological indices than
between V100 and the radiobiological indices. This finding
supports the inclusion of the CVaR component in the opti-
mization model. Moreover, in Fig. 7 there are examples of
dose plans with equal V100 values but with quite different
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linelibrary.com]
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FIG. 6. Values of conditional value-at-risk and equivalent uniform dose from
dose plans for the ten patients and for four models each. The red (larger)
markers correspond to dose plans from one particular patient. [Color figure
can be viewed at wileyonlinelibrary.com]
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TCP values, and also dose plans with equal TCP values but
with quite different V100 values. There are also examples of
single patients for which it is possible to improve the dose
plan with respect to V100 while ending up with a dose plan
that is worse with respect to a radiobiological index (TCP
value). An example of this is the red (larger) points in Fig. 7.

The solution progress for CVaR for the DVM and DV-
MTDM models is shown in Fig. 9, on a logarithmic scale.
The plotted values are averages over the ten patients. At each
time, model DV-MTDM yields better results and the dose to
the coldest volume of the PTV is increased, which was the
aim with the model. The largest improvements can, however,
be seen after a short solution time because model DV-MTDM
yields good solutions much faster than model DVM. Further,
the largest improvements are found in solution times which
are clinically relevant.

Because V100 is a primary criterion in the clinical guideli-
nes, we have also compared the results with respect to V100,
see Fig. 10. It can be noted that model DV-MTDM yields the

best result at all times, even though the results from models
DVM and DV-MTDM are very close after 2 h. Further, the
solutions from the model DV-MTDM are near-optimal within
solution times of minutes. It is worth noticing that even
though model DV-MTDM puts more emphasis on the coldest
volume of the PTV, V100 does not become worse.

Table IV shows mean values of eight evaluation criteria at
solution times 3 min, 15 min and 2 h. After 2 h, the main
differences are in CVaR, EUD and Vurethra

100 . Both CVaR and
EUD are significantly improved with model DV-MTDM. The
dose to urethra is consistently a little higher with model DV-
MTDM, but the result is still well within the region defined
as feasible in the optimization model. The dosimetric index
for the rectum is not mentioned in the table because the lower
dose bound were satisfied in almost all dose points for all
patients and for both models. Other attributes, including the
part of the PTV where the dose is too high (V150 and V200),
are not significantly different between the models. Also the
dose homogeneity index,32 which is defined as
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FIG. 7. Values of V100 and tumour control probability from dose plans for
the ten patients and for four models each. The red (larger) markers corre-
spond to dose plans from one particular patient. [Color figure can be viewed
at wileyonlinelibrary.com]
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FIG. 8. Values of conditional value-at-risk and tumor control probability
from dose plans for the ten patients and for four models each. The red (larger)
markers correspond to dose plans from one particular patient. [Color figure
can be viewed at wileyonlinelibrary.com]
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FIG. 9. Comparison of conditional value-at-risk values from the dose-
volume model (dashed blue line) and the dose-volume mean-tail-dose model
(solid red line) with respect to solution times (logarithmic scale). [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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V100 � V150

V100
;

is very close between the models after 2 h.
Results in terms of V100 and CVaR for models DVM and

DV-MTDM, after 3 min, 15 min and 2 h, are shown in
Table V. There is a wide spread in the results after 3 min,
because either model DVM has not found a nontrivial feasi-
ble solution, or the best found solution is still poor. The dif-
ference is smaller after 15 min, but there are some patients
for whom model DVM has still not yet found a near-optimal
solution. Finally, the results after 2 h are much closer, but the
CVaR value is still improved for all patients with model DV-
MTDM compared to model DVM.

While the primary aim is to increase the dose to the cold-
est part of the PTV, it is also important to maintain a low dose
to OAR. Results showing that the latter aim is achieved are
presented in Table VI. Neither the DIs for urethra and rectum
nor the DIs for overdosage of the PTV are significantly differ-
ent. As the DVM has previously been shown to produce clini-
cally acceptable dose plans,8,10 these results also indicate that
our extension of the DVM yields clinically relevant dose
plans.

DVH curves are used clinically to visually inspect a dose
distribution. Fig. 11 shows the DVH curves for one patient
after solution times of 15 min and 2 h, respectively. The vol-
ume that receives a specific dose is at least as large for model
DV-MTDM for all dose levels. The difference is largest for
dose levels between approximately 6 and 15 Gy, which
includes the dose range which is specifically addressed with
the CVaR component. In both figures, the curves become
very similar for high dose levels.

Our solution method is the branch-and-bound implemen-
tation in the Gurobi solver, which is not deterministic. It is
known that the performance variability is large in nondeter-
ministic MIP solvers.33,34 To study the stability and the pre-
dictability of the results from the solver, we performed
simulations where we only varied the random seed given to
Gurobi. The results from model DV-MTDM were very stable
and good solutions were found within a short time for all
patients, regardless of which random seed that was used.
Model DVM showed a much larger variation in both the time

to the first (nontrivial feasible) dose plan and in the solution
progress.

5. DISCUSSION

We have presented results for models DVM and DV-
MTDM with one set of parameter values such as prescription
dose and dose bounds. For some patients, the values of V100

and D90 are lower than those suggested in the guidelines,3

but the results with our choices of parameter values should
still be valid for the sole purpose of comparing the models.

We have also performed computer simulations with other
parameter values. These simulations show similar overall
behavior and are therefore not included.

To get an indication of the adverse treatment effects from
cold volumes, we have used the radiobiological evaluation
criteria TCP and EUD. Because of the difficulty in estimating
the values of their parameters (particularly for TCP), the
absolute values are rather uncertain and not a factual repre-
sentation of the treatment effect. To move from using DIs for
evaluating dose plans to using radiobiological measures as
the primary evaluation criteria, more research is needed.26

In Ref. 29, tail EUD was introduced in an optimization
model for IMRT. This measure is analogous to EUD but only
takes the dose to the coldest volume in the PTV into account.
The resulting optimization model is nonlinear, but convex.
The aim with this model was to reduce the underdosed

TABLE IV. Mean values for the ten patients and the two models, for the evalu-
ation criteria listed in the top row. Here, the letter “a” means that the results
on that row are from the dose-volume model, while “b” means that the results
are from the dose-volume mean-tail-dose model.

V100 (%)
CVaR
(Gy)

TCP
(%)

EUD
(Gy)

Vurethra
100
(%)

V150

(%)
V200

(%)
D90

(Gy)

3 mina 36 2.4 38 3.5 100 12 4.3 3.5

3 minb 86 6.2 88 8.5 98 27 11 8.1

15 mina 74 5.1 77 7.2 98 22 8.3 7.2

15 minb 87 6.2 89 8.5 97 27 10 8.2

2 ha 87 6 87 8.4 97 27 9.8 8.2

2 hb 88 6.3 89 8.6 93 28 10 8.3

TABLE V. The table shows, for each patient, results in terms of V100 and
CVaR for the dose–volume model (DVM) and the dose–volume mean-tail-
dose model (DV-MTDM), after solution times of 3 min, 15 min and 2 h
respectively.

3 min 15 min 2 h

V100 (%)
CVaR
(Gy) V100 (%)

CVaR
(Gy) V100 (%)

CVaR
(Gy)

1 DVM 0 0.0 82 5.9 82 5.9

DV-MTDM 88 6.7 88 6.7 89 6.8

2 DVM 72 5.9 77 6.0 95 7.3

DV-MTDM 92 7.3 92 7.3 93 7.4

3 DVM 57 3.9 85 5.1 87 5.1

DV-MTDM 81 5.2 86 5.3 86 5.3

4 DVM 0 0.0 37 3.0 92 6.4

DV-MTDM 88 6.5 91 6.6 92 6.6

5 DVM 72 3.8 76 4.1 76 4.1

DV-MTDM 74 4.2 76 4.3 76 4.3

6 DVM 81 4.6 80 4.7 80 4.7

DV-MTDM 81 4.8 81 4.8 81 4.8

7 DVM 0 0.0 77 5.7 91 7.0

DV-MTDM 93 7.3 93 7.3 94 7.4

8 DVM 0 0.0 71 5.2 91 6.6

DV-MTDM 90 6.8 90 6.8 92 6.8

9 DVM 82 6.0 94 6.9 94 7.0

DV-MTDM 91 7.0 91 7.0 94 7.2

10 DVM 0 0.0 66 4.1 85 5.8

DV-MTDM 84 6.0 84 6.0 86 6.0
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volume, which is similar to the aim of the model proposed in
this paper. However, by instead using the linear CVaR mea-
sure for reducing cold volumes, the model remains linear and
our extended MIP model can be solved with the methods that
have been used to solve the original MIP model DVM. This
would not be the case if we had used tail EUD for reducing
cold volumes, because it is nonlinear.

Optimizing dose plans only with respect to DIs, the doses
to the coldest volume of the structure (in case of the PTV) are
not taken into account at all. Further, whenever mathematical
optimization is used in dose planning, the optimization pro-
cess is guided solely by the components and aspects included
in the model. Because any optimization process exploits the
degrees of freedom that are available in the model, any over-
sight to include relevant modeling components can have a
very adverse effect on the outcome of the model. This is true
also for the DVM, and hence there is a risk that the treatment
effect is lower than intended, as measured by only the DI.
Further studies are needed to see to what extent this would be
a problem in clinical practice.

6. CONCLUSIONS AND FUTURE RESEARCH

The motivation for our study was to address the weakness
of the DVM that underdosage to small target volumes is not
at all taken into account in treatment planning. The study by

Tom�e and Fowler14 on the adverse effect of underdosage
motivates the increased priority to the dose to cold volumes.

The DVM has received great interest in the last decade
and has been designed to explicitly include the criteria of
clinical importance. Our model comparison was carried out
with previous studies on clinical feasibility of the DVM in
mind.8,10 However, in these studies, the dose to the coldest
part of the PTV was not analysed.

Our proposed improved DVM achieved its aim to increase
the dose to the coldest volume of the PTV, while at the same
time keeping V100 at a level that is comparable to that
obtained from the DVM. Furthermore, the dose to the coldest
volume was shown to be very close to the best attainable
value. This observation implies that we have to relax the DI
constraints on the OAR to be able to further increase the dose
to the coldest volume. The improved model also consistently
provided near-optimal solutions much faster than the standard
DVM model. This improvement was especially seen for clini-
cally relevant solution times (of <15 min).

For clinical usage it is important to be able to foresee how
much computing time that is needed to find a (reasonably)
good solution. The stability of the model DV-MTDM in this
respect is an important advantage of this model. In particular,

TABLE VI. Shows results after 2 h of computing time for the dose-volume
model (DVM) and the dose–volume mean-tail-dose model (DV-MTDM).
The dosimetric index D90 is the lowest dose to 90% of the planning target
volume. The other dosimetric indices of the same type is for organs at risk,
where notation u and r is for the urethra and rectum, respectively. For these,
the volume is given in cubic centimetres (cc).

EUD
(Gy)

V150

(%)
V200

(%)
D90

(Gy)
Du

0:1cc
(Gy)

Dr
2cc

(Gy)
Dr

0:1cc
(Gy)

1 DVM 8.3 19 8 8.1 9.7 3.5 4.5

DV-MTDM 9.0 22 9 8.4 9.9 3.8 4.7

2 DVM 9.8 30 10 9.0 9.8 3.1 4.3

DV-MTDM 9.6 26 9 8.8 9.8 3.0 4.1

3 DVM 7.5 35 12 8.2 9.8 3.2 4.6

DV-MTDM 7.7 32 14 8.1 9.8 3.2 4.5

4 DVM 9.1 29 10 8.7 9.9 3.4 4.8

DV-MTDM 9.2 29 10 8.7 9.9 3.4 4.8

5 DVM 6.1 32 14 6.9 9.7 3.0 4.3

DV-MTDM 6.3 31 13 6.9 9.8 3.0 4.2

6 DVM 6.9 27 10 7.2 9.5 3.1 4.4

DV-MTDM 7.1 29 11 7.4 9.9 3.0 4.1

7 DVM 9.4 23 8 8.6 9.5 3.3 4.6

DV-MTDM 9.8 28 9 8.9 9.9 3.3 4.7

8 DVM 9.2 30 10 8.6 9.7 3.7 5.1

DV-MTDM 9.4 31 11 8.7 9.9 3.7 5.1

9 DVM 9.6 24 7 9.0 9.8 3.9 5.3

DV-MTDM 9.6 24 8 9.0 9.9 3.9 5.2

10 DVM 8.3 24 9 8.0 9.7 3.8 5.0

DV-MTDM 8.5 26 10 8.1 9.8 3.7 4.8

FIG. 11. Dose–volume histograms for one patient. The dashed blue line and
the solid red line show results for the dose–volume model and the dose–vol-
ume mean-tail-dose model respectively. The results in the top figure are
obtained after 15 min, while the results in the bottom figure are obtained
after 2 h. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (6), June 2019

2564 Mor�en et al.: An extended dose–volume model in HDR BT 2564

www.wileyonlinelibrary.com


using model DV-MTDM, near-optimal solutions were always
found within 3 min for all patients, while when using model
DVM this was the case only for half of the patients. It was
further observed that the MIP solver was not even able to find
nontrivial feasible solutions of the DVM within 3 min for all
patients; this is consistent with the results in Ref. [9]. (We
observed similar patterns when varying the random seed in
the MIP solver Gurobi.)

Dose planning in HDR BT has traditionally been a manual
task. In manual planning there are often implicit criteria and
considerations, for example, to avoid cold volumes or hot
spots. The usage of mathematical optimization, which is an
automatic way to construct dose plans based on more or less
simplified models, may yield dose distributions that are fun-
damentally different from the dose distributions from manual
planning. This is both because only criteria that are explicitly
included in the optimization model are considered and
because the nature of optimization methodologies is such that
they tend to give more extreme solutions. There is therefore a
need to investigate further which criteria that should be used
in mathematical optimization models for dose planning, pos-
sibly resulting in different guidelines than for manual
planning.

Because the solution times for the studied optimization
models depend on the solution method, it would be interest-
ing to study if other methods for solving the proposed mod-
els, such as heuristics, would still give shorter solution times
for model DV-MTDM compared to model DVM.

Finally, the aim of this paper was to evaluate our
extended formulation of the DVM against the standard for-
mulation of the DVM. An important topic for future
research is to study the features of our extended optimization
model for dose planning from a clinical perspective. Future
work is to compare the proposed model with both models
for automatic dose planning used in existing clinical treat-
ment planning systems, and manual planning, and combina-
tions of these.
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