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The impairment of pancreatic b-cells function is partly caused by lipotoxicity, which
aggravates the development of type 2 diabetes mellitus. Activator Protein 1 member JunD
modulates apoptosis and oxidative stress. Recently, it has been found that JunD
regulates lipid metabolism in hepatocytes and cardiomyocytes. Here, we studied the
role of JunD in pancreatic b-cells. The lipotoxic effects of palmitic acid on INS-1 cells were
measured, and JunD small-interfering RNA was used to assess the effect of JunD in
regulating lipid metabolism and insulin secretion. The results showed that palmitic acid
stimulation induced the overexpression of JunD, impaired glucose-stimulated insulin
secretion, and increased intracellular lipid accumulation of b-cells. Moreover, the gene
expression involved in lipid metabolism (Scd1, Fabp4, Fas, Cd36, Lpl, and Plin5) was
upregulated, while gene expression involved in the pancreatic b-cells function (such as
Pdx1, Nkx6.1, Glut2, and Irs-2) was decreased. Gene silencing of JunD reversed the
lipotoxic effects induced by PA on b-cells. These results suggested that JunD regulated
the function of pancreatic b-cells by altering lipid accumulation.

Keywords: T2DM, pancreatic b-cells, lipotoxicity, JunD, lipid accumulation
INTRODUCTION

The prevalence of type 2 diabetes mellitus (T2DM) in the world is increasing yearly. Its
complications, such as cardiovascular diseases, retinopathy, and nephropathy, have been imposed
a heavy burden on public health (1–3). Insufficiency of insulin secretion of pancreatic b-cells and
insulin resistance, due to prolonged lipotoxicity at least in part, are the basic characteristics of
diabetes. Therefore, elucidating the potential mechanism of lipotoxicity on pancreatic b-cells
dysfunction is crucial in the field of diabetic therapy.

Previous studies had demonstrated that T2DM could cause lipid accumulation in non-
adipocytes, including hepatocytes and myocytes (4). Recent studies have indicated the existence
of lipid and its associated proteins in human b cells (5, 6). As far as metabolic diseases are
concerned, intracellular lipid accumulation is often caused by the imbalance of fatty acid synthesis,
uptake, and hydrolysis, which eventually leads to the activation of cell apoptosis. Lipid deposition in
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pancreatic b-cells reduces insulin secretion (7), therefore, it is
important to decipher the mechanism of intracellular lipid
deposition in pancreatic b-cells.

Activator Protein 1 complex, which is composed of three Jun
proteins (c-Jun, JunB, and JunD), four Fos proteins (c-Fos, FosB,
Fra-1, and Fra-2), and four ATF proteins (ATF1-4, ATF-6, b-ATF,
and ATFx) (8), plays a crucial role in regulating cell growth and
metabolism. AP-1 member JunD modulates cell differentiation,
proliferation, and apoptosis (9) and protects cells against oxidative
stress by limiting the production of reactive oxygen species (10).
JunD-/- mice exhibited a shortened life span and increased
pancreatic angiogenesis (11). Besides, JunD regulates the survival
of pancreatic b-cells in the process of metabolic stress (12).
However, the underlying mechanism of JunD affecting
pancreatic b-cells function is still unclear.

In addition, it is reported that JunD also regulates triglyceride
(TG) metabolism. In metabolic cardiomyopathy models, JunD
binds to peroxisome proliferators-activated receptor (PPAR) g
promoter directly, thus enabling the transcription of genes
involved in the process of TG synthesis, uptake, hydrolysis, and
storage (13). Besides, JunD has been proved to affect hepatic TG
metabolism and non-alcoholic fatty liver disease (NAFLD) (14).
Here, we investigated the role of JunD in the process of lipid
accumulation and insulin secretion in pancreatic b-cells.
METHODS

Animals
Twenty eight-week-old male C57BL/6J mice were purchased
from the Model Animal Research Center of Shandong
University, Jinan, China. The mice were housed in a
temperature- and the humidity-controlled environment under
a 12h light:12h dark cycle. After one week of adaptive feeding,
the mice were given a 60% high-fat diet (HFD) for 16 weeks,
whereas the control group was fed with a normal chow diet.
T2DM mice model was induced by HFD combined with STZ.
The HFD mice were injected intraperitoneally with streptozocin
(100mg/kg, S0130; Sigma-Aldrich) dissolved in a 50 mM citric
acid buffer after fasting for 12 h, while the control mice were
injected with the citric acid buffer. T2DMmice were identified as
two consecutive fasting glucose ≥ 16.7 mmol/L.

Animal Procedures
Fasting blood glucose and body weight was measured once a
week. The intraperitoneal glucose tolerance test (IPGTT; 2 g/kg
glucose) and intraperitoneal insulin tolerance test (IPITT; 0.75
U/kg insulin) were performed 1 week after the establishment of
the T2DM mice model. After glucose or insulin injection, blood
glucose concentrations were measured at 0, 30, 60, 90, 120, and
180 min. The body fat mass of the mice was detected by dual-
energy X-ray absorptiometry before the mice were anesthetized
for euthanasia. 6 weeks after the establishment of the T2DM
mice model, the mice were euthanized. Some pancreases were
digested to extract islets. Other pancreases were fixed in 4%
paraformaldehyde and make paraffin sections. The sections were
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used for TUNEL staining and immunofluorescence staining to
detect the expression of insulin and glucagon.

All experimental procedures performed in this study followed
the ethical guidelines for animal studies and were approved by
the Institutional Animal Care and Qilu Hospital of Shandong
University, China.

Cell Culture and Treatments
INS-1 cell line was obtained from Nanjing Medical University,
PR China. Cells were cultured in RPMI-1640 medium (Gibco)
supplemented with 15% FBS, 10mM HEPES (Sigma-Aldrich, St.
Louis, MO), 1mM sodium pyruvate (Sigma-Aldrich), 2mM
L-glutamine (Gibco) and 50 mmol/L b-mercaptoethanol
(Sigma-Aldrich) at 37°C with 5% CO2. Cells were cultured in a
medium containing 0.4 mmol/L palmitic acid (PA, Sigma-
Aldrich, USA) for 24h to induce lipotoxicity. After PA
stimulation for 24h, the TUNEL staining, Oil Red staining,
Western blots, and RNA extraction were performed.

PA Preparation
0.08g sodium hydroxide (NaOH) was dissolved in 4ml ddH2O to
prepare 500mmol/L NaOH solution. Then, 0.1923g PA was
added into 1.5 mL 500mmol/L NaOH solution and dissolved
in a water bath at 75°C to prepare a 500mmol/L PA solution.
Next, 1g BSA without fatty acid was added into 20mL ddH2O
preheated at 55°C and centrifuged at 8000rpm for 20min to
prepare 5% BSA solution. Finally, 1ml PA solution was dissolved
in 9ml 5% BSA solution to obtain 50mmol/L PA solution.

Cell Viability
According to the manufacturer’s instructions, INS-1 cells
incubated in 96-well plates were treated with different
concentration of PA (0.1, 0.2, 0.4, 0.8mM), and cell viability
was assessed by Cell Counting Kit-8 (CCK-8, DoJinDo, Japan) at
6, 12, 24, 36, and 48 hours. The absorbance was detected by a
microplate reader at a test wavelength of 450 nm.

Small Interfering RNA (siRNA)
Transfections
The sequences of small-interfering RNAs (siRNAs) targeting rats
JunD were designed and synthesized by GenePharma (Shanghai,
China) for RNA silencing. The sense and antisense sequences of
JunD siRNA were 5′‐GCAGUUCCUCUACCCUAAGTT‐3′.
The normal control siRNA targeted the following sequence: 5′‐
CUCUGAACCCUAAGGCCAATT‐3′. INS-1 cells were
transfected with 160 pmol of siRNA for 6–8 h via
Lipofectamine 2000 transfection reagent (Invitrogen, USA),
according to the manufacturer’s instructions. Cells were
harvested 72h later for RNA and protein.

Glucose-Stimulated Insulin
Secretion (GSIS)
After exposure to PA (0.4mM) for 24h, INS-1 cells were
incubated in Krebs-Ringer bicarbonate HEPES buffer
containing 2.5 mM glucose at 37°C for 1h. Then cells were
treated with KRBH buffer (120 mM NaCl, 0.75 mM
CaCl2·2H2O, 4mM KH2PO4,10mM NaHCO3,1mM
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MgSO4·7H2O, 30mM HEPES, 1% BSA) containing 25 mM
glucose for an additional 1h. According to the manufacturer’s
protocol, insulin concentration was measured using an insulin
kit (Blue Gene, Shanghai, China). Final insulin content was
normalized to the protein concentration of cells.

Islet Extraction
After euthanasia, pancreases were isolated. First, each pancreas
was added to 1× Hank’s Balanced Salt Solution (HBSS) (CC014;
Macgene) containing 1.5 mg/mL collagenase V (C8170; Solarbio)
and 62.5 U/mL DNase I (EN0521; Thermo Fisher Scientific).
Next, the solution was shaken at 37°C with a constant
temperature shaker. The digestion was terminated with pre-
cooled HBSS containing 1% FBS when the tissue was visually
observed as a fine line, and islets were purified through
programmed sedimentation. Finally, isolated islets were
handpicked and cultured in RIPM 1640) in 95% air/5% CO2
at 37°C.

Western Blot
INS-1 cells and islets were harvested and lysed in RIPA buffer
(Beyotime, China). Protein concentrations were detected with
a BCA assay kit (P0012S, Beyotime, Shanghai, China).
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20 micrograms of protein were loaded onto the gel. After
running on 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis gels (EpiZyme, China), proteins were
transferred to polyvinylidene difluoride membranes (Millipore,
Temecula, CA), which were blocked with 5% milk at room
temperature for 1 h. Transferred membranes were incubated
overnight at 4°C with the following primary antibodies. After
incubation with horseradish-peroxidase-labeled secondary
antibodies, protein bands were exported by Image Lab software
(BioRad, USA). Protein-band intensities were measured via
ImageJ and were normalized to b-actin. Primary antibodies are
listed in Table 1.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA from INS-1 cells was extracted with RNAiso Plus
solution (Takara, Japan). Then, 1 ug RNA was reverse-
transcribed into cDNA using PrimeScriptTM Reverse
Transcriptase (Takara, Japan). Real-time PCR was conducted
with the SYBR Green PCR kit (Takara, Japan). Relative
expression levels of target mRNAs were normalized to b-actin
and were calculated based on the 2-DDCt comparative method.
Primer sequences are listed in Table 2.
TABLE 1 | Antibodies used in this study.

Antibody Manufacture Dilution ratio Origin Use Catalog no

b-actin CST 1:1000 USA WB 4970
JunD Abcam 1:1000 USA WB ab181615
PPARg Novus 1:1000 USA WB NBP2-

76958
SREBP1c Proteintech 1:1000 China WB 14088-1-AP
cleaved-
caspase3

CST 1:1000 USA WB 9661

caspase3 CST 1:1000 USA WB 9662
Bax CST 1:1000 USA WB 2772S
Insulin Proteintech 1:1000 China IF 15848-1-AP
Glucagon Proteintech 1:200 China IF 15954-1-AP
Jul
y 2021 | Volume 12 | A
PPARg, Peroxisome proliferators-activated receptor g ; SREBP1c, Sterol regulatory element-binding protein 1c; Bax, BCL2-associated X.
TABLE 2 | Sequences used in this study.

Primers Sense sequence (5’-3’) Antisense sequence (5’-3’) Species Gene ID

b-actin AGCCATGTACGTAGCCATCCA TCTCCGGAGTCCATCACAATG Mouse 11461
JunD GTGCCCAGGAACTCAGAGAG TAAAGGAAAGGCAGGGTTTG Mouse 16478
PPARg TCGCTGATGCACTGCCTATG GAGAGGTCCACAGAGCTGATT Mouse 19016
Scd1 AGATCTCCAGTTCTTACACGACCAC GACGGATGTCTTCTTCCAGGTG Mouse 20249
Fas ACCTCCAGTCGTGAAACCAT CTCAGCTGTGTCTTGGATGC Mouse 14104
Plin5 TGTCCAGTGCTTACAACTCGG CAGGGCACAGGTAGTCACAC Mouse 66968
Cd36 ATGGGCTGTGATCGGAACTG GTCTTCCCAATAAGCATGTCTCC Mouse 12491
Lpl GCGAGAACATTCCCTTCACC AGTCTCTCCGGCTTTCACTC Mouse 16956
Fabp4 AAGGTGAAGAGCATCATAACCCT TCACGCCTTTCATAACACATTCC Mouse 11770
Pdx1 AACCGTCGCATGAAGTGGAA CGAGGTTACGGCACAATCCT Mouse 18609
Nkx6.1 GGGCTCGTTTGGCCTATTCGTT CCACTTGGTCCGGCGGTTCT Mouse 18096
Irs-2 CTACCCACTGAGCCCAAGAG CCAGGGATGAAGCAGGACTA Mouse 384783
Glut2 TCAGAAGACAAGATCACCGGA GCTGGTGTGACTGTAAGTGGG Mouse 20526
Ucp2 TCCTGAAAGCCAACCTCATGA CAATGACGGTGGTGCAGAAG Mouse 22228
rticl
PPARg, Peroxisome proliferators-activated receptor g ; Scd1, stearoyl-CoA desaturase 1; Fas, Fatty acid synthase; Plin5, Perilipin 5; Lpl, lipoprotein lipase; Fabp4, Fatty acid-binding
protein 4; Pdx1, Pancreatic and duodenal homeobox 1; Nkx6.1, NK homeobox gene 6.1; Irs-2, Insulin receptor substrate-2; Glut2, Glucose transporter 2; Ucp2, Uncoupling protein 2.
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Oil Red O Staining
INS-1 cells were processed by Oil red O (Sigma-Aldrich, USA)
staining to assess lipid content. First, cells were fixed with 4%
paraformaldehyde for 15 min. Second, after two washes in PBS,
cells were stained with Oil red O for 30 min at room temperature.
Last, cells were treated with 60% isopropanol to differentiate the
background and dyed with hematoxylin for 1 min before
microscopic examination. Quantification of relative lipid
content was performed by ImageJ. We counted stained lipid
droplets in 100 cells.

Immunofluorescence
Pancreatic sections were incubated with 5% BSA for 1h at room
temperature and then incubated overnight with the anti-insulin
(Proteintech, 15848-1-AP), and anti-Glucagon (Proteintech,
15954-1-AP) at 4°C. The next day, sections were stained with
the secondary antibody for 1 hour at room temperature in the
dark. The nucleus was stained with 4, 6 diamidino-2-
phenylindole (DAPI) at room temperature for 5 minutes. The
tissue sections and cells were imaged under a fluorescence
microscope (BX61, Olympus, Japan).

Terminal Deoxynucleotidyl Transferase-
Mediated dUTP-Biotin Nick End Labeling
(TUNEL) Assay
TUNEL assays of INS-1 cells were performed using the TUNEL
Apoptosis Detection Kit (KGA702, KeyGEN BioTECH, China)
and detected according to the manufacturer’s instructions.
Briefly, INS-1 cells were fixed with 4% paraformaldehyde for 20
minutes. A 50 mL reaction mixture containing 45 mL
Equilibration Buffer, 4 mL TdT Enzyme, and 1mL Biotin-11-
dUTP was then added to each sample for 60 min incubation at
37°C. Then the sections and cells were washed with PBS three
times and incubated with Streptavidin-TRITC for 30 min at 37°C,
and finally counterstained with DAPI for 5 min. The tissue
sections and cells were imaged under a fluorescence microscope
(BX61, Olympus, Japan).

Statistical Analysis
Three independent experiments were performed, and results were
expressed as themean ± the standard error of themean (SEM). Data
were compared using paired Student t-tests or one-way ANOVA
followed by Bonferroni tests in GraphPad Prism 8 software (San
Diego, CA, USA). P-values determined from different comparisons
< 0.05 were considered statistically significant and are indicated as
follows: *P < 0.05; **P < 0.01; ***P < 0.001.
RESULTS

JunD Was Activated in Islets of T2DM
Mice and PA-Stimulated INS-1 Cells
First, we evaluated the establishment of the T2DM mice model.
The body weight and fasting blood glucose were measured once a
week. As shown in Figure 1A, the blood glucose of T2DM mice
Frontiers in Endocrinology | www.frontiersin.org 4
was higher than that of control mice. Meanwhile, the body
weights of mice in two groups were measured. The results
showed that the body weights of T2DM mice were significantly
lower than that of blank controls (Figure 1B). Glucose
homeostasis of T2DM mice was significantly impaired.
The IPGTT showed significant and glucose intolerance
(Figure 1C), and the IPITT indicated markedly reduced
insulin sensitivity (Figure 1D) in T2DM mice. The
immunofluorescence showed that T2DM mice had a lower
insulin-positive cell ratio and a higher glucagon-positive cell
ratio (Figure 1E). We performed body composition analysis by
dual-energy X-ray absorptiometry to study the body fat
percentage (BFP, %) levels. The results showed that the BFP
levels of T2DM mice were dramatically elevated compared with
the control group (Figure 1F). These data suggested that the
T2DM mice model was successfully established. In addition, the
protein level of JunD in islets of T2DM mice was elevated
compared to that of control mice (Figure 1G), which indicated
the activation of JunD.

Then we evaluated whether JunD was activated in PA-
induced INS-1 cells. PA is widely used to induce lipotoxicity
mimicking the environment of T2DM (17). The CCK8 assay was
performed to determine the concentration and stimulation time
of PA (Figure S1A). We examined whether 0.4mM PA could
activate JunD. We found that the expression of JunD was
increased at 6h, and reached its peak at 24h, then gradually
decreased (Figure S1B). As a result, we chose a 0.4 mM PA to
stimulate for 24h in the following experiment. The results
showed a significant increase in the expressions of JunD in
PA-treated INS-1 cells compared with control cells, both at
mRNA and protein levels (Figure 1H). Taken together, these
results confirmed the activation of the JunD in islets of T2DM
mice and PA-treated INS-1 cells.

PA Induced INS-1 Cells Dysfunction
The TUNEL assay showed that the number of TUNEL-positive
INS-1 cells after PA stimulation was dramatically increased
compared with blank controls (Figure 2A). Additionally, we
examined the protein levels of cleaved-caspase3 and Bax. The
results showed that the expressions of cleaved-caspase3 and Bax
were increased in PA-induced INS-1 cells, which indicated that
the apoptosis of INS-1 cells was increased under PA stimulation
(Figure 2B). Insulin secretion of INS-1 cells was measured by
glucose-stimulated insulin secretion (GSIS) after exposure to PA
for 24h. The results showed that PA upregulated basal insulin
secretion at 2.5mM glucose. However, under the circumstance of
25mM glucose, insulin secretion after PA stimulation was much
lower than that of the control group (Figure 2C). Meanwhile,
essential genes for pancreatic b-cells function, such as Pdx1,
Nkx6.1, Irs-2, Glut2, and Ucp2 were evaluated. Compared with
the control group, the mRNA expressions of Pdx1, Nkx6.1, Irs-2,
and Glut2 were significantly reduced after PA stimulation. On
the other hand, PA increased Ucp2 mRNA levels in INS-1 cells
(Figure 2D), which inhibits insulin secretion by reducing ATP
synthesis (16). Collectively, these findings indicated that
lipotoxicity led to the dysfunction of pancreatic b-cells.
July 2021 | Volume 12 | Article 689845
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PA Induced Lipid Accumulation
in INS-1 Cells
We further assessed whether PA could induce lipid accumulation
in INS-1 cells. Intracellular lipid accumulation was evaluated by
Oil red O staining. As shown in Figure 3A, there were no
apparent lipid droplets in the control group. In contrast, after
exposure to PA, a large number of lipid droplets were
accumulated in the cytoplasm. SREBP1c, a transcription factor
Frontiers in Endocrinology | www.frontiersin.org 5
responsible for fatty acid synthesis (17), was increased in PA-
stimulated INS-1 cells (Figure 3B). The real-time PCR array
revealed a profound upregulation of genes implicated in fatty
acid synthesis (i.e., Fas, SCD1), uptake (i.e., Cd36, Fabp4),
hydrolysis (i.e., Lpl), and storage (i.e., Plin5) after PA
stimulation compared to the control group (Figure 3C). These
results indicated that PA stimulated lipid production and led to
lipid accumulation in INS-1 cells.
A B

D

E

F

G H

C

FIGURE 1 | JunD was activated in islets of T2DM mice and PA-stimulated INS-1 cells. Blood glucose (A) and body weights (B) of T2DM mice compared with
control mice before or after STZ injection. Intraperitoneal glucose tolerance test (IPGTT) (C) and intraperitoneal insulin tolerance test (IPITT) (D) were performed 1
week after the establishment of the T2DM mice model, and the area under curve (AUC) was also calculated. (E) The representative dual-energy X-ray absorptiometry
image showed the body fat of the mice and the comparison of body fat percent (BFP%). (F) The representative immunofluorescence images of pancreases stained
with insulin and glucagon, and the percentage immune-positive area of the islet insulin and glucagon, scale bar=20 mm. (G) The protein expression of JunD in islets
was detected by Western blot. (H) The protein mRNA levels of JunD in PA-stimulated INS-1 cells. Data are expressed as the mean ± SEM. *p < 0.05; **p <0.01;
***p < 0.001 (compared with control group).
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JunD/PPARg Signaling Pathway Involved
in PA-Induced INS-1 Cells Dysfunction
To investigate the effect of JunD on the PA-induced INS-1 cells
dysfunction, the JunD knockdown model in INS-1 cells was
established. Gene silencing of JunD by siRNA was confirmed by
Western blot and real-time PCR (Figures 4A–D). Our results
showed that PPARg was increased after PA stimulation, both at
protein and mRNA levels (Figure 5A). JunD depletion
downregulated the expressions of PPARg (Figure 5B), which
indicated that PPARg might be the downstream target of JunD.

Then we evaluated the function and lipid accumulation of
INS-1 cells. The TUNEL assay showed that the number of
TUNEL-positive cells was decreased (Figure 5C), and Western
blot showed lower expressions of cleaved-caspase3 and Bax
(Figure 5D) in PA-induced INS-1 cells after transfection with
JunD siRNA. As shown in Figure 5E, gene silencing of JunD
reversed the impaired GSIS after PA stimulation. Meanwhile, the
Frontiers in Endocrinology | www.frontiersin.org 6
mRNA levels of Pdx1, Nkx6.1, Irs-2, Glut2, and Ucp2 were also
significantly ameliorated (Figure 5F). The Oil Red O staining
showed reduced lipid droplets in JunD-depleted INS-1 cells
(Figure 5G). Depletion of JunD also suppressed the expression
of SREBP1c (Figure 5H), as well as the levels of Scd1, Plin5, Lpl,
Fas, Cd36, and Fabp4 (Figure 5I). These results revealed that
JunD/PPARg signaling pathway was involved in the dysfunction
of INS-1 cells.
DISCUSSION

Pancreas plays a major role in maintaining normal blood glucose
levels; however, the islet function of T2DM patients is impaired.
Previous studies have shown that metabolic stress leads to the
disorder of glucose and lipid metabolisms and finally results in
cell dysfunction (18). The dysfunction of pancreatic b-cells is
A

B

DC

FIGURE 2 | PA induced INS-1 cells dysfunction. INS-1 cells were incubated with PA (0.4mM) for 24h. (A) Apoptosis was assessed by terminal deoxynucleotidyl
transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, scale bar=50 mm. (B) The protein expressions of cleaved-caspase3 and Bax were detected by
Western blot. (C) Glucose-stimulated insulin secretion (GSIS) was performed to show the dysfunction of insulin secretion after PA stimulation. (D) The mRNA
expressions of insulin secretion-related genes, including Pdx1, Nkx6.1, Irs-2, Glut2, and Ucp2. Data are expressed as the mean ± SEM. ***p < 0.001 (compared with
control group).
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mainly manifested by insufficient secretion, which leads to
accelerated progress of diabetes and forms a vicious circle (19);
and if without timely intervention, the body will gradually lose
weight (20, 21), leading to many serious complications. The
weight loss is likely to be the result of catabolic effects of insulin
deficiency and acidosis (21, 22); meanwhile, if T2DM progresses
to diabetic nephropathy, osmotic diuresis can also lead to blood
volume reduction and weight loss (23). Therefore, restoring the
function of pancreatic b-cells is a key node to treat T2DM. High-
fat diet combined with STZ was used to mimics T2DM model.
High-fat diet is used to simulate the eating habits of most
patients with type 2 diabetes (24), and STZ helps to destroy
the function of b cells (25). The expansion of adipose tissue
releases a large amounts of nonesterified fatty acids, such as oleic
Frontiers in Endocrinology | www.frontiersin.org 7
acid and PA (26). PA induces insulin resistance and pancreatic
b-cells dysfunction via three mechanisms (27): (1) Increased
internalization of palmitic acid results in lipotoxicity (28); (2)
The excess of PA results in the endoplasmic reticulum and
mitochondria dysfunction (29, 30); (3) PA can activate toll-like
receptor (TLR)-4 and high-fat diets activate the IKKb–NF-kB
pathway, leading to an inflammatory environment (31, 32).
Here, we revealed the important role of JunD in pancreatic b-
cells by altering lipid accumulation.

The causes of pancreatic b-cells dysfunction include ectopic
lipid accumulation, which leads to oxidative stress,
inflammation, and b-cell apoptosis (33). Even more notably,
improving b-cell lipid metabolism could boost the regeneration
of b-cells (34). Therefore, it is important to decipher the
A

B

C

FIGURE 3 | PA induced lipid accumulation in INS-1 cells. (A) Oil red O staining was performed to detect the intracellular lipid accumulation, scale bar=20 mm.
Quantification of lipid content was performed by ImageJ. (B) The protein expression of SREBP1c was detected by Western blot. (C) The mRNA levels of TG–
synthesis, uptake, hydrolysis, and storage-related genes, including Fas, Scd1, Cd36, Fabp4, Lpl, and Plin5. Data are expressed as the mean ± SEM. **p < 0.01;
***p < 0.001 (compared with control group).
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mechanism of lipid deposition in b cells. Most of the studies
focus on the disorder of lipid synthesis, transport, hydrolysis, and
storage. Estrogen receptors and liver X receptors are both
expressed in pancreatic b-cells and regulate genes related to
lipid metabolisms, such as Fas, Acc, and Cpt1a (35, 36).
Autophagy is a lysosomal-dependent cellular catabolism
mechanism and decreases cellular lipid stores in pancreatic b-
cells (37). Adipose triglyceride lipase is responsible for lipid
droplet mobilization in human b-cells (38). However, the
researches on the lipid metabolism of b-cells are still
insufficient and there are few targeted treatments.

The AP-1 transcription factor JunD regulates various target
genes involved in cell growth, proliferation, and apoptosis (9, 39).
Recently, JunD has emerged as a vital player in the setting of
metabolic diseases (11–14, 40). Hyperglycemia promotes ROS
production by downregulating JunD expression, which leads to
cardiac dysfunction. In addition, previous studies have indicated
that the impact of JunD in metabolic cardiomyopathy and
NAFLD is mainly caused by promoting intracellular lipid
deposition through the PPARg signaling pathway. JunD−/−
mice showed reduced intra-myocardial TG accumulation, total
liver, and fat pad weights (13, 14). Besides, the cardiac specimens
of obese patients had higher expression of JunD, as well as TG-
related genes vs. non-obese hearts (13). These researches
indicated that JunD is an upstream regulator of PPARg and
mediates the transcription of genes involved in lipid uptake,
hydrolysis, and storage.

JunD also acts as a stress-responsive factor that induces redox
imbalance and apoptosis in pancreatic b-cells (12). However, it
will be of interest to determine whether JunD is involved in the
Frontiers in Endocrinology | www.frontiersin.org 8
lipid accumulation of pancreatic b-cells. Our study suggested
that JunD was activated in PA-stimulated INS-1 cells, and JunD
depletion prevented PA-induced impaired GSIS, lipid
accumulation. The research on the function of PPARg on
pancreatic b-cells is contradictory. Many studies have shown
that PPARg activation induces insulin secretion through
proliferation (41), anti-apoptosis (42), or antioxidation (43).
Hong et al. indicated that PPARg agonist could attenuate PA-
induced inflammation and ER stress in pancreatic b-cells (44).
However, our results showed that PPARgwas activated under PA
stimulation and modulate the upregulation of genes involved in
lipid metabolism, which was consistent with the studies
performed by Hogh et al . Hogh et al . found that
overexpression of PPARg specifically in pancreatic b-cells alters
islet lipid metabolism and exacerbates b-cells dysfunction (45).
Ectopic expression of PPARg in INS-1 cells increases lipid
accumulation and decreases GSIS (46). Peroxisome-generated
hydrogen peroxide mediates the lipotoxicity in pancreatic b-
cells, which might be the potential mechanism of b cell
dysfunction caused by PPARg activation (47). Under
pathological states, such as high glucose and obesity, the
activation of PPARg in pancreatic b-cells might aggravates
apoptosis and affect glucose homeostasis (48).

It is unclear whether other mechanisms are contributing to
the regulation of JunD in GSIS. Mitochondrial dysfunction (49),
ER stress (50), as well as imbalance of Ca2+ homeostasis (51) are
associated with pancreatic b-cells dysfunction. Mitochondrial
dysfunction including changed mitochondrial structure,
decreased mitochondrial respiration, reduced mitochondrial
ATP production (52). Akhmedov et al. indicated that
A B

DC

FIGURE 4 | The inhibition efficiency of JunD. (A) Western blot analyses and real-time PCR (B) for inhibition efficiency of JunD in INS-1 cells. (C) The protein and
(D) mRNA levels of JunD. Data are expressed as the mean± SEM. **p < 0.01; ***p < 0.001 (compared with control group), ###p < 0.001 (compared with PA group).
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cardiomyocyte-specific JunD overexpression reduced Sirt3
transcription, thus leading to mitochondrial dysfunction (53).
Our results showed that JunD reversed the increase of Ucp2
induced by PA, which inhibits insulin secretion by reducing ATP
synthesis (16), indicating that JunD might improve GSIS by
changing mitochondrial ATP production. Good et al. found that
the depletion of JunD downregulated Ptgs2 in db/db mice, which
Frontiers in Endocrinology | www.frontiersin.org 9
encodes cyclooxygenase-2 (COX2) and imparts insulin secretion
of pancreatic b-cells (12).

Other AP-1 components also play an important role in
regulating pancreatic b-cells. In b cells, glucose modulates the
expression pattern of fos and jun genes, which could induce an
immediate-early gene c-fos (54, 55). The immediate-early genes
encode transcription factors and regulate downstream target
A B

D

E F

G

IH

C

FIGURE 5 | JunD/PPARg signaling pathway involved in PA-induced INS-1 cells dysfunction. INS-1 cells were transfected with JunD siRNA 470 followed by treatment
with 0.4 mmol/L PA for 24 hours. (A, B) Expressions of PPARg in protein and mRNA levels. (C) Apoptosis was assessed by TUNEL assay, scale bar=50 mm. (D) The
protein expressions of cleaved-caspase3 and Bax were detected by Western blot. (E) GSIS was performed to show the dysfunction of insulin secretion after PA
stimulation. (F) The mRNA expressions of insulin secretion-related genes, including Pdx1, Nkx6.1, Irs-2, Glut2, and Ucp2. (G) Oil Red O staining was performed to
detect the intracellular lipid accumulation, scale bar=20 mm. (H) The protein expression of SREBP1c was detected by Western blot. (I) The mRNA levels of TG
synthesis, uptake, hydrolysis, and storage-related genes, including Fas, Scd1, Cd36, Fabp4, Lpl, and Plin5. Data are expressed as the mean± SEM.
*p < 0.05; **p < 0.01; ***p < 0.001 (compared with control group), #p < 0.05, ##p < 0.01, ###p < 0.001 (compared with PA group).
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genes (56). Human amylin could activate the expression of c-jun,
mediate the combination of c-jun with c-fos or ATF-2, and
activate the downstream apoptosis pathway of pancreatic b-cells
(57). Gurzov et al. indicated that JunB plays a protective role
against apoptosis in pancreatic b-cells through inhibiting iNOS
and Chop expression (58). Meanwhile, an inflammatory
environment upregulates JunB/ATF3 pathway and protects b
cells by increasing cAMP expression (59).

Taken together, our research provides a new strategy for
restoring the function of pancreatic b-cells and has a prospect of
clinical treatment.
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