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Radiotherapy (RT) primarily aims to locally destroy the tumor via the induction of DNA 
damage in the tumor cells. However, the so-called abscopal, namely systemic and 
immune–mediated, effects of RT move over more and more in the focus of scientists and 
clinicians since combinations of local irradiation with immune therapy have been demon-
strated to induce anti-tumor immunity. We here summarize changes of the phenotype 
and microenvironment of tumor cells after exposure to irradiation, chemotherapeutic 
agents, and immune modulating agents rendering the tumor more immunogenic. The 
impact of therapy-modified tumor cells and damage-associated molecular patterns on 
local and systemic control of the primary tumor, recurrent tumors, and metastases will 
be outlined. Finally, clinical studies affirming the bench-side findings of interactions and 
synergies of radiation therapy and immunotherapy will be discussed. Focus is set on 
combination of radio(chemo)therapy (RCT) with immune checkpoint inhibitors, growth 
factor inhibitors, and chimeric antigen receptor T-cell therapy. Well-deliberated combina-
tion of RCT with selected immune therapies and growth factor inhibitors bear the great 
potential to further improve anti-cancer therapies.

Keywords: radiotherapy, abscopal effect, immune therapy, checkpoint inhibitors, PD-L1, DAMP, eGFR, anti-
tumor immunity

Radiotherapy (RT) is an integral part of multimodal cancer treatments (1). Besides its local mode 
of action on tumor cell DNA, it can induce systemic and immune-mediated anti-tumor responses, 
especially in combination with additional immune activation (2). The current review focuses on 
induction of immunogenic cancer cell death by RT and on interactions of RT with selected immune 
therapies to induce a long-lasting, local, and systemic tumor control.

According to the WHO, cancer incidences are expected to increase by over 50% until 2020 (3). 
With this in mind, the clinical management of treatment modalities is a big challenge for scien-
tists and clinicians alike. Consequently, improving the understanding of cellular and molecular 
processes occurring in the patients during therapies will help to optimize the design of clinical 
trials and ultimately that of patient treatment as well. Common therapy options comprise surgery, 
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RT, chemotherapy (CT), immunotherapy (IT), targeted therapy, 
hyperthermia (HT), and hormonal therapy, all of which are either 
administered as a stand-alone therapy or in various combina-
tions. Out of all these options, over 50% of all cancer patients 
receive RT (4).

RT-induced DNA Damage

The clear-cut aim of RT is the deposition of a maximal dose of 
ionizing radiation (IR) in the tumor while simultaneously spar-
ing healthy tissue. A significant amount of damage within the 
malignant cells ultimately leads to the loss of clonogenicity, the 
induction of cell death and finally in the reduction of tumor size. 
This is achieved either directly or indirectly: radiation induces 
DNA lesions and creates highly reactive radicals that then also 
damage DNA. The accumulation of DNA lesions can jeopardize 
the genomic stability of the cell, especially when the DNA damage 
response (DDR) system is impaired. Individuals with germ-line 
mutations in DDR genes show a higher predisposition for cancer. 
Errors in this highly regulated process of DDR can result in accu-
mulation of genomic mutations and malignant transformation. 
On the other hand, DDR also acts as a negative saboteur to resist 
CT and RT (5). Forms of IR-induced DNA damage that endanger 
chromatin integrity are single-strand breaks (SSBs) and double-
strand breaks (DSBs) of the DNA, whereas SSBs (~1000/Gy) (6) 
are way more frequent than DSBs (~40–50/Gy) (7). However, 
the time to repair DSBs takes much longer. Cells have developed 
several DNA repair pathways, such as homologous recombina-
tion (HR), non-homologous end-joining (NHEJ), nucleotide 
excision repair (NER), and base excision repair (BER) as well as 
mismatch repair (MMR) dependent on size and modality of the 
DNA damage (for further interest on this topic refer to Ref. (8)). 
Still, if the cell is no longer able to compensate the damage, cell 
death is the final consequence.

RT-induced Cell Death

Mitotic catastrophe, apoptosis, autophagy, and senescence have 
been the most prominent observed forms of cell death induced by 
RT (9). Within the last years, it has become evident that tumor cell 
necrosis can be induced in a programed manner besides occur-
ring through a more or less unregulated process (10).

Apoptosis
Apoptosis is a programed cell suicide and the best characterized 
form of cell death. It is of particular importance during develop-
ment and aging to maintain a homeostatic balance in tissues. A 
dysfunctional regulation can result in autoimmune diseases, viral 
infections, or cancer. In cancer therapy, apoptosis can be induced 
in tumor cells by the use of IR and/or cytotoxic drugs (11). In 
general, two main pathways exist: the intrinsic mitochondrial 
pathway is mainly regulated by proteins of the B-cell lymphoma-2 
(Bcl-2) family, which includes pro- and anti-apoptotic proteins, 
whereas the extrinsic pathway is induced by cell death receptors 
on the cell surface. In early stages of apoptosis, the cell maintains 
its organelle integrity and the cell membrane remains intact. 
In later stages, various morphological changes of the cell are 

visible: cell shrinkage, chromatin condensation, DNA fragmen-
tation, membrane blebbing, and formation of apoptotic bodies 
(12). Under normal conditions, apoptotic cells are engulfed 
by neighboring “non-professional” phagocytic cells, such as 
mesenchymal and epithelial cells (13). However, if the number 
of apoptotic cells exceeds a certain level, professional phagocytes 
are attracted to the site by the so-called “find me” signals that 
are released by dying cells (14, 15). These signals include factors 
such as nucleotides, proteins, and phospholipids (14, 15). The 
uptake of apoptotic cells by other cells is facilitated by changes 
within the outer membrane of the dying cell, the so-called “eat 
me” signals. One of the most prominent of these signals is phos-
phatidylserine (PS) that, under normal conditions, is located on 
the inner plasma membrane leaflet. During apoptosis, however, 
it translocates to the outer side of the lipid layer where it can 
be recognized by adaptor proteins and specific PS receptors 
on phagocytes (16). The detection and ingestion of apoptotic 
material by macrophages predominantly induces the release of 
anti-inflammatory cytokines while simultaneously inhibiting 
the production of pro-inflammatory cytokines (Figure  1). By 
contrast, the uptake of apoptotic cells by immature dendritic 
cells (DCs) inhibits their maturation and induces tolerance (17). 
Therefore, apoptosis subserves several pro-tumor functions 
(18). Strategies have emerged to increase the immunogenicity of 
apoptotic cells by blocking their clearance by macrophages with 
the PS-binding protein AnnexinA5 (AnxA5) (19). Pre-clinical 
experiments revealed a long-lasting immune memory against 
tumor cells and a delayed tumor growth mediated by AnxA5 
when given in combination with IR (20).

Nevertheless, apoptosis often plays a subordinate role in solid 
tumors, as tumor cells acquire resistance to apoptosis through 
several mechanisms; e.g., the tumor suppressor gene p53 is 
mutated in more than 50% of human malignancies (9). Other 
resistance mechanisms are overexpression of anti-apoptotic pro-
teins, inactivation of pro-apoptotic genes, as well as interference 
with the death cell receptor and perforin/granzyme pathway (21).

Necrosis
In contrast to apoptosis, necrosis has often been defined as an 
uncontrolled or pathological cell death, which can be induced by 
extreme cellular stress such as trauma, infections, detergents, toxic 
agents, or heat. Morphologically, it is characterized by cellular 
swelling, rupture of the plasma membrane, and loss of intracellu-
lar content (22). It is considered to be a pro-inflammatory form of 
cell death due to its release of damage-associated molecular pat-
terns (DAMPs) such as heat shock proteins (HSP), high mobility 
group box 1 (HMGB1), nucleotides, or uric acid leading to an 
activation of both, the innate and the adaptive immune system 
(22, 23) (Figure 1). In the last few years, it has become clear that 
there is a second form of necrosis, the so-called necroptosis, 
which is dependent on the receptor-interacting protein (RIP) 
kinases RIP1 and RIP3 (24, 25). It can be induced by factors 
such as tumor necrosis factor (TNF), Fas Ligand, or TNF-related 
apoptosis-inducing ligand (TRAIL) and utilizes the same initial 
signaling cascade as cell death receptor-induced apoptosis (25, 
26). In addition, necroptosis can be manipulated by inhibitors 
such as Necrostatin 1, which blocks RIP1 kinase activity (27).
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Therapeutic applications of RT and CT, either as stand-alone 
therapies or in combination with targeted therapies or IT, should 
stimulate local and systemic tumor control through the induction 
of immunogenic forms of cell death, which in turn can initiate 
persistent anti-tumor immune response. Particularly, both forms 
of necrosis are considered to be more immunogenic than the 
apoptosis and can therefore be useful tools to shift the tumor 
microenvironment toward an immunostimulatory rather than 
an immunosuppressive one (28) (Figure 1).

impact of the Fractionation of Radiation 
on Anti-Tumor Responses

It has become obvious that radiation-induced non-(DNA) tar-
geted, systemic effects are immune mediated and therefore also in 
part dependent on the primary cell death induction in the irradi-
ated area (29, 30). With the emerging development of accelerators 
that has made it possible to deliver precisely higher single doses 
into the tumor area, one should focus on the immunological con-
sequences of the different forms of radiation treatment as current 
pre-clinical data are not conclusive (2). RT can be administered 
in conventional fractionation schemes (1.8–2.2  Gy/fraction; 1 
fraction/day, 5  days/week for 3–7  weeks), hyperfractionation 
(0.5–2.2  Gy/fraction, two fractions/day, 2–5 fractions/week for 
2–4 weeks) or hypofractionation (3–20 Gy/fraction, 1 fraction/

FiGURe 1 | Noxious agents may induce non-immunogenic and immunogenic cell death. Stressed cells can either undergo a non-immunogenic cell death 
resulting in their anti-inflammatory clearance. The stress-resulting damage might, however, also foster immune reactions. Immunogenic forms of cell death, main 
characteristics of which are displayed in the figure, stimulate the immune system especially through the release of damage associated molecular patterns (DAMPs). 
Dendritic cells mature, are activated and initiate a cytotoxic T-cell response against the tumor cells.

day) (31) using various therapeutic systems, including stereotac-
tic radiosurgery. In the latter, the external radiation procedure 
utilizes multiple convergent beams to deliver high single doses to 
a small volume while sparing adjacent normal tissue. Currently, 
three different main modalities, namely LINAC, Gamma Knife, 
and protons are used for stereotactic radiosurgery, especially for 
the treatment of brain tumors with limited size that cannot be 
removed surgically (32).

Pre-clinically, Rubner et al. showed that fractionated RT is 
the main stimulus for cell death induction and HSP70 release 
in p53 mutated and O6-methylguanine methyltransferase, 
a DNA repair protein, negative glioblastoma cell lines (33). 
Tsai et  al. investigated whether single high dose vs. multiple 
small doses with a total dose of 10  Gy differentially alters 
gene expression. They found out, amongst others, that there 
are significant differences in the gene response depending on 
the fractionation of radiation: 10  Gy delivered in fractions 
lead to a more stable induction of genes (34). Multhoff et  al. 
hypothesized that conventional fraction schemes over several 
weeks are thought to be rather negative for radiation-induced 
anti-tumor immune responses as tumor-infiltrating immune 
lymphocytes might be killed by the repeating irradiation (35). 
Dewan et al. investigated the effects of RT with immune modu-
latory anti-CTLA4-antibodies on induction of anti-tumor 
immune responses. In his model system 3 × 8 Gy was superior 
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to that of 5 × 6 Gy in induction of a T-cell-dependent abscopal 
anti-tumor effect (36). This indicates that a higher single dose 
applied in hypofractionated schemes is advantageous to boost 
the immune system.

While it has been known that cellular effects of stereotactic 
radiosurgery include the induction of necrotic cell death and 
endothelial proliferation with luminal narrowing and thrombo-
sis, Witham et al. used a rat glioma model to investigate whether 
gamma knife radiosurgery also induces apoptosis. They found 
tumor apoptosis to be statistically higher in treated animals at 
6, 24, and 48 h after radiosurgery (37). Taken together, all these 
data show that more pre-clinical and clinical research are needed 
to define the best single dose and the respective fractionation 
scheme for induction of immunogenic cancer cell death and 
consecutive anti-tumor immunity.

induction of Anti-Tumor immunity

The Role of DCs in Anti-Tumor immune 
Response
The activation of the immune system is vital to promote a long-
lasting anti-tumor response. An essential asset for creating a 
potent anti-tumor immunity is the activation of DCs and con-
secutively cytotoxic CD8+ T lymphocytes (CTL) alongside with 
CD4+ T lymphocytes. Being the most efficient antigen-presenting 
cells, DCs play an important role in the initiation of the adaptive 
immunity. However, before DCs can stimulate any other cell type, 
they have to be activated properly. Such activating signals are not 
only foreign substances or infected cells, but can also be derived 
endogenously from stressed cells or cells dying by necrosis (38), 
as it is the case in tumor therapy. Immature DCs can then acquire 
and process tumor material, migrate to lymph nodes, and present 
or cross-present peptides of tumor-associated antigens (TAA) 
to naïve T cells in a MHC-II- or MHC-I-dependent manner, 
respectively (39). Aside from stimulating T-cell responses via the 
expression of co-stimulatory molecules such as CD80, CD86, as 
well as members of the TNF family (e.g., CD40, CD137 (4-1BB)
L, OX40L) that can interact with the corresponding receptors on 
T cells, mature DCs secrete a wide range of pro-inflammatory 
cytokines (40). They therefore favor T-cell activation, survival, 
and differentiation and thus specific anti-tumor immune 
responses (41, 42).

DAMPs as Mediators of DC Activation
Other important factors for DC activation and maturation are 
secreted or exposed danger signals by dying cells, the so-called 
DAMPs (43). The surface exposure or release of DAMPs can 
be induced by IR or certain immunogenic chemotherapeutics, 
which are therefore capable of initiating a solid anti-tumor 
immune response (44). One of these signals is the early pre-
apoptotic exposure of the endoplasmic reticulum (ER) protein 
calreticulin (CRT) on the plasma membrane surface. This can be 
induced by IR or substrates such as anthracyclines or oxaliplatin 
and triggers the uptake of tumor cells by DCs. In the presence of 
later DAMPs, such as HMGB1, the internalized tumor antigens 
get processed and cross-presented finally resulting in stimulation 
of tumor-specific CTLs (45, 46).

High mobility group box 1 is a chromatin-associated nuclear 
protein functioning as a DAMP when being expressed extracel-
lularly. It is passively released by necrotic or damaged cells and 
secreted by immune cells such as macrophages, natural killer 
(NK) cells, neutrophils, mature DCs, and T cells and binds with 
high affinity to the receptor for advanced glycation end-products 
(RAGE) as well as the toll-like receptors (TLR)2, TLR4, and TLR9 
(47). Its release from tumor cells can be induced by various stimuli, 
such as RT (33) and especially after combinatory treatment of RT 
with further immune stimulation, e.g., HT (48). Chemotherapeutic 
agents like temozolomide, melphalan, and paclitaxel might also 
foster its release (49, 50). HMGB1 interaction with a functional 
TLR4 on DCs is required for an efficient cross-presentation of 
tumor-antigens to T cells (51) and the priming of a tumor-specific 
T-cell response. The importance of TLR4 activation via danger 
signals can be seen in patients suffering from breast cancer, head 
and neck squamous cell carcinomas (HNSCC), or colorectal can-
cer carrying a loss of function single-nucleotide polymorphism 
(SNP) in the Tlr-4 locus that have a predicted worsened outcome 
after immunogenic CT with anthracyclines or oxaliplatin (51, 
52). However, HMGB1 also shows pro-tumorigenic proper-
ties. Thus, overexpression of HMGB1 and its receptor RAGE is 
observed in several cancers and is associated with tumor growth 
and metastasis (53). A possible explanation for the contradictory 
effects of HMGB1 might be a change of its redox state. Reducible 
HMGB1 binds to RAGE but not to TLR4 and promotes resistance 
to melphalan, paclitaxel, doxorubicin, and oxaliplatin, oxidized 
HMGB1, on the other hand, increases the cytotoxicity of these 
agents (54). One might speculate that RT-induced mitochondrial 
ROS production contributes to oxidation of HMGB1 and thereby 
to immunogenicity (55).

Another example for a DAMP that can be either passively 
released or actively secreted by dying or stressed cells is adenosine-
5-triphosphate (ATP). It acts on purinergic P2RX7 receptors on 
DCs that in turn activate the NLRP3/ASC/caspase-1 inflamma-
some, finally resulting in the secretion of interleukin (IL-) IL-18 
and IL-1β (56). IL-1β is required for efficient priming of CD4+ T 
cells and interferone-γ (IFN-γ) producing tumor antigen-specific 
CD8+ CTLs (57) and therefore for the generation of an anti-tumor 
immune response. Furthermore, ATP release from tumor cells also 
contributes to tumor growth and modulates immunosuppressive 
properties of myeloid-derived suppressor cells (MDSC) via a 
P2 × 7 receptor dependent mechanism (58).

HSP70 released from stressed cancer cells can also serve as 
a danger signal. HSPs are among the most abundant proteins 
in cells. Intracellular HSPs function as chaperons ensuring the 
correct folding or degradation of misfolded proteins. Under 
stress-induced conditions such as oxidative stress, HT, irradia-
tion, or chemotherapeutics, intracellularly located HSPs are over-
expressed and can be translocated to the plasma membrane or 
be released into the extracellular compartment, thereby acting as 
danger signals. In this way, HSP70 and HSP90 in particular play 
a dual role in cancer. Intracellularly, they protect tumor cells from 
programed cell death by interfering with apoptotic processes 
(59). However, if they are bound to the plasma membrane or 
released they contribute to the activation of the innate and adap-
tive immune system (60, 61). HSP70 promotes DC maturation as 
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well as NK cell migration, activation, and cytolytic activity. Also 
HSP70 is thought to be associated with tumor antigens trigger-
ing their cross-presentation via MHC-I on DCs and stimulating 
a CD8+ T-cell response (62). Relevance of exposed HSP70 as a 
tumor-specific recognition structure is given by the group of 
Multhoff et al. who found that HSP70 is expressed on the plasma 
membrane of 40 (colon), 37 (gastric), 43 (lower rectal), and 42% 
(squamous cell) tumor specimens, but never on healthy cells. 
However, during the investigation, it became clear that the tumor 
entity is of major importance for clinical outcome. They therefore 
suggest the usage of HSP70 as a potential prognostic marker for 
overall survival (OS) (63).

To sum up, danger signals such as CRT, HMGB1, ATP, and 
HSPs are inducible by several chemotherapeutic drugs or irra-
diation. They play important roles in the priming of anti-tumor 
immune responses, but, depending on their location, concentra-
tion, and redox state, can also promote tumor development and 
progression.

Therapy-Dependent Modulation of the 
Tumor Microenvironment

Tumors have developed several molecular and cellular mecha-
nisms to evade immune surveillance. These strategies include the 
secretion of immunosuppressive factors such as TGF-β, IL-10, 
or indoleamine 2,3-dioxygenase (IDO) (64–68), the alteration 
of antigen-presentation (69, 70), disruption of T-cell activation 
(71), apoptosis promotion of activated T cells (72), as well as the 
recruitment of regulatory cells or in general the inhibition of 
immune cells (73–75).

However, given that the immune system provides a pos-
sible strategy to create an efficient and long-lasting anti-tumor 
response, it is necessary to find treatment strategies that overcome 
the protective immunosuppressive microenvironment created by 
the tumor. Lately, it has become clear that standard treatments, 
namely RT and CT, can already render tumors and their micro-
environment more immunogenic (76). As outlined above, RT 
and CT are able to induce both apoptotic and necrotic tumor cell 
death resulting in surface exposure and release of danger signals 
or TAAs. Aside from inducing tumor cell death, various chemo-
therapeutics, even or especially at low concentrations, stimulate, 
e.g., the expression of components of the antigen-processing 
machinery together with co-stimulatory molecules (e.g., CD40, 
CD80, CD86, MHC-II) on DCs thus promoting the stimulation 
of tumor-specific T cells, resulting in an anti-tumor immune 
response.

immunogenicity of Radiotherapy
While low doses of IR have anti-inflammatory effects (77), higher 
doses (>1 Gy) applied in tumor therapy are capable of stimulating 
the immune system in several ways: RT can enhance the expres-
sion of MHC-I on the surface of tumor cells alongside with cell 
death receptors Fas/CD95 and NKG2D ligand, thus boosting 
the recognition and killing of irradiated tumor cells through T 
cells and NK cells (78–80). IR also has the ability to induce the 
production and release of CXCL16 in tumor cells. CXCL16 is a 
chemokine binding to its receptor CXCR6 on activated T cells 

therefore enhancing their recruitment to the tumor site (81). In 
addition, it also increases IFN-γ production that alters expression 
of adhesion molecules on vasculature, chemokines, and MHC-I 
expression, thus creating a microenvironment beneficial for 
T-cell infiltration and recognition of tumor cells by CTLs (82). 
Both, fractionated, hypofractionated, and ablative regimes bear 
the potential to stimulate immune responses (83, 84). However, 
which fractionation scheme and single dose of RT is the most 
immunogenic is under current intensive investigation and dis-
cussion (15, 42).

Taking all these factors into account, it becomes clear that CT 
and RT aside from their initial purpose to stop the proliferation of 
tumor cells and kill them are useful tools to shift an immunosup-
pressive tumor microenvironment to a more beneficial immune 
stimulatory one. A detailed understanding of the molecular 
mechanisms underlying these effects is therefore essential toward 
an optimized treatment.

Systemic effects of Radiotherapy

As mentioned before, radiation, together with surgery and 
chemotherapeutics, is one of the most important tools in cancer 
treatment with the primary goal to achieve local control of tumor 
growth. Furthermore, it also enhances the tumors immunogenic-
ity through the induction of distinct tumor cell death forms and 
the release of pro-inflammatory cytokines, chemokines, as well 
as danger signals. It therefore bears the potential to induce adap-
tive and innate immune responses, resulting in systemic anti-
tumorigenic effects even outside of the field of irradiation (85). 
The phenomenon of regression of distant tumors or metastases 
outside the irradiation field is called abscopal effect of RT and its 
connection with immune events was first described by Nobler in 
1969 (86). Since abscopal sounds a bit mystic, one should rather 
term it systemic immune-mediated effects of RT nowadays. Such 
reactions have been observed in many pre-clinical studies as 
well as in clinical settings for several tumor entities, including 
melanoma, hepatocellular, renal-cell, and mammary carcinomas, 
chronic lymphocytic leukemia (CLL), or malignant lymphomas 
[for further reading, see Ref. (42, 87)].

On a cellular level, it was demonstrated that the adaptive 
immune systems contributes to these systemic reactions and that 
NK cells are also involved (88, 89). In addition, the release of danger 
signals or cytokines such as TNF-α and IFN-γ by radiation-dam-
aged tumor cells promote DC maturation and cross-presentation 
resulting in the regression of more distant tumor masses through 
activation of tumor-specific T cells (36, 88, 90).

However, in most tumor entities RT alone is not sufficient to 
induce such systemic immune reactions (89). Therefore, combi-
nation with IT might be the solution. A combined treatment of 
RT with the DC growth factor Flt-3 induced immune-mediated 
anti-tumor responses outside the irradiation field (89). Shiraishi 
et al. observed such effects after combined treatment of colon26 
adenocarcinoma-bearing Balb/c mice with fractionated RT and 
the macrophage inflammatory protein-1 alpha variant ECI301 
(88). A better local control and regression of the not irradiated 
tumor was observed by Jurgenliemk-Schulz and colleagues after 
additional rIL-2 treatment to RT in SL2 lymphoma or M8013 
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mammary carcinoma inoculated mice (91). Another approach 
is the modification of tumor cells or DCs with genetically engi-
neered viruses expressing various cytokines, including IL-2 (92, 
93), IL-12, IL-18 (94, 95), GM-CSF (96), or IFN-β (97) to enhance 
anti-tumor immunity and protect against tumor re-challenge. 
Just recently, Golden et  al. reported about immune-mediated 
systemic tumor responses when combing RT with GM-CSF for 
the treatment of patients with metastatic solid tumors (98).

A further encouraging strategy to improve the effectiveness 
of standard therapies is the usage of monoclonal antibodies 
(mAb) targeting immune cells or tumors. In this matter, thera-
peutic Ab (summarized in Table 1) that can be used either alone 
or in combination with RT, CT, or IT are involved in depletion 
of Tregs (anti-CD25) (99) or target (i) co-stimulatory molecules 
such as CD40 (100, 101), OX40 (CD134) (102), and 4-1BB 
(CD137) (103, 104) on immune cells; (ii) checkpoint inhibitors 
PD-1, PD-L1 (103, 105) and CTLA-4 (99, 104); and (iii) cell 
growth factors or their receptors, e.g., epidermal growth factor 
receptor (EGFR), vascular endothelial growth factor (VEGF), 
and VEGFR (106, 107), all of which will be discussed in the 
following paragraph.

Co-stimulatory Molecules as Target to 
improve RT and CT-induced Systemic 
immune Responses

CD40
CD40, a member of the TNF receptor (TNF-R) family, is expressed 
on APCs such as DCs, B cells, and macrophages. Interaction with 
its ligand (CD40L) on activated T cells promotes their activation 
and subsequently the induction of adaptive immune responses. 
Furthermore, the interaction between CD40 and its natural ligand 
(CD40L, CD154) was shown to modulate the growth of malignant 
B cells, thus CD40-related therapies have been considered for a 
range of cancer entities, including B-cell malignancies, leukemia, 
and multiple myelomas (MMs) (108), making it an attractive 
target structure. CD40 agonists mediate tumor cell death and in 
combination with DC activation anti-tumor immune responses. 
Pre-clinical models showed that anti-CD40 therapy in combina-
tion with RT results in a CD8 T-cell-dependent immunity to 
B-cell lymphoma (101). Currently, there are several anti-CD40 
antibodies such as CP-870,893, dacetuzumab, and lucatumumab 
either as stand-alone treatments or in various combinations 
under investigation, such as a phase 1A/II study (NTC00670592) 
of patients with advanced non-Hodgkin lymphoma (NHL) or 
Hodgkin lymphoma (HL), which demonstrated a modest lucatu-
mumab activity (109). However, there is still a lack of clinical data 
assessing the efficacy of targeting CD40 especially in combinatory 
therapy regimens with RT, CT, and other ITs, which is why further 
investigations are necessary.

OX40
OX40 (CD134), a co-stimulatory molecule expressed on acti-
vated T cells, is also part of the TNF-R superfamily. A phase I 
trial (NCT01644968), focusing on anti-OX40 monotherapy with 
a murine agonistic anti-human Ox40 mAb (9B12) in patients 

with metastatic solid malignancies showed an increased prolif-
eration of CD4+/FoxP3- and CD8+ T cells as well as CD3-/NK 
cells. While anti-OX40 treatment was well tolerated with mild to 
mediate side effects, 12 out of 30 patients showed regression of at 
least one metastatic lesion (110). In order to increase this effect, a 
variety of combinatory therapy strategies of anti-OX40 treatment 
with CT, RT, or other IT are currently under investigation. For 
instance, a murine model of stereotactic body radiation therapy 
(SBRT) of lung cancer showed significant enhancement of tumor-
free survival through intensified tumor antigen-specific CD8+ 
T-cell responses under RT combined with adjuvant anti-OX40 
therapy (111). Furthermore, a phase I/II trial with SBRT plus 
anti-OX40 in patients suffering from metastatic breast cancer 
(NCT01862900) and a phase Ib trial with cyclophosphamide, RT, 
and anti-OX40 in patients with progressive metastatic prostate 
cancer (NCT01303705) are currently ongoing with results not yet 
published.

CD137 (4-1BB)
CD137, expressed on activated CD4+ and CD8+ T cells, as well 
as on several APCs, including DCs, activated B cells, and mac-
rophages, co-stimulates T-cell activation and clonal expansion 
after T-cell receptor (TCR) engagement through interactions 
with CD137-ligand. Importantly, the therapeutic use of 4-1BB 
agonists in vivo leads to a biased CD8+ T-cell activation with a 
concomitant decline of B cells, NK, and CD4+ T cells in an IFN-, 
TNF-, TGF-β, and IDO-dependent fashion (112). Furthermore, 
stimulation of CD137 on tumor endothelial cells via an agonistic 
antibody upregulates ICAM1, VCAM1, and E-selectin and 
thereby enhances T-cell recruitment into tumor tissue (113). 
In murine lung (M109) and breast carcinoma (EMT6) models, 
the efficiency of BMS-469492, another agonistic CD137 mAb, 
in combination with RT was evaluated. In the case of lung 
carcinoma treatment only a combination of the antibody with 
RT administered as a high radiation dose of 15 Gy resulted in 
an enhanced tumor response. In the breast cancer model, the 
CD137 agonist alone already led to significant tumor growth 
inhibition that could even be potentiated by using high single 
doses or fractionated radiation. The authors concluded that 
the different responses in the two models could result from 
differences in intrinsic immunogenicity of the different tumor 
entities and that anti-CD137 antibodies may not only be used 
as a stand-alone therapy but in combination with conventional 
anti-cancer treatments, e.g., RT (114). Furthermore, the combi-
nation of RT and anti-CD137 in an intracranial glioma model 
resulted in complete tumor elimination and prolonged survival 
in 67% of the mice. The combination therapy highly increased 
the numbers of tumor-infiltrating CD4+ and CD8+ lymphocytes 
as well as IFN-γ production (115). Thus, based on promising 
pre-clinical data of combining anti-CD137 and RT/CT, two cur-
rently ongoing clinical phase I studies have been initiated. While 
NCT00461110 investigates agonistic anti-CD137 (BMS-663513) 
treatment in combination with chemo-radiation (RT, paclitaxel, 
carboplatin) in non-small cell lung carcinoma (NSCLC) patients, 
NTC00351325 focuses on a combination therapy of BMS-663513 
with CT (paclitaxel, carboplatin) in patients suffering from recur-
rent ovarian carcinoma.
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TABLe 1 | Selected monoclonal antibodies and tyrosine kinase inhibitors against co-stimulatory and checkpoint molecules and growth factors that are 
in clinical phase i–iii trials either alone or in combination with RT, CT or immunotherapy.

Target Drug Developer Target disease (not all listed)

Co-stimulatory molecules

CD40 CP-870,893
Dacetuzumab
Lucatumumab

Pfizer
Seattle Genetics, Inc.
Novartis

Melanoma; pancreatic carcinoma; renal-cell carcinoma; breast cancer
Diffuse large B-cell lymphoma (DLBCL); chronic lymphocytic leukemia (CLL);  
non-hodgkin’s lymphoma (NHL); multiple myeloma (MM)
CLL; NHL; MM

CD134 (OX40) MEDI6469 AstraZeneca Advanced solid tumors; aggressive B-cell lymphomas; HNC; metastatic prostate cancer

CD137 BM-663513 Bristol-Myers Squibb (BMS) Melanoma; advanced solid malignancies; B-cell malignancies

Checkpoint inhibitors

CTLA-4 Tremelimumab
Ipilimumab

Pfizer
BMS

Metastatic melanoma; HNSCC; NSCLC; advanced solid malignancies
Yervoy™ approved for unresectable or metastatic melanomaa; lymphoma; NSCLC; 
HNC; prostate, pancreatic, liver, lung, kidney and renal-cell cancer; melanoma

PD-1 Nivolumab
Pembrolizumab
Pidilizumab

BMS
Merck
CureTech Ltd

Obvido® approved for unresectable or metastatic melanoma and NSCLCa; MM; NHL 
Renal-cell carcinoma (RCC); advanced solid tumors; melanoma; NSCLC
Keytruda® approved for advanced or unresectable melanomaa; NSCLC; HNSCC; 
lymphoma; breast cancer; malignant glioma; melanoma
MM; gliomas; lymphomas

PD-L1 BMS-936559
MEDI4736

BMS
AstraZeneca

Recurrent solid tumors
Advanced solid tumors; NSCLC; HNSCC; GBM

Growth factor inhibitors

EGFR Cetuximab
Panitumumab
Gefitinib
Erlotinib

BMS
Amgen
AstraZeneca
Genentech/Roche

Erbitux® approved for K-ras wild-type, EGFR-expressing metastatic colorectal cancer 
and recurrent/metastatic HNSCCa; NSCLC; HNSCC; colorectal cancer
Vectibix™ approved for colorectal cancera; HNSCC; colorectal cancer
Iressa® approved for NSCLCa; HNC; skin, breast, colorectal cancer; GBM; NSCLC
Tarceva® approved for NSCLC and pancreatic cancera; HNC; prostate, breast, 
esophageal, colorectal cancer; NSCLC; pancreatic cancer

HER2/neu  
receptor

Trastuzumab Genentech/Roche Herceptin® approved for HER2-overexpressing breast cancer and HER2-overexpressing 
metastatic gastric or gastroesophageal (GE) junction adenocarcinomaa; breast cancer; 
NSCLC

VEGFRs, PDGFRs, 
FLT-3, c-Kit, RET; 
CSF-1R

Sunitinib Pfizer Sutent® approved for pancreatic neuroendocrine tumors (pNET); kidney cancer and 
gastrointestinal stromal tumor (GIST)a; pNET; kidney cancer; GIST; RCC, pancreatic and 
bladder cancer

VEGFRs, PDGFRs, 
RAF, FLT-3, c-Kit, 
RET

Sorafenib Bayer Nexavar® approved for recurrent or metastatic, progressive differentiated thyroid 
carcinoma (DTC), unresectable hepatocellular carcinoma (HCC) and advanced RCCa; 
HCC; RCC, bladder cancer; brain neoplasms; advanced solid tumors

VEGFRs Axitinib Pfizer Inlyta® approved for advanced RCCa; advanced gastric cancer; hepatocellular and 
colorectal carcinoma; prostate cancer; GBM; RCC; NSCLC

VEGFRs, PDGFRs, 
c-Kit

Pazopanib GlaxoSmithKline Votrient® approved for advanced soft tissue sarcoma and RCCa; ovarian cancer; 
fallopian tube cancer; peritoneal carcinoma; NSCLC; RCC

VEGF-A Bevacizumab Genentech/Roche Avastin® approved for recurrent epithelial ovarian, fallopian tube, or primary peritoneal 
cancer, recurrent/metastatic cervical cancer, metastatic HER2 negative breast cancer, 
RCC, GBM, NSCLCa; advanced cancers

aFDA-approved drugs.
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Checkpoint inhibitors as Targets to 
improve RT-induced Systemic 
immune Responses

In order to ensure peripheral tolerance and to avoid overshoot-
ing immune reactions, endogenous mechanisms to dampen 
T cells have been evolved. Cytotoxic T lymphocyte-antigen-4 
(CTLA-4) and PD-1 are major negative co-stimulatory molecules 
expressed on activated T cells (116–118). While CTLA-4 regu-
lates early stages of T-cell activation, PD-1 limits the activity of 

T cells in peripheral tissues during inflammatory response and 
is therefore a major immune resistance mechanism in the tumor 
microenvironment.

CTLA-4
T-cell activation and survival are dependent on positive signal-
ing from the TCR as well as co-stimulatory molecules such as 
CD28. CTLA-4 is an inhibitory molecule that is upregulated 
on the surface of effector T cells and competes with CD28 for 
the binding to CD80/86 (B7.1 and B7.2). Under physiological 
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conditions, this limits the T-cell response and helps to maintain 
T-cell homeostasis (119). However, with regard to cancer treat-
ment, the down-regulation of a tumor-specific T-cell response 
is an unwanted scenario, thus favoring an antagonistic CTLA-4 
therapy. Indeed, various pre-clinical and clinical studies have 
already proven the efficiency of anti-CTLA-4 therapy, especially 
for melanoma in multimodal settings. This tumor entity has a 
high prevalence for somatic mutations (120) and is therefore 
suitable for being specifically targeted by activated immune cells.

Pre-clinical melanoma models showed that tumors do not 
always respond to an anti-CTLA-4 mAb alone, while additive 
treatments with GM-CSF (121) or activation of the T-cell co-
stimulatory receptor 4-1BB (122) are able to promote an anti-
tumor response. Furthermore, a combination of RT and CTLA-4 
mAb treatment prolonged the OS in an orthotopic GL261 glioma 
model, whereas CTLA-4 mAb alone was not able to extend the 
survival in comparison to untreated controls. A triple combination 
of RT, anti-CTLA-4, and anti-CD137 further improved survival in 
this pre-clinical model through a CD4+ T-cell-dependent manner 
and created a glioma-specific protective memory response (104). 
Dewan and colleagues reported an abscopal effect in breast (TSA) 
and colon cancer (MCA38) models: An increased frequency of 
CD4+ and CD8+ tumor-infiltrating lymphocytes along with 
tumor-specific IFN-γ production was observed after a combined 
administration of anti-CTLA-4 mAb (9H10) and fractionated 
(3  ×  8  Gy or 5  ×  6  Gy fractions in consecutive days), but not 
single-dose RT with 20 Gy. Furthermore, three doses of 8 Gy in 
combination with anti-CTLA-4 was able to induce a more potent 
systemic effect and higher frequency of tumor-specific T cells 
than five doses of 6 Gy plus anti-CTLA-4 (36), suggesting that 
fractionation influences the induction of anti-tumor immune 
responses with further immune stimulation (76).

Two fully humanized anti-CTLA-4 antibodies, tremelimumab 
and ipilimumab, advanced for testing in clinical trials. Most 
studies so far are focused on melanoma, where treatment-related 
adverse effects were found to be manageable (123–125). Various 
phase I and II studies evaluated anti-CTLA-4 therapy in a stand-
alone therapy setting or in various combinations such as tumor 
antigen-loaded DCs (126, 127), the TLR9 agonist PF-3512676 
(128), IFN-α-2b (129) or in combination with various chemo-
therapeutics (for further reading, refer to NCT00257205 (130), 
NCT02262741, NCT02319044, NCT02369874, NCT02352948, 
NCT02040064).

In summary, current study results show the importance of 
investigating the optimal dose, schedule, and combination of 
anti-CTLA-4 antibodies with other therapy options to ensure 
high patient safety and efficacy in selected cancer entities.

As approximately 50% of cancer patients receive RT with the 
primary goal of local tumor control (4), combinatory therapies 
of RT with immune checkpoint inhibitors targeting T cells might 
be a good synergistic option to induce additional systemic anti-
tumor immune responses, as it has already been shown in many 
mouse models (Table 2) (36, 131–134). A tremelimumab/SBRT 
pilot study for patients suffering from unresectable pancreatic 
cancer (NCT02311361) is currently recruiting patients.

Another anti-CTLA-4 mAb is ipilimumab, as with tremeli-
mumab, patients with advanced metastatic cancer can benefit 

from it. Adverse side effects such as strong autoimmune reactions 
have been observed in a dose-dependent manner in various phase 
I/II trials (163–165). An increase of the ipilimumab-induced 
response rate might be achieved through a combination with 
immunogenic RT. Postow et  al. described the first case of a 
systemic immune-mediated effect in a patient suffering from 
metastatic melanoma that has been treated with ipilimumab 
and a concomitant palliative RT (28.5 Gy in three fractions) that 
correlated with beneficial immune changes in the peripheral 
blood when RT was added (136). Five months after RT and 
an additional administered ipilimumab dose, RT-treated and 
non-RT-treated lesions had regressed and remained stable with 
minimal disease progression after 10  months, as confirmed by 
computed tomography scans. A second case of complete systemic 
response after a combined treatment of ipilimumab followed by 
high-dose stereotactic RT of 54 Gy in three fractions to two out 
of seven metastatic liver lesions was reported in a patient with 
advanced melanoma (137). Several studies have also provided 
evidence of ipilimumab effectiveness in cases of melanoma with 
brain metastases (165, 166). Hence, in a retrospective study of 21 
patients suffering from advanced melanoma and brain metasta-
ses, Grimaldi and colleagues (138) reported abscopal responses 
in 52% of patients receiving an initial ipilimumab therapy fol-
lowed by localized RT. Furthermore, this systemic response was 
correlated with prolonged OS.

These promising results of combined ipilimumab and RT 
treatment spiked the interest and led to the initiation of studies for 
other cancer entities than melanoma. Likewise, a phase I/II study 
in patients with metastatic castration-resistant prostate cancer 
(mCRPC) suggests the induction of clinical anti-tumor activity 
with disease control and manageable adverse effects after 10 mg/
kg of ipilimumab and RT with 8  Gy per lesion (167). A phase 
III trial (NCT00861614) evaluating ipilimumab administration 
(10 mg/kg) vs. placebo after RT in patients suffering from mCRPC 
with disease progress after docetaxel reported an improvement 
of median OS within the ipilimumab group (11.2 vs. 10 months 
in the placebo group). Conversely, most of the common adverse 
effects (26 vs. 3%) and four deaths occurred in patients receiving 
ipilimumab treatment vs. placebo (139). Just recently, a systemic 
response was reported in a patient suffering from metastatic 
NSCLC 2.5 months after the start of a combined ipilimumab and 
fractioned RT (140). This suggests that a combination of local 
RT alongside IT could be a useful approach to further improve 
clinical outcome of patients with metastatic disease (2). Therefore, 
various phase I/II studies of combined RT and ipilimumab 
administration for metastatic NSCLC (NCT02221739), advanced 
cervical cancer (NCT01711515), metastatic cancers of liver and 
lungs (NCT02239900), and patients with melanoma and brain 
metastases (NCT02115139) have been initiated and are currently 
recruiting patients.

PD-1/PD-L1 (B7-H1)
PD-1, another negative regulator of TCR signaling, and its ligand 
PD-L1 play an important role in modulating T-cell activity not 
only in physiological conditions but also in the tumor micro-
environment of various cancer entities. Thus, blockage of PD-1 
and PD-L1 interaction through mAb is a promising strategy to 
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TABLe 2 | Systemic effects observed in pre-clinical and clinical studies after multimodal treatment of RT, CT, and immunotherapy.

Checkpoint Tumor type Treatment Systemic effects + key mediator Reference

PReCLiNiCAL MOUSe-MODeLS

CTLA-4 Metastatic mammary carcinoma 
(4T1)

RT (2 × 12 Gy) of primary tumor + anti-CTLA-4 mAb i.p. (3×) Inhibition of lung metastases, ↑CD8+ CTLs (131)

Metastatic mammary carcinoma 
(4T1)

RT (2 × 12 Gy) of primary tumor + anti-CTLA-4 (9H10) mAb 
i.p. (3×)

Inhibition of lung metastases, increased survival, ↑CD8+ CTLs (132)

Mammary carcinoma (TSA), colon 
carcinoma (MCA38)

RT of primary tumor (20 Gy, 3 × 8 Gy, 5 × 6 Gy) + anti-CTLA-4 
(9H10) mAb i.p. (3×)

Growth-inhibition of irradiated and non-irradiated tumor, ↑CD8+ CTLs and  
CD4+ Th-cells, iFNγ

(36)

PD-1 Melanoma (B16), renal cortical 
adenocarcinoma (RENCA)

SABR (15 Gy) + anti-PD-1 mAb (5×) Near-complete regression of primary tumor, 66% size reduction of  
non-irradiated tumor,↑CD8+ CTLs

(133)

Glioma (GL261) RT (10 Gy) + anti-PD-1 mAb i.p. Tumor regression and long-term survival,↓ Tregs, ↑ CD8+ CTLs, iFNγ (105)
Melanoma (B16), breast carcinoma 
(4T1-HA)

RT (12 Gy) + anti-PD-1 mAb i.p. (3×) Tumor regression and tumor control, ↓ Tregs, ↑ CD8+ CTLs (135)

PD-L1 Mammary carcinoma (TUBO) SABR (12 Gy) + anti-PD-L1 mAb (4×) Size reduction of primary and abscopal tumors, ↓ MDSC, ↑ CD8+ T-cells (134)

CD137 (4-1BB) Lung carcinoma (M109) RT (5, 10 or 15Gy) + anti-CD137 (BMS-469492) mAb i.v. (3×) Tumor growth retardation at a dose of 15 Gy (114)
Breast carcinoma (EMT6) RT (5, 10, 15Gy, 11 × 4 Gy) + anti-CD137 (BMS-469492) mAb 

i.v. (3×)
Enhanced tumor growth retardation at all radiation doses (114)

Glioma (GL261) RT (2 × 4 Gy) + anti-CD137 mAb i.p. (3×) Tumor eradication, prolonged survival (6/9), rejection of challenging tumors  
(5/6), ↑CD8+ CTLs and CD4+ Th-cells, iFNγ

(115)

CTLA-4 + CD137 Glioma (GL261) RT (10 Gy) + anti-CD137 and anti-CTLA-4 mAb i.p. (3×) Prolonged survival, ↑CD8+ CTLs and CD4+ Th-cells (104)

CLiNiCAL STUDieS

Checkpoint inhibitors

CTLA-4 Metastatic melanoma (n = 1) RT (28.5 Gy in 3 fractions) + ipilimumab Regression of irradiated and non-irradiated tumor lesions, stable lesions 
and minimal disease 10 months after RT

(136)

Metastatic melanoma (n = 1) RT (54 Gy in 3 fractions) + 4 cycles of ipilimumab Regression of irradiated and non-irradiated tumor lesions, CR, no 
evidence of disease 12 months after RT

(137)

Melanoma with brain metastasis 
(n = 21)

Four cycles of ipilimumab + loco-regional RT 13/21 LR, 11/21 with LR abscopal effect and 2/21 stable disease (138)

mCRPC (n = 799) [NCT00861614] RT (1 × 8 Gy) per lesion + 1–4 doses of ipilimumab (n = 399) or 
placebo (n = 400)

Improved median OS (139)

Metastatic NSCLC (n = 1) RT (5 × 6 Gy) + four cycles of ipilimumab Regression of irradiated and non-irradiated tumor lesions (140)

PD-1 Melanoma, NSCLC, mCRPC, 
colorectal cancer, and renal cancer 
(n = 236)

nivolumab Cumulative response rates in 14/76 among NSCLC patients, in 26/94 of 
melanoma patients and in 9/33 renal-cell cancer patients

(141)

Advanced melanoma Pembrolizumab (lambrolizumab; MK-3475) 52% response rate drug-related adverse effects were reported by 79% of 
patients, with 13% reporting grades 3 and 4 secondary effects

(142)

Patients with DLBCL undergoing 
AHSCT [NCT00532259]

AHSCT + 3 doses pidilizumab At 16 months, PFS was 0.72, among the 35 patients with measurable 
disease after AHSCT, overall response rate was 51%, ↑ circulating 
lymphocyte subsets including PD-L1-bearing lymphocytes

(143)

PD-L1 Dose-escalation study in patients 
with NSCLC, melanoma, colorectal, 
renal-cell, ovarian, pancreatic, 
gastric, and breast cancer (n = 207) 
[NCT00729664]

Administration of BMS-936559 in 6-week cycles; up to 16 
cycles

Objective response rate in 9/52 in melanoma, in 2/17 in renal-cell cancer,  
in 5/49 in NSCLC, and in 1/17 in ovarian cancer

(144)

(Continued)
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Checkpoint Tumor type Treatment Systemic effects + key mediator Reference

Growth factor inhibitors

VEGF-A Advanced nasopharyngeal 
carcinoma (n = 44) [NCT00408694]

IMRT (50–70 Gy) + CT + concurrent and adjuvant BEV Localregional PFS (83.7%) and distant metastasis-free interval (90.8%), 
PFS (74.7%), OS (90.9%) within 2 years median followup

(145)

Advanced colorectal carcinoma 
(n = 19)

RT (15x–3.4 Gy) + concurrent and adjuvant BEV + CT CR (68.5%) and PR (21.1%) within 2 years median follow (146)

Newly diagnosed GBM 
[NCT00943826]

RT (60 Gy) + concurrent and adjuvant TMZ + BEV (n = 458) or 
placebo (n = 463)

Improved PFS (147)

Newly diagnosed GBM (n = 621) 
[NCT00884741]

RT (60Gy) + concurrent and adjuvant TMZ + BEV or placebo Improved PFS (148)

EGFR LA-HNC [NCT00004227] RT with concurrent cetuximab (n = 211) or RT alone (n = 213) Improved median OS (149)
Unresectable LA-SCCHN (n = 60) 
[NCT00096174]

RCT with concurrent and adjuvant cetuximab Improved median OS in HPV(+) tumors (150)

Esophageal cancer 
[ISRCTN47718479]

RCT with cetuximab (n = 129) or RCT alone (n = 129) ↓ Survival in cetuximab group (151)

Unresectable NSCLC  
[SWOG 0023]

RCT with adjuvant gefintinib (n = 118) or placebo (n = 125) ↓ Survival in gefinitib group (152)

LA-HNC (n = 66) CRT + concurrent and adjuvant gefintinib CR (90%), PFS (72%), OS (74%) within 3.5 years median followup (153)
Metastatic NSCLC (n = 24) SBRT + CT with neoadjuvant, concurrent and adjuvant erlotinib Improved PFS and OS (154)
Advanced cervical cancer (n = 36) RCT with neoadjuvant, concurrent erlotinib Improved PFS and OS (155)
Lung adenocarcinoma with brain 
metastases

WBRT with concurrent and adjuvant erlotinib  
(n = 23) or WBRT alone (n = 21)

Median local PFS 6.8 vs. 10.6 month (mOS: 6.8 vs. 10.6 month, response 
rate 54.84 vs. 95.65%) in RT vs. RT + E

(156)

Newly diagnosed GBM (n = 65) RCT with concurrent and adjuvant erlotinib Median PFS 8.2 vs. 4.9 month (mS: 19.3 vs. 14.1 month) RCT + E vs. 
historical controls (only RCT)

(157)

EGFR + VEGF-A LA-HNC (n = 27) [NCT00140556] Neoadjuvant BEV and/or erlotinib concurrent CRT + BEV and 
erlotinib

CR (96%), local control (85%) and distant metastasis-free survival rate 
(93%), PFS (82%), OS (86%) within 3 years median followup

(158)

VEGFR, PDGFR, 
KIT, RAF

Advanced hepatocellular  
carcinoma (n = 40)

RT with concurrent and adjuvant Sorafenib (S) No improved efficacy of RT + S compared to RT alone (159)

Newly diagnosed GBM (n = 47) RCT with adjuvant sorafenib (S) No improved efficacy of RCT + S compared to RCT alone (160)

RTK inhibitor Patients with oligometastases 
(n = 25) [NCT00463060]

Sunitinib  + IGRT (10 × 5 Gy) Local (75%) and distant (52%) tumor control, PFS (56%), OS (71%) within 
18-month median followup

(161)

Patients with oligometastases 
(n = 46)

Sunitinib + SBRT (10 × 5 Gy) Local (75%) and distant (40%) tumor control, PFS (34%), OS (29%) within 
4-year median followup

(162)

Co-stimulatory molecules

CD40 Advanced NHL (n = 74)or HL 
(n = 37) [NTC00670592]

Escalating doses of lucatumumab (once weekly for 4 weeks of 
an 8-week cycle)

Modest activity in relapsed/refractory patients with advanced lymphoma (109)

↑, increase; ↓, decrease; NSCLC, non-small cell lung carcinoma; mCRPC, metastatic castration-resistant prostate cancer; GBM, glioblastoma multiforme; LA-HNC, locally advanced head and neck cancer; LA-SCCHN, locally 
advanced squamous cell head and neck cancer; DLBCL, diffuse large B-cell lymphoma; NHL, non-Hodgkin lymphoma; HL, Hodgkin lymphoma; SBRT, stereotactic body radiation therapy; SABR, stereotactic ablative RT; IMRT, 
intensity modulated radiation therapy; IGRT, image-guided radiotherapy; WBRT, whole brain radiotherapy; AHSCT, autologous hematopoietic stem-cell transplantation; OS, overall survival; PFS, progression-free survival; CR, complete 
response; PR, partial response; LR, local response; BEV, bevacizumab; R-ICE, rituximab, ifosfamide, carboplatin and etopside; MDSCs, myeloid-derived suppressor cells.
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overcome tumor-escape from a tumor-specific immune response 
(168, 169).

Pre-clinical studies have demonstrated an enhancement of 
anti-tumor immunity through a combination of RT together 
with antibody-mediated PD-1 blockade (133–135). For instance, 
the effectiveness of treatment of mouse melanoma and renal-
cell tumors with stereotactic ablative radiotherapy (SABR) was 
dependent on PD-1 expression. Only 20% of PD-1 KO mice 
and none of the wild-type mice survived beyond 40  days. The 
combination of SABR with PD-1 blockade resulted not only in 
an almost complete regression of the irradiated primary tumor, 
but also in a 66% size reduction of the non-irradiated secondary 
tumors. Park et  al. therefore suggest a SABR-induced systemic 
tumor-specific immune response also targeting the secondary 
non-irradiated tumors that can further be increased by PD-1 
blockade (133). Of note is that optimal timing of RT in combina-
tion with a checkpoint blockade is mandatory: since IR tempo-
rarily increases the expression of PD-1L on tumor cells (134), a 
concurrent application is suggested. Addition of anti-PD-L1 mAb 
after RT does not result in prolonged survival of tumor-bearing 
mice (170, 171).

Single-agent trials have already been initiated using the anti-
PD-1 mAbs nivolumab, pembrolizumab, and pidilizumab, as 
recently summarized by Philips and Atkins (172). Those studies 
include planned or ongoing phase I–II trials of anti-PD-1 mAb 
monotherapy for various cancer entities, such as lymphoma 
(NCT02038946, NCT02038933, NCT01953692), NSCLC 
(NCT02066636, NCT01840579), hepatocellular carcinoma 
(HCC) (NCT01658878), HNSCC (NCT02105636), melanoma 
(NCT02374242, NCT01844505, NCT02306850), and glioma 
(NCT02337686, NCT02359565, NCT01952769), respectively, 
either alone or in comparison to CT or IT. A phase I trial inves-
tigating safety and reactivity of nivolumab in 236 patients with 
melanoma, NSCLC, mCRPC, colorectal cancer, and renal cancer 
concluded cumulative response rates in 14 of 76 among NSCLC 
patients, in 26 of 94 of patients suffering from melanoma and in 
9 of 33 renal-cell cancer patients. Anti-PD-1 treatment-related 
toxic effects (grades 3 and 4) occurred in 14% of the patients 
(141). A phase I trial with BMS-936559, a PD-L1-specific Ab in 
NSCLC, melanoma, colorectal, renal-cell, ovarian, pancreatic, 
gastric, and breast cancer (NCT00729664) patients resulted in an 
objective response rate in 9 of 52 in melanoma, in 2 of 17 in renal-
cell cancer, in 5 of 49 in NSCLC, and in 1 of 17 in ovarian cancer, 
while drug-related adverse effects of grades 3 and 4 occurred in 
9% of treated patients (144). A clinical investigation of lambroli-
zumab (MK-3475) in patients with advanced melanoma showed 
a 52% response rate. However, during the treatment drug-related 
adverse effects were reported by 79% of patients, with 13% report-
ing grades 3 and 4 secondary effects (142). These investigations 
lead to a FDA approval of pembrolizumab (formerly MK-3475 
and lambrolizumab) in patients suffering from advanced or non-
resectable melanoma that are no longer responsive to standard 
medications.

As it has been shown by Ansell et al., cells within the microen-
vironment in lymphomas express PD-L1, and with intratumor-
ally found T cells also expressing PD-1, this discovery provides 
the possibility to successfully target this immune checkpoint 

also in malignancies of hematopoietic origin (173). In the case 
of pidilizumab, an international phase II study was conducted 
in patients with diffuse large B-cell lymphoma (DLBCL) that are 
undergoing autologous hematopoietic stem-cell transplantation 
(AHSCT). The investigators discovered that among 35 out of 
66 patients with measurable disease after AHSCT, the overall 
response rate after pidilizumab was 51%. In addition to that, an 
increase of activated CD4+ helper and central memory T cells 
along with circulating CD8+ peripheral and central memory T 
cells was found, which was the first reported clinical activity of 
PD-1 blockage in DLBCL (143). Recently, a study examining 
nivolumab in relapsed or refractory Hodgkin’s lymphoma revealed 
a substantial therapeutic activity with an objective response rate 
of 87% and an acceptable safety profile in the evaluated cases 
(NCT01592370) (174).

In summary, PD-1 or PD-1L antagonistic mAb are able to 
promote a positive anti-tumor immune response in patients, 
while the response rate depends on the tumor entity. Thus, a 
combination therapy of anti-PD-1 mAb with RT could further 
improve the outcome and especially be an efficient strategy in 
the management of metastatic disease. The interactions of mul-
tiple co-stimulatory and inhibitory molecules regulating T-cell 
responses that can be targeted to strongly enhance radio(chemo)
therapy (RCT)-induced anti-tumor immune responses are sum-
marized in Figure 2.

Growth Factors as Targets for Cancer 
Therapeutics

The activation of receptors by growth factors such as EGF, VEGF, 
transforming growth factor-α (TGF-α), and basic fibroblast 
growth factor (bFGF) triggers various cellular processes, includ-
ing proliferation, differentiation, apoptosis, migration, adhesion, 
invasion, vascular permeability, or angiogenesis. As EGF and 
VEGF signaling pathways are a key feature in the development, 
progression, and metastatic formation in a wide range of cancer 
entities, they function as important targets for therapeutic Ab 
(175). In addition, pre-clinical models demonstrated a broad 
efficacy for anti-EGFR and anti-VEGF Abs alone (176–178) 
and in combination with RT (179). As in the case of checkpoint 
inhibitors, concurrent application should be most effective, 
since, e.g., VEGF-C expression is enhanced after irradiation 
(180). While many inhibitors are currently undergoing clinical 
evaluation, several others are already used in cancer therapy 
(Figure 2). Some of the FDA-approved inhibitors are anti-EGFR 
mAb that either work via binding the extracellular domain of 
EGFR (cetuximab, panitumumab, and trastuzumab) or target the 
intracellular EGFR domain such as the tyrosine kinase inhibi-
tors gefitinib and erlotinib (181). FDA-approved anti-VEGFR 
mAb, on the other hand, inhibit angiogenesis through VEGF-A 
blocking [e.g., bevacizumab (BEV)] or also act as VEGFR tyros-
ine kinase inhibitors such as sunitinib, sorafenib, axitinib, and 
pazopanib (182, 183). They are approved for a variety of tumor 
entities, including metastatic colorectal cancer, gastric or gastro-
esophageal carcinoma, renal-cell carcinoma (RCC), advanced 
soft tissue sarcoma, pancreatic neuroendocrine tumors (pNET), 
breast cancer, NSCLC, HNSCC, and glioblastoma. Several 
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FiGURe 2 | interactions of various co-stimulatory and inhibitory molecules regulate T-cell responses, tumor cell behavior, and vascularization. 
Immunotherapies with agonistic or antagonistic monoclonal antibodies have been developed to modulate these interactions by stimulating or blocking their activity. 
In the figure, a selection of important molecular interactions, their most relevant cellular source (not exclusive), and examples of antagonistic (red lines) or agonistic 
(green arrow) monoclonal antibodies as well as inhibitors are displayed. Activating receptors are depicted in green, suppressive receptors are shown in red, ligands 
are gray. For further information, please refer to the main text.

reports about the safety and efficacy of growth factor inhibitors 
either in the form of monotherapy or as a combinatory therapy 
paired with IT, CT, or RT have been released. However, targeting 
VEGF or EGFR alone does not always provide adequate tumor 
control in the clinic. In the next section, we will therefore focus 
on FDA-approved inhibitors in combinatory therapy settings 
together with RT or RCT.

Growth Factor inhibitors and RT
Patients suffering from loco-regional advanced squamous-cell 
carcinoma of the head and neck cancer (HNC) being treated in 
a phase III trial with a high-dose RT in combination with weekly 
cetuximab administration showed an increased loco-regional 
tumor control (24.4 vs. 14.9  months), along with increased 
median OS (49.0 vs. 29.3 months), increased median progression-
free survival (PFS,17.1 vs. 12.4 months), and reduced mortality in 
comparison to high-dose RT monotherapy (149). A combination 
of erlotinib with R(C)T is also able to enhance OS as well as PFS in 
patients with metastatic NSCLC (154), cervical cancer (155), lung 
adonocarcinoma (184), or GBM (157). Tong et al. demonstrated 
a protective effect of a combination of sunitinib with RT on oligo-
metastases (161). Their results were confirmed by Kao et al. who 
found a 75% local control and 40% distant control of oligome-
tastases, a PFS of 34%, and an OS of 29% over a 4-year period in 
patients with HNC, liver, lung, kidneys, and prostate cancers that 
have been treated with SBRT and concomitant sunitinib therapy 
(162). However, a combination therapy of RT and sorafenib in 
comparison with standard therapy was not able to enhance the 
efficacy in GBM and hepatocellular carcinoma (159, 160, 185).

Growth Factor inhibitors and R(C)T
A phase II study demonstrated a near-complete or complete 
tumor response in 53% of patients treated with a combination of 
panitumumab and RCT vs. 32% of patients treated with standard 
RCT in patients with advanced rectal cancer with wild-type 
KRAS (186). In vitro studies on this matter also demonstrated an 
elevated level of radiosensitivity (187), while the clinical relevance 
of a combination of RT and adjunctive trastuzumab therapy is still 
under investigation. A phase II study investigating the effects of 
gefitinib with concomitant RCT in locally advanced HNC found 
a 4-year enhanced OS (74%), PFS (72%) and disease-specific 
survival rates (89%), respectively (153). BEV is the first approved 
angiogenesis inhibitor and is used in metastatic colorectal cancer, 
NSCLC, and breast cancer. As a result of the poor prognosis of 
patients with GBM and thus a need for new therapy modalities, 
the combination of standard RCT and anti-angiogenic antibodies 
such as BEV might be a promising approach in the treatment of 
this tumor entity. Therefore, various clinical trials dealt with this 
notion and revealed an extended PFS and improved life quality 
in newly diagnosed GBM patients that have been treated with 
standard RCT and BEV, whereas no change in OS was observed 
(147, 148, 188). BEV has also been examined in various other 
entities: an addition of BEV to RCT in pancreatic adenocarci-
noma resulted in survival rates similar to those of standard 
approaches (189), in cases of nasopharyngeal carcinoma it was 
able to promote OS and has been linked to a delayed progression 
of distant metastases (145). Furthermore, an application of BEV 
in metastatic colorectal cancer resulted in high rates of long-term 
complete responses (CRs) (146). A simultaneous VEGF-A and 
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EGFR blockade (BEV  +  erlotinib) in locally advanced head 
and neck cancer (LA-HNC) together with concurrent RCT are 
favorable when being compared to historical controls (158).

Taken together, all these data suggest a synergized effect of 
combination treatment of R(C)T with VEGF and/or EGFR 
inhibitors as seen in NSCLC cells reported by Kriegs et al. (190). 
Most of the approved mAb used in cancer IT are generally well 
tolerated in humans (191). Conversely, mAb application can also 
be associated with an increased risk of unwanted and possibly 
even fatal adverse effects (191–194), including cytokine release 
syndrome, induced autoimmunity, organ toxicity, opportunistic 
infections, and even cancer as a result of immune suppression. 
This shows how, despite the success of therapeutic Ab, their clini-
cal efficacy greatly depends on tumor type, treatment duration, 
administered dose, and combination-therapy options. With this 
in mind, a new and promising approach in IT, the adoptive cell 
transfer, might be another useful therapy option to be combined 
with RT. Here, autologous T cells that are either tumor-specific or 
genetically engineered are expanded ex vivo before being infused 
back into the patient. In this article, we will focus on genetically 
engineered T cells only.

Chimeric Antigen Receptors as Tool to 
Recognize Specific Tumor-Associated 
Antigens

As mentioned above, tumors are able to establish an immunosup-
pressive microenvironment resulting, amongst other effects, in 
the inhibition of an anti-tumor-specific T-cell response. This state 
is achieved through release of immunosuppressive cytokines, 
altered MHC expression, recruitment of regulatory T cells, and/
or the up-regulation of immune suppressing molecules such as 
CTLA-4, PD-1, and PD-L1 [reviewed in Ref. (195)]. Genetically 
engineered T cells, possessing a cloned tumor-specific TCR or 
chimeric antigen receptor (CAR) and thus the ability to recognize 
specific TAAs, might provide a new, promising immunothera-
peutic strategy for cancer treatment. CARs are constructed from 
an antigen-binding domain [i.e., single chain antibody variable 
fragment (scFv)] that is derived from the variable region (Fab-
fragment) of a mAb which is linked to a transmembrane motif 
as well as an intracellular signaling domain of one or more co-
stimulatory molecules such as CD28, Ox40, or CD137 (196).

Currently about 70 clinical trials investigating CAR T cell 
ITs are registered in ClinicalTrials.gov, with most of these stud-
ies exploring B-cell malignancies targeting CD19. One of these 
studies, a phase I trial of CD19-CAR T cells used in refractory 
B-cell malignancies, reported a CR in 70% of patients with acute 
lymphoblastic leukemia (B-ALL) as well as an OS at a median 
followup of 10 months with 51.6% at 9.7 months (197). A second 
study evaluating the effects of CD19-directed CAR (CTL019) 
T-cell therapy in relapsed or refractory ALL reported a 90% rate 
of complete remission (198). Along with other clinical trials (199, 
200), these findings suggest a high beneficial effect of adoptive cell 
transfer with anti-CD19 CAR T cells in patients suffering from 
B-cell malignancies with manageable toxicities. These results 
give rise for cautious optimism in the treatment of solid tumors, 

including advanced Her2-positive malignancies, GBM, neuro-
blastoma, sarcomas, melanoma, metastatic pancreatic cancer, and 
metastatic breast cancer. In order to enhance anti-tumor effects of 
CAR T cell therapy, it can also be combined with other therapy 
options or the so-called bi-specific CARs recognizing two anti-
gens that are composed of two tandem-scFv fragments separated 
by a linker (201). The lymphodepletive and tumoricidal effects of 
standard-of-care CT and RT might potentiate the expansion and 
function of adoptively transferred CAR T cells, as suggested by 
Riccione et al. (202). However, more data of combination of RT 
with CAR T cells are first needed to allow for definite conclusions 
whether this treatment induces enhanced anti-tumor responses, 
locally and systemically.

Summary

A tumor is much more than just an accumulation of tumor cells. 
The cell death resistance of the malignant cells to anti-cancer 
therapies is one massive problem in the clinic. One of the chal-
lenges for researchers and clinicians is to identify treatments that 
will overcome or bypass the cell death resistance mechanisms 
established by the tumor cells, but also those of the microenvi-
ronment (68). Nowadays, the involvement of the immune system 
as a vital player in the recognition and eradication of malignant 
cells is generally accepted (203). While RT and CT are crucial 
for curative and palliative treatments, they do not only display 
cytotoxic or cytostatic effects and target the tumor directly, but 
are also involved in the activation of the immune system through 
the induction of immunogenic cell death or immunostimulatory 
mechanisms (29). In general, the modulation of the immune 
system via modifications of either tumor or immune cells with 
methods such as mAbs or small molecule inhibitors provides 
a great potential in the improvement of cancer therapies and 
numerous pre-clinical and clinical studies are ongoing. Even 
though these approaches often induce only modest and transient 
clinical responses in distinct malignancies, a combination with 
RT, and/or immunogenic CT and additional immune therapies 
such as vaccination might result in an improved clinical benefit. 
Thus, additional multi-center large-scaled randomized stud-
ies further evaluating the safety, efficacy, and clinical local and 
systemic outcome of monotherapy and combinatorial strategies 
are urgently needed. A more personalized treatment of patients 
through integration of predictive and prognostic biomarkers and 
considering individual radiosensitivity together with time and 
dose adaptions should be in the mind of clinicians and scientist 
alike. However, both have to keep in mind: it is crucial to first 
gain knowledge about the mechanisms and mode of action of 
the treatments to then be able to design multimodal therapies 
with respect to combinations and chronology. And if it does not 
work in the first try, go back to the lab and find out what can be 
optimized.

Acknowledgments

This work is in part funded by the German Federal Ministry of 
Education and Research (BMBF; m4 Cluster, 16EX1021R and 
GREWIS, 02NUK017G), the European Commission (DoReMi, 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


October 2015 | Volume 6 | Article 50514

Derer et al. Radio-immunotherapy-induced immunogenic cancer cells

Frontiers in Immunology | www.frontiersin.org

References

1. Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihofer C, et al. Current 
concepts in clinical radiation oncology. Radiat Environ Biophys (2014) 
53(1):1–29. doi:10.1007/s00411-013-0497-2 

2. Frey B, Gaipl US. Radio-immunotherapy: the focused beam expands. Lancet 
Oncol (2015) 16(7):742–3. doi:10.1016/s1470-2045(15)00055-8 

3. Stewart BW, Kleihues P. International agency for research on cancer, world 
health organization. World Cancer Report. Lyon: International Agency for 
Research on Cancer (2003).

4. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy 
in cancer treatment: estimating optimal utilization from a review of evi-
dence-based clinical guidelines. Cancer (2005) 104(6):1129–37. doi:10.1002/
cncr.21324 

5. Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, et  al. DNA damage 
response – a double-edged sword in cancer prevention and cancer therapy. 
Cancer Lett (2015) 358(1):8–16. doi:10.1016/j.canlet.2014.12.038 

6. Semenenko VA, Stewart RD. A fast Monte Carlo algorithm to simulate the 
spectrum of DNA damages formed by ionizing radiation. Radiat Res (2004) 
161(4):451–7. doi:10.1667/RR3140 

7. Suzuki K, Okada H, Yamauchi M, Oka Y, Kodama S, Watanabe M. Qualitative 
and quantitative analysis of phosphorylated ATM foci induced by low-dose 
ionizing radiation. Radiat Res (2006) 165(5):499–504. doi:10.1667/rr3542.1 

8. Aziz K, Nowsheen S, Pantelias G, Iliakis G, Gorgoulis VG, Georgakilas 
AG. Targeting DNA damage and repair: embracing the pharmacological 
era for successful cancer therapy. Pharmacol Ther (2012) 133(3):334–50. 
doi:10.1016/j.pharmthera.2011.11.010 

9. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour 
Biol (2010) 31(4):363–72. doi:10.1007/s13277-010-0042-8 

10. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. 
Nature (2015) 517(7534):311–20. doi:10.1038/nature14191 

11. Rodel F, Sprenger T, Kaina B, Liersch T, Rodel C, Fulda S, et al. Survivin as 
a prognostic/predictive marker and molecular target in cancer therapy. Curr 
Med Chem (2012) 19(22):3679–88. doi:10.2174/092986712801661040 

12. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 
(2007) 35(4):495–516. doi:10.1080/01926230701320337 

13. Erwig LP, Henson PM. Clearance of apoptotic cells by phagocytes. Cell Death 
Differ (2008) 15(2):243–50. doi:10.1038/sj.cdd.4402184 

14. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, 
et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated 
release of a lipid attraction signal. Cell (2003) 113(6):717–30. doi:10.1016/
S0092-8674(03)00422-7 

15. Lauber K, Ernst A, Orth M, Herrmann M, Belka C. Dying cell clearance and 
its impact on the outcome of tumor radiotherapy. Front Oncol (2012) 2:116. 
doi:10.3389/fonc.2012.00116 

16. Ravichandran KS. Beginnings of a good apoptotic meal: the find-me and 
eat-me signaling pathways. Immunity (2011) 35(4):445–55. doi:10.1016/j.
immuni.2011.09.004 

17. Chen X, Doffek K, Sugg SL, Shilyansky J. Phosphatidylserine regulates the 
maturation of human dendritic cells. J Immunol (2004) 173(5):2985–94. 
doi:10.4049/jimmunol.173.5.2985 

18. Gregory CD, Pound JD. Cell death in the neighbourhood: direct microen-
vironmental effects of apoptosis in normal and neoplastic tissues. J Pathol 
(2011) 223(2):177–94. doi:10.1002/path.2792 

19. Munoz LE, Franz S, Pausch F, Furnrohr B, Sheriff A, Vogt B, et al. The influ-
ence on the immunomodulatory effects of dying and dead cells of annexin V. 
J Leukoc Biol (2007) 81(1):6–14. doi:10.1189/jlb.0306166 

20. Frey B, Schildkopf P, Rodel F, Weiss EM, Munoz LE, Herrmann M, et  al. 
AnnexinA5 renders dead tumor cells immunogenic  –  implications 
for multimodal cancer therapies. J Immunotoxicol (2009) 6(4):209–16. 
doi:10.3109/15476910903204058 

21. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apopto-
sis. Nat Rev Cancer (2002) 2(4):277–88. doi:10.1038/nrc776 

22. Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form 
of programmed cell death? Exp Cell Res (2003) 283(1):1–16. doi:10.1016/
S0014-4827(02)00027-7 

23. Krysko O, Love Aaes T, Bachert C, Vandenabeele P, Krysko DV. Many faces 
of DAMPs in cancer therapy. Cell Death Dis (2013) 4:e631. doi:10.1038/
cddis.2013.156 

24. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, et  al. RIP3 
induces apoptosis independent of pronecrotic kinase activity. Mol Cell (2014) 
56(4):481–95. doi:10.1016/j.molcel.2014.10.021 

25. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas 
triggers an alternative, caspase-8-independent cell death pathway using 
the kinase RIP as effector molecule. Nat Immunol (2000) 1(6):489–95. 
doi:10.1038/82732 

26. Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol 
(2014) 35:14–23. doi:10.1016/j.semcdb.2014.07.013 

27. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. 
Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat 
Chem Biol (2008) 4(5):313–21. doi:10.1038/nchembio.83 

28. Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B, et al. 
Kill and spread the word: stimulation of antitumor immune responses in the 
context of radiotherapy. Immunotherapy (2014) 6(5):597–610. doi:10.2217/
imt.14.38 

29. Rodel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to 
bystander and non-targeted effects of ionizing radiation. Cancer Lett (2015) 
356(1):105–13. doi:10.1016/j.canlet.2013.09.015 

30. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol 
(2009) 10(7):718–26. doi:10.1016/S1470-2045(09)70082-8 

31. Prasanna A, Ahmed MM, Mohiuddin M, Coleman CN. Exploiting sensitiza-
tion windows of opportunity in hyper and hypo-fractionated radiation therapy. 
J Thorac Dis (2014) 6(4):287–302. doi:10.3978/j.issn.2072-1439.2014.01.14 

32. Elia AE, Shih HA, Loeffler JS. Stereotactic radiation treatment for benign 
meningiomas. Neurosurg Focus (2007) 23(4):E5. doi:10.3171/FOC-07/10/E5 

33. Rubner Y, Muth C, Strnad A, Derer A, Sieber R, Buslei R, et al. Fractionated 
radiotherapy is the main stimulus for the induction of cell death and of Hsp70 
release of p53 mutated glioblastoma cell lines. Radiat Oncol (2014) 9(1):89. 
doi:10.1186/1748-717X-9-89 

34. Tsai MH, Cook JA, Chandramouli GV, DeGraff W, Yan H, Zhao S, et al. Gene 
expression profiling of breast, prostate, and glioma cells following single 
versus fractionated doses of radiation. Cancer Res (2007) 67(8):3845–52. 
doi:10.1158/0008-5472.CAN-06-4250 

35. Multhoff G, Gaipl US, Niedermann G. [The role of radiotherapy in the induc-
tion of antitumor immune responses]. Strahlenther Onkol (2012) 188(Suppl 
3):312–5. doi:10.1007/s00066-012-0206-0 

36. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, 
Formenti SC, et  al. Fractionated but not single-dose radiotherapy induces 
an immune-mediated abscopal effect when combined with anti-CTLA-4 
antibody. Clin Cancer Res (2009) 15(17):5379–88. doi:10.1158/1078-0432.
ccr-09-0265 

37. Witham TF, Okada H, Fellows W, Hamilton RL, Flickinger JC, Chambers WH, 
et al. The characterization of tumor apoptosis after experimental radiosur-
gery. Stereotact Funct Neurosurg (2005) 83(1):17–24. doi:10.1159/000084475 

38. Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous acti-
vators of dendritic cells. Nat Med (1999) 5: 1249–1255. doi:10.1038/15200.

39. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. 
Nature (1998) 392(6673):245–52. doi:10.1038/32588 

40. Wallet MA, Sen P, Tisch R. Immunoregulation of dendritic cells. Clin Med Res 
(2005) 3(3):166–75. doi:10.3121/cmr.3.3.166 

41. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. 
Nat Rev Cancer (2012) 12(4):252–64. doi:10.1038/nrc3239 

42. Frey B, Rubner Y, Wunderlich R, Weiss EM, Pockley AG, Fietkau R, et al. 
Induction of abscopal anti-tumor immunity and immunogenic tumor cell 
death by ionizing irradiation – implications for cancer therapies. Curr Med 
Chem (2012) 19(12):1751–64. doi:10.2174/092986712800099811 

European Atomic Energy Community’s Seventh Framework 
Programme (FP7/2007-2011) under grant agreement no. 249689) 
and the Bavarian Equal Opportunities Sponsorship – Förderung 
von Frauen in Forschung und Lehre (FFL) – Promoting Equal 

Opportunities for Women in Research and Teaching. We further 
acknowledge the support by the German Research Foundation 
and the Friedrich-Alexander-Universität Erlangen-Nürnberg 
within the funding program Open Access Publishing.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1007/s00411-013-0497-2
http://dx.doi.org/10.1016/s1470-2045(15)00055-8
http://dx.doi.org/10.1002/cncr.21324
http://dx.doi.org/10.1002/cncr.21324
http://dx.doi.org/10.1016/j.canlet.2014.12.038
http://dx.doi.org/10.1667/RR3140
http://dx.doi.org/10.1667/rr3542.1
http://dx.doi.org/10.1016/j.pharmthera.2011.11.010
http://dx.doi.org/10.1007/s13277-010-0042-8
http://dx.doi.org/10.1038/nature14191
http://dx.doi.org/10.2174/092986712801661040
http://dx.doi.org/10.1080/01926230701320337
http://dx.doi.org/10.1038/sj.cdd.4402184
http://dx.doi.org/10.1016/S0092-8674(03)00422-7
http://dx.doi.org/10.1016/S0092-8674(03)00422-7
http://dx.doi.org/10.3389/fonc.2012.00116
http://dx.doi.org/10.1016/j.immuni.2011.09.004
http://dx.doi.org/10.1016/j.immuni.2011.09.004
http://dx.doi.org/10.4049/jimmunol.173.5.2985
http://dx.doi.org/10.1002/path.2792
http://dx.doi.org/10.1189/jlb.0306166
http://dx.doi.org/10.3109/15476910903204058
http://dx.doi.org/10.1038/nrc776
http://dx.doi.org/10.1016/S0014-4827(02)00027-7
http://dx.doi.org/10.1016/S0014-4827(02)00027-7
http://dx.doi.org/10.1038/cddis.2013.156
http://dx.doi.org/10.1038/cddis.2013.156
http://dx.doi.org/10.1016/j.molcel.2014.10.021
http://dx.doi.org/10.1038/82732
http://dx.doi.org/10.1016/j.semcdb.2014.07.013
http://dx.doi.org/10.1038/nchembio.83
http://dx.doi.org/10.2217/imt.14.38
http://dx.doi.org/10.2217/imt.14.38
http://dx.doi.org/10.1016/j.canlet.2013.09.015
http://dx.doi.org/10.1016/S1470-2045(09)70082-8
http://dx.doi.org/10.3978/j.issn.2072-1439.2014.01.14
http://dx.doi.org/10.3171/FOC-07/10/E5
http://dx.doi.org/10.1186/1748-717X-9-89
http://dx.doi.org/10.1158/0008-5472.CAN-06-4250
http://dx.doi.org/10.1007/s00066-012-0206-0
http://dx.doi.org/10.1158/1078-0432.ccr-09-0265
http://dx.doi.org/10.1158/1078-0432.ccr-09-0265
http://dx.doi.org/10.1159/000084475
http://dx.doi.org/10.1038/32588
http://dx.doi.org/10.3121/cmr.3.3.166
http://dx.doi.org/10.1038/nrc3239
http://dx.doi.org/10.2174/092986712800099811


October 2015 | Volume 6 | Article 50515

Derer et al. Radio-immunotherapy-induced immunogenic cancer cells

Frontiers in Immunology | www.frontiersin.org

43. Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and 
homeostatic danger signals. Implications for autoimmunity. Front Immunol 
(2013) 4:138. doi:10.3389/fimmu.2013.00138 

44. Frey B, Stache C, Rubner Y, Werthmoller N, Schulz K, Sieber R, et  al. 
Combined treatment of human colorectal tumor cell lines with chemother-
apeutic agents and ionizing irradiation can in vitro induce tumor cell death 
forms with immunogenic potential. J Immunotoxicol (2012) 9(3):301–13. doi
:10.3109/1547691x.2012.693547 

45. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. 
Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat 
Med (2007) 13(1):54–61. doi:10.1038/nm1523 

46. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. 
Radiation-induced immunogenic modulation of tumor enhances antigen 
processing and calreticulin exposure, resulting in enhanced T-cell killing. 
Oncotarget (2014) 5(2):403–16. doi:10.18632/oncotarget.1719 

47. Guo ZS, Liu Z, Bartlett DL, Tang D, Lotze MT. Life after death: targeting 
high mobility group box 1 in emergent cancer therapies. Am J Cancer Res 
(2013) 3(1):1–20. 

48. Schildkopf P, Frey B, Mantel F, Ott OJ, Weiss EM, Sieber R, et al. Application 
of hyperthermia in addition to ionizing irradiation fosters necrotic cell death 
and HMGB1 release of colorectal tumor cells. Biochem Biophys Res Commun 
(2010) 391(1):1014–20. doi:10.1016/j.bbrc.2009.12.008 

49. Dong Xda E, Ito N, Lotze MT, Demarco RA, Popovic P, Shand SH, 
et  al. High mobility group box I (HMGB1) release from tumor cells 
after treatment: implications for development of targeted chemo-
immunotherapy. J Immunother (2007) 30(6):596–606. doi:10.1097/
CJI.0b013e31804efc76 

50. Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, et  al. HMGB1 
mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 
(2009) 6(1):e10. doi:10.1371/journal.pmed.1000010 

51. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-
like receptor 4-dependent contribution of the immune system to anticancer 
chemotherapy and radiotherapy. Nat Med (2007) 13(9):1050–9. doi:10.1038/
nm1622 

52. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. 
Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 
(2010) 29(4):482–91. doi:10.1038/onc.2009.356 

53. Zhao CB, Bao JM, Lu YJ, Zhao T, Zhou XH, Zheng DY, et al. Co-expression 
of RAGE and HMGB1 is associated with cancer progression and poor patient 
outcome of prostate cancer. Am J Cancer Res (2014) 4(4):369–77. 

54. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, et al. HMGB1 
release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 
(2010) 29(38):5299–310. doi:10.1038/onc.2010.261 

55. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele 
P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 
(2012) 12(12):860–75. doi:10.1038/nrc3380 

56. Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, et al. 
Tumor cell death and ATP release prime dendritic cells and efficient anti-
cancer immunity. Cancer Res (2010) 70(3):855–8. doi:10.1158/0008-5472.
can-09-3566 

57. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et  al. 
Activation of the NLRP3 inflammasome in dendritic cells induces 
IL-1beta-dependent adaptive immunity against tumors. Nat Med (2009) 
15(10):1170–8. doi:10.1038/nm.2028 

58. Bianchi G, Vuerich M, Pellegatti P, Marimpietri D, Emionite L, Marigo I, et al. 
ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neu-
roblastoma microenvironment. Cell Death Dis (2014) 5:e1135. doi:10.1038/
cddis.2014.109 

59. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of 
heat shock proteins as regulators of apoptosis and innate immunity. J Innate 
Immun (2010) 2(3):238–47. doi:10.1159/000296508 

60. Lauber K, Brix N, Ernst A, Hennel R, Krombach J, Anders H, et al. Targeting 
the heat shock response in combination with radiotherapy: sensitizing cancer 
cells to irradiation-induced cell death and heating up their immunogenicity. 
Cancer Lett (2015) 368(2):209–29. doi:10.1016/j.canlet.2015.02.047 

61. Schilling D, Kuhnel A, Konrad S, Tetzlaff F, Bayer C, Yaglom J, et al. Sensitizing 
tumor cells to radiation by targeting the heat shock response. Cancer Lett 
(2015) 360(2):294–301. doi:10.1016/j.canlet.2015.02.033 

62. Multhoff G, Pockley AG, Streffer C, Gaipl US. Dual role of heat shock pro-
teins (HSPs) in anti-tumor immunity. Curr Mol Med (2012) 12(9):1174–82. 
doi:10.2174/156652412803306666 

63. Pfister K, Radons J, Busch R, Tidball JG, Pfeifer M, Freitag L, et al. Patient 
survival by Hsp70 membrane phenotype: association with different routes of 
metastasis. Cancer (2007) 110(4):926–35. doi:10.1002/cncr.22864 

64. Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, Yu JS. Induction of 
a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing 
glioma. J Immunol (2004) 173(7):4352–9. doi:10.4049/jimmunol.173.7.4352 

65. Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, 
Moses HL, et al. A highly immunogenic tumor transfected with a murine 
transforming growth factor type beta 1 cDNA escapes immune surveillance. 
Proc Natl Acad Sci U S A (1990) 87(4):1486–90. doi:10.1073/pnas.87.4.1486 

66. Gerlini G, Tun-Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO. Metastatic 
melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells 
in metastatic tumor lesions. Am J Pathol (2004) 165(6):1853–63. doi:10.1016/
s0002-9440(10)63238-5 

67. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. 
Evidence for a tumoral immune resistance mechanism based on tryptophan 
degradation by indoleamine 2,3-dioxygenase. Nat Med (2003) 9(10):1269–74. 
doi:10.1038/nm934 

68. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 
(2011) 144(5):646–74. doi:10.1016/j.cell.2011.02.013 

69. Natali PG, Nicotra MR, Bigotti A, Venturo I, Marcenaro L, Giacomini P, et al. 
Selective changes in expression of HLA class I polymorphic determinants 
in human solid tumors. Proc Natl Acad Sci U S A (1989) 86(17):6719–23. 
doi:10.1073/pnas.86.17.6719 

70. Algarra I, Collado A, Garrido F. Altered MHC class I antigens in tumors. Int 
J Clin Lab Res (1997) 27(2):95–102. doi:10.1007/BF02912442 

71. Koneru M, Schaer D, Monu N, Ayala A, Frey AB. Defective proximal TCR 
signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. 
J Immunol (2005) 174(4):1830–40. doi:10.4049/jimmunol.174.4.1830 

72. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et  al. 
Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism 
of immune evasion. Nat Med (2002) 8(8):793–800. doi:10.1038/nm730

73. Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, 
Mack B, et  al. Identification and functional analysis of tumor-infiltrating 
plasmacytoid dendritic cells in head and neck cancer. Cancer Res (2003) 
63(19):6478–87. 

74. Li Q, Pan PY, Gu P, Xu D, Chen SH. Role of immature myeloid Gr-1+ cells 
in the development of antitumor immunity. Cancer Res (2004) 64(3):1130–9. 
doi:10.1158/0008-5472.CAN-03-1715 

75. Peng G. Characterization of regulatory T cells in tumor suppres-
sive microenvironments. Methods Mol Biol (2010) 651:31–48. 
doi:10.1007/978-1-60761-786-0_2 

76. Frey B, Rubner Y, Kulzer L, Werthmoller N, Weiss EM, Fietkau R, et  al. 
Antitumor immune responses induced by ionizing irradiation and further 
immune stimulation. Cancer Immunol Immunother (2014) 63(1):29–36. 
doi:10.1007/s00262-013-1474-y 

77. Large M, Hehlgans S, Reichert S, Gaipl US, Fournier C, Rodel C, et al. Study 
of the anti-inflammatory effects of low-dose radiation: the contribution 
of biphasic regulation of the antioxidative system in endothelial cells. 
Strahlenther Onkol (2015) 191(9):742–9. doi:10.1007/s00066-015-0848-9 

78. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley 
EK, et al. Radiation modulates the peptide repertoire, enhances MHC class 
I expression, and induces successful antitumor immunotherapy. J Exp Med 
(2006) 203(5):1259–71. doi:10.1084/jem.20052494 

79. Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, 
et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activ-
ity and CTL adoptive immunotherapy. J Immunol (2003) 170(12):6338–47. 
doi:10.4049/jimmunol.170.12.6338 

80. Kim JY, Son YO, Park SW, Bae JH, Chung JS, Kim HH, et  al. Increase of 
NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor 
cells by heat shock and ionizing radiation. Exp Mol Med (2006) 38(5):474–84. 
doi:10.1038/emm.2006.56 

81. Matsumura S, Demaria S. Up-regulation of the pro-inflammatory chemokine 
CXCL16 is a common response of tumor cells to ionizing radiation. Radiat 
Res (2010) 173(4):418–25. doi:10.1667/rr1860.1 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.3389/fimmu.2013.00138
http://dx.doi.org/10.3109/1547691x.2012.693547
http://dx.doi.org/10.1038/nm1523
http://dx.doi.org/10.18632/oncotarget.1719
http://dx.doi.org/10.1016/j.bbrc.2009.12.008
http://dx.doi.org/10.1097/CJI.0b013e31804efc76
http://dx.doi.org/10.1097/CJI.0b013e31804efc76
http://dx.doi.org/10.1371/journal.pmed.1000010
http://dx.doi.org/10.1038/nm1622
http://dx.doi.org/10.1038/nm1622
http://dx.doi.org/10.1038/onc.2009.356
http://dx.doi.org/10.1038/onc.2010.261
http://dx.doi.org/10.1038/nrc3380
http://dx.doi.org/10.1158/0008-5472.can-09-3566
http://dx.doi.org/10.1158/0008-5472.can-09-3566
http://dx.doi.org/10.1038/nm.2028
http://dx.doi.org/10.1038/cddis.2014.109
http://dx.doi.org/10.1038/cddis.2014.109
http://dx.doi.org/10.1159/000296508
http://dx.doi.org/10.1016/j.canlet.2015.02.047
http://dx.doi.org/10.1016/j.canlet.2015.02.033
http://dx.doi.org/10.2174/156652412803306666
http://dx.doi.org/10.1002/cncr.22864
http://dx.doi.org/10.4049/jimmunol.173.7.4352
http://dx.doi.org/10.1073/pnas.87.4.1486
http://dx.doi.org/10.1016/s0002-9440(10)63238-5
http://dx.doi.org/10.1016/s0002-9440(10)63238-5
http://dx.doi.org/10.1038/nm934
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1073/pnas.86.17.6719
http://dx.doi.org/10.1007/BF02912442
http://dx.doi.org/10.4049/jimmunol.174.4.1830
http://dx.doi.org/10.1038/nm730
http://dx.doi.org/10.1158/0008-5472.CAN-03-1715
http://dx.doi.org/10.1007/978-1-60761-786-0_2
http://dx.doi.org/10.1007/s00262-013-1474-y
http://dx.doi.org/10.1007/s00066-015-0848-9
http://dx.doi.org/10.1084/jem.20052494
http://dx.doi.org/10.4049/jimmunol.170.12.6338
http://dx.doi.org/10.1038/emm.2006.56
http://dx.doi.org/10.1667/rr1860.1


October 2015 | Volume 6 | Article 50516

Derer et al. Radio-immunotherapy-induced immunogenic cancer cells

Frontiers in Immunology | www.frontiersin.org

82. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. 
Radiation-induced IFN-gamma production within the tumor microenvi-
ronment influences antitumor immunity. J Immunol (2008) 180(5):3132–9. 
doi:10.4049/jimmunol.180.5.3132 

83. Kulzer L, Rubner Y, Deloch L, Allgauer A, Frey B, Fietkau R, et al. Norm- and 
hypo-fractionated radiotherapy is capable of activating human dendritic cells. 
J Immunotoxicol (2014) 11(4):328–36. doi:10.3109/1547691x.2014.880533 

84. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et  al. Therapeutic 
effects of ablative radiation on local tumor require CD8+ T cells: changing 
strategies for cancer treatment. Blood (2009) 114(3):589–95. doi:10.1182/
blood-2009-02-206870 

85. Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal 
J. The controversial abscopal effect. Cancer Treat Rev (2005) 31(3):159–72. 
doi:10.1016/j.ctrv.2005.03.004 

86. Nobler MP. The abscopal effect in malignant lymphoma and its relationship to 
lymphocyte circulation. Radiology (1969) 93(2):410–2. doi:10.1148/93.2.410 

87. Rubner Y, Wunderlich R, Ruhle PF, Kulzer L, Werthmoller N, Frey B, et al. 
How does ionizing irradiation contribute to the induction of anti-tumor 
immunity? Front Oncol (2012) 2:75. doi:10.3389/fonc.2012.00075 

88. Shiraishi K, Ishiwata Y, Nakagawa K, Yokochi S, Taruki C, Akuta T, et  al. 
Enhancement of antitumor radiation efficacy and consistent induction 
of the abscopal effect in mice by ECI301, an active variant of macrophage 
inflammatory protein-1alpha. Clin Cancer Res (2008) 14(4):1159–66. 
doi:10.1158/1078-0432.ccr-07-4485 

89. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing 
radiation inhibition of distant untreated tumors (abscopal effect) is immune 
mediated. Int J Radiat Oncol Biol Phys (2004) 58(3):862–70. doi:10.1016/j.
ijrobp.2003.09.012 

90. Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, et al. Abscopal 
regression of hepatocellular carcinoma after radiotherapy for bone metasta-
sis. Gut (1998) 43(4):575–7. doi:10.1136/gut.43.4.575 

91. Jurgenliemk-Schulz IM, Renes IB, Rutgers DH, Everse LA, Bernsen MR, 
Den Otter W, et al. Anti-tumor effects of local irradiation in combination 
with peritumoral administration of low doses of recombinant inter-
leukin-2 (rIL-2). Radiat Oncol Investig (1997) 5(2):54–61. doi:10.1002/
(SICI)1520-6823(1997)5:23.0.CO;2-I 

92. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, 
et  al. Interleukin-2 production by tumor cells bypasses T helper function 
in the generation of an antitumor response. Cell (1990) 60(3):397–403. 
doi:10.1016/0092-8674(90)90591-2 

93. Huang H, Chen SH, Kosai K, Finegold MJ, Woo SL. Gene therapy for hepa-
tocellular carcinoma: long-term remission of primary and metastatic tumors 
in mice by interleukin-2 gene therapy in vivo. Gene Ther (1996) 3(11):980–7. 

94. Asada H, Kishida T, Hirai H, Satoh E, Ohashi S, Takeuchi M, et al. Significant 
antitumor effects obtained by autologous tumor cell vaccine engineered to 
secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 
(2002) 5(5 Pt 1):609–16. doi:10.1006/mthe.2002.0587 

95. Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD, Vujanovic 
NL, et al. Intratumoral delivery of dendritic cells engineered to secrete both 
interleukin (IL)-12 and IL-18 effectively treats local and distant disease in 
association with broadly reactive Tc1-type immunity. Cancer Res (2003) 
63(19):6378–86. 

96. Moret-Tatay I, Diaz J, Marco FM, Crespo A, Alino SF. Complete tumor 
prevention by engineered tumor cell vaccines employing nonviral vectors. 
Cancer Gene Ther (2003) 10(12):887–97. doi:10.1038/sj.cgt.7700646 

97. Tatsuta K, Tanaka S, Tajiri T, Shibata S, Komaru A, Ueda Y, et al. Complete 
elimination of established neuroblastoma by synergistic action of gamma-ir-
radiation and DCs treated with rSeV expressing interferon-beta gene. Gene 
Ther (2009) 16(2):240–51. doi:10.1038/gt.2008.161 

98. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian 
M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulat-
ing factor to generate abscopal responses in patients with metastatic solid 
tumours: a proof-of-principle trial. Lancet Oncol (2015) 16(7):795–803. 
doi:10.1016/s1470-2045(15)00054-6 

99. Klyushnenkova EN, Riabov VB, Kouiavskaia DV, Wietsma A, Zhan M, 
Alexander RB. Breaking immune tolerance by targeting CD25+ regulatory 
T cells is essential for the anti-tumor effect of the CTLA-4 blockade in 
an HLA-DR transgenic mouse model of prostate cancer. Prostate (2014) 
74(14):1423–32. doi:10.1002/pros.22858 

100. Kosaka A, Ohkuri T, Okada H. Combination of an agonistic anti-CD40 
monoclonal antibody and the COX-2 inhibitor celecoxib induces 
anti-glioma effects by promotion of type-1 immunity in myeloid cells and 
T-cells. Cancer Immunol Immunother (2014) 63(8):847–57. doi:10.1007/
s00262-014-1561-8 

101. Honeychurch J, Glennie MJ, Johnson PW, Illidge TM. Anti-CD40 monoclo-
nal antibody therapy in combination with irradiation results in a CD8 T-cell-
dependent immunity to B-cell lymphoma. Blood (2003) 102(4):1449–57. 
doi:10.1182/blood-2002-12-3717 

102. Yokouchi H, Yamazaki K, Chamoto K, Kikuchi E, Shinagawa N, Oizumi S, 
et al. Anti-OX40 monoclonal antibody therapy in combination with radio-
therapy results in therapeutic antitumor immunity to murine lung cancer. 
Cancer Sci (2008) 99(2):361–7. doi:10.1111/j.1349-7006.2007.00664.x 

103. Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, 
et  al. Radiotherapy increases the permissiveness of established mammary 
tumors to rejection by immunomodulatory antibodies. Cancer Res (2012) 
72(13):3163–74. doi:10.1158/0008-5472.can-12-0210 

104. Belcaid Z, Phallen JA, Zeng J, See AP, Mathios D, Gottschalk C, et al. Focal 
radiation therapy combined with 4-1BB activation and CTLA-4 blockade 
yields long-term survival and a protective antigen-specific memory response 
in a murine glioma model. PLoS One (2014) 9(7):e101764. doi:10.1371/
journal.pone.0101764 

105. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, et al. Anti-PD-1 
blockade and stereotactic radiation produce long-term survival in mice 
with intracranial gliomas. Int J Radiat Oncol Biol Phys (2013) 86(2):343–9. 
doi:10.1016/j.ijrobp.2012.12.025 

106. Naumov GN, Nilsson MB, Cascone T, Briggs A, Straume O, Akslen LA, 
et al. Combined vascular endothelial growth factor receptor and epidermal 
growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft 
models of EGFR inhibitor resistance. Clin Cancer Res (2009) 15(10):3484–94. 
doi:10.1158/1078-0432.ccr-08-2904 

107. Bozec A, Sudaka A, Toussan N, Fischel JL, Etienne-Grimaldi MC, Milano 
G. Combination of sunitinib, cetuximab and irradiation in an orthotopic 
head and neck cancer model. Ann Oncol (2009) 20(10):1703–7. doi:10.1093/
annonc/mdp070 

108. Tong AW, Stone MJ. Prospects for CD40-directed experimental therapy 
of human cancer. Cancer Gene Ther (2003) 10(1):1–13. doi:10.1038/
sj.cgt.7700527 

109. Fanale M, Assouline S, Kuruvilla J, Solal-Celigny P, Heo DS, Verhoef G, et al. 
Phase IA/II, multicentre, open-label study of the CD40 antagonistic mono-
clonal antibody lucatumumab in adult patients with advanced non-Hodgkin 
or Hodgkin lymphoma. Br J Haematol (2014) 164(2):258–65. doi:10.1111/
bjh.12630 

110. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, 
Floyd K, et  al. OX40 is a potent immune-stimulating target in late-stage 
cancer patients. Cancer Res (2013) 73(24):7189–98. doi:10.1158/0008-5472.
can-12-4174 

111. Gough MJ, Crittenden MR, Sarff M, Pang P, Seung SK, Vetto JT, et  al. 
Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local 
control after surgical or radiation therapy of cancer in mice. J Immunother 
(2010) 33(8):798–809. doi:10.1097/CJI.0b013e3181ee7095 

112. Vinay DS, Kwon BS. Immunotherapy of cancer with 4-1BB. Mol Cancer Ther 
(2012) 11(5):1062–70. doi:10.1158/1535-7163.MCT-11-0677 

113. Palazon A, Teijeira A, Martinez-Forero I, Hervas-Stubbs S, Roncal C, Penuelas 
I, et al. Agonist anti-CD137 mAb act on tumor endothelial cells to enhance 
recruitment of activated T lymphocytes. Cancer Res (2011) 71(3):801–11. 
doi:10.1158/0008-5472.can-10-1733 

114. Shi W, Siemann DW. Augmented antitumor effects of radiation therapy 
by 4-1BB antibody (BMS-469492) treatment. Anticancer Res (2006) 
26(5a):3445–53. 

115. Newcomb EW, Lukyanov Y, Kawashima N, Alonso-Basanta M, Wang SC, Liu 
M, et al. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a 
mouse glioma model. Radiat Res (2010) 173(4):426–32. doi:10.1667/rr1904.1 

116. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance 
and immunity. Annu Rev Immunol (2008) 26:677–704. doi:10.1146/annurev.
immunol.26.021607.090331 

117. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, 
et al. A new member of the immunoglobulin superfamily – CTLA-4. Nature 
(1987) 328(6127):267–70. doi:10.1038/328267a0 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.4049/jimmunol.180.5.3132
http://dx.doi.org/10.3109/1547691x.2014.880533
http://dx.doi.org/10.1182/blood-2009-02-206870
http://dx.doi.org/10.1182/blood-2009-02-206870
http://dx.doi.org/10.1016/j.ctrv.2005.03.004
http://dx.doi.org/10.1148/93.2.410
http://dx.doi.org/10.3389/fonc.2012.00075
http://dx.doi.org/10.1158/1078-0432.ccr-07-4485
http://dx.doi.org/10.1016/j.ijrobp.2003.09.012
http://dx.doi.org/10.1016/j.ijrobp.2003.09.012
http://dx.doi.org/10.1136/gut.43.4.575
http://dx.doi.org/10.1002/(SICI)1520-6823(1997)5:23.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1520-6823(1997)5:23.0.CO;2-I
http://dx.doi.org/10.1016/0092-8674(90)90591-2
http://dx.doi.org/10.1006/mthe.2002.0587
http://dx.doi.org/10.1038/sj.cgt.7700646
http://dx.doi.org/10.1038/gt.2008.161
http://dx.doi.org/10.1016/s1470-2045(15)00054-6
http://dx.doi.org/10.1002/pros.22858
http://dx.doi.org/10.1007/s00262-014-1561-8
http://dx.doi.org/10.1007/s00262-014-1561-8
http://dx.doi.org/10.1182/blood-2002-12-3717
http://dx.doi.org/10.1111/j.1349-7006.2007.00664.x
http://dx.doi.org/10.1158/0008-5472.can-12-0210
http://dx.doi.org/10.1371/journal.pone.0101764
http://dx.doi.org/10.1371/journal.pone.0101764
http://dx.doi.org/10.1016/j.ijrobp.2012.12.025
http://dx.doi.org/10.1158/1078-0432.ccr-08-2904
http://dx.doi.org/10.1093/annonc/mdp070
http://dx.doi.org/10.1093/annonc/mdp070
http://dx.doi.org/10.1038/sj.cgt.7700527
http://dx.doi.org/10.1038/sj.cgt.7700527
http://dx.doi.org/10.1111/bjh.12630
http://dx.doi.org/10.1111/bjh.12630
http://dx.doi.org/10.1158/0008-5472.can-12-4174
http://dx.doi.org/10.1158/0008-5472.can-12-4174
http://dx.doi.org/10.1097/CJI.0b013e3181ee7095
http://dx.doi.org/10.1158/1535-7163.MCT-11-0677
http://dx.doi.org/10.1158/0008-5472.can-10-1733
http://dx.doi.org/10.1667/rr1904.1
http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331
http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331
http://dx.doi.org/10.1038/328267a0


October 2015 | Volume 6 | Article 50517

Derer et al. Radio-immunotherapy-induced immunogenic cancer cells

Frontiers in Immunology | www.frontiersin.org

118. Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview 
of preclinical and translational research. Cancer Immun (2013) 13:5. 

119. McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of 
T cell immune responses. Immunol Cell Biol (1999) 77(1):1–10. 
doi:10.1046/j.1440-1711.1999.00795.x 

120. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin 
AV, et al. Signatures of mutational processes in human cancer. Nature (2013) 
500(7463):415–21. doi:10.1038/nature12477 

121. van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 
melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-
producing vaccines induces rejection of subcutaneous and metastatic 
tumors accompanied by autoimmune depigmentation. J Exp Med (1999) 
190(3):355–66. 

122. Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP. Combination 
CTLA-4 blockade and 4-1BB activation enhances tumor rejection by 
increasing T-cell infiltration, proliferation, and cytokine production. PLoS 
One (2011) 6(4):e19499. doi:10.1371/journal.pone.0019499 

123. Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF, Redman B, 
et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. 
J Clin Oncol (2009) 27(7):1075–81. doi:10.1200/jco.2008.19.2435 

124. Kirkwood JM, Lorigan P, Hersey P, Hauschild A, Robert C, McDermott D, 
et al. Phase II trial of tremelimumab (CP-675,206) in patients with advanced 
refractory or relapsed melanoma. Clin Cancer Res (2010) 16(3):1042–8. 
doi:10.1158/1078-0432.ccr-09-2033 

125. Tarhini A. Immune-mediated adverse events associated with ipilimumab 
ctla-4 blockade therapy: the underlying mechanisms and clinical manage-
ment. Scientifica (Cairo) (2013) 2013:857519. doi:10.1155/2013/857519 

126. Ribas A, Comin-Anduix B, Chmielowski B, Jalil J, de la Rocha P, McCannel 
TA, et  al. Dendritic cell vaccination combined with CTLA4 blockade in 
patients with metastatic melanoma. Clin Cancer Res (2009) 15(19):6267–76. 
doi:10.1158/1078-0432.ccr-09-1254 

127. Palucka AK, Ueno H, Connolly J, Kerneis-Norvell F, Blanck JP, Johnston DA, 
et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce 
objective clinical responses and MART-1 specific CD8+ T-cell immunity. J 
Immunother (2006) 29(5):545–57. doi:10.1097/01.cji.0000211309.90621.8b 

128. Millward M, Underhill C, Lobb S, McBurnie J, Meech SJ, Gomez-Navarro J, 
et al. Phase I study of tremelimumab (CP-675 206) plus PF-3512676 (CPG 
7909) in patients with melanoma or advanced solid tumours. Br J Cancer 
(2013) 108(10):1998–2004. doi:10.1038/bjc.2013.227 

129. Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y, Gooding WE, et al. 
Safety and efficacy of combination immunotherapy with interferon alfa-2b 
and tremelimumab in patients with stage IV melanoma. J Clin Oncol (2012) 
30(3):322–8. doi:10.1200/jco.2011.37.5394 

130. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et  al. 
Phase III randomized clinical trial comparing tremelimumab with standard-
of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 
(2013) 31(5):616–22. doi:10.1200/jco.2012.44.6112 

131. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. 
Immune-mediated inhibition of metastases after treatment with local radi-
ation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer 
Res (2005) 11(2 Pt 1):728–34. 

132. Pilones KA, Kawashima N, Yang AM, Babb JS, Formenti SC, Demaria S. 
Invariant natural killer T cells regulate breast cancer response to radiation and 
CTLA-4 blockade. Clin Cancer Res (2009) 15(2):597–606. doi:10.1158/1078-
0432.ccr-08-1277 

133. Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams M, et  al. PD-1 
restrains radiotherapy-induced abscopal Effect. Cancer Immunol Res (2015) 
3(6):610–9. doi:10.1158/2326-6066.CIR-14-0138 

134. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. 
Irradiation and anti-PD-L1 treatment synergistically promote antitumor 
immunity in mice. J Clin Invest (2014) 124(2):687–95. doi:10.1172/jci67313 

135. Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, et al. 
Stereotactic radiation therapy augments antigen-specific PD-1-mediated 
antitumor immune responses via cross-presentation of tumor antigen. 
Cancer Immunol Res (2015) 3(4):345–55. doi:10.1158/2326-6066.cir-14-0196 

136. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et  al. 
Immunologic correlates of the abscopal effect in a patient with melanoma. N 
Engl J Med (2012) 366(10):925–31. doi:10.1056/NEJMoa1112824 

137. Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, et al. A 
systemic complete response of metastatic melanoma to local radiation and 
immunotherapy. Transl Oncol (2012) 5(6):404–7. doi:10.1593/tlo.12280 

138. Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, 
et al. Abscopal effects of radiotherapy on advanced melanoma patients who 
progressed after ipilimumab immunotherapy. Oncoimmunology (2014) 
3:e28780. doi:10.4161/onci.28780 

139. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. 
Ipilimumab versus placebo after radiotherapy in patients with metastatic 
castration-resistant prostate cancer that had progressed after docetaxel che-
motherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 
trial. Lancet Oncol (2014) 15(7):700–12. doi:10.1016/s1470-2045(14)70189-5 

140. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An abscopal 
response to radiation and ipilimumab in a patient with metastatic non-small 
cell lung cancer. Cancer Immunol Res (2013) 1(6):365–72. doi:10.1158/2326-
6066.cir-13-0115 

141. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, 
et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. 
N Engl J Med (2012) 366(26):2443–54. doi:10.1056/NEJMoa1200690 

142. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and 
tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J 
Med (2013) 369(2):134–44. doi:10.1056/NEJMoa1305133 

143. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, et  al. 
Disabling immune tolerance by programmed death-1 blockade with pidili-
zumab after autologous hematopoietic stem-cell transplantation for diffuse 
large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 
(2013) 31(33):4199–206. doi:10.1200/jco.2012.48.3685 

144. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety 
and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl 
J Med (2012) 366(26):2455–65. doi:10.1056/NEJMoa1200694 

145. Lee NY, Zhang Q, Pfister DG, Kim J, Garden AS, Mechalakos J, et al. Addition 
of bevacizumab to standard chemoradiation for locoregionally advanced 
nasopharyngeal carcinoma (RTOG 0615): a phase 2 multi-institutional trial. 
Lancet Oncol (2012) 13(2):172–80. doi:10.1016/s1470-2045(11)70303-5 

146. Koukourakis MI, Giatromanolaki A, Sheldon H, Buffa FM, Kouklakis G, 
Ragoussis I, et al. Phase I/II trial of bevacizumab and radiotherapy for locally 
advanced inoperable colorectal cancer: vasculature-independent radio-
sensitizing effect of bevacizumab. Clin Cancer Res (2009) 15(22):7069–76. 
doi:10.1158/1078-0432.ccr-09-0688 

147. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, 
et  al. Bevacizumab plus radiotherapy-temozolomide for newly diag-
nosed glioblastoma. N Engl J Med (2014) 370(8):709–22. doi:10.1056/
NEJMoa1308345 

148. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum 
MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblas-
toma. N Engl J Med (2014) 370(8)):699–708. doi:10.1056/NEJMoa1308573 

149. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et  al. 
Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and 
neck. N Engl J Med (2006) 354(6):567–78. doi:10.1056/NEJMoa053422 

150. Egloff AM, Lee JW, Langer CJ, Quon H, Vaezi A, Grandis JR, et al. Phase 
II study of cetuximab in combination with cisplatin and radiation in 
unresectable, locally advanced head and neck squamous cell carcinoma: 
Eastern cooperative oncology group trial E3303. Clin Cancer Res (2014) 
20(19):5041–51. doi:10.1158/1078-0432.ccr-14-0051 

151. Hurt CN, Nixon LS, Griffiths GO, Al-Mokhtar R, Gollins S, Staffurth JN, et al. 
SCOPE1: a randomised phase II/III multicentre clinical trial of definitive 
chemoradiation, with or without cetuximab, in carcinoma of the oesophagus. 
BMC Cancer (2011) 11:466. doi:10.1186/1471-2407-11-466 

152. Kelly K, Chansky K, Gaspar LE, Albain KS, Jett J, Ung YC, et al. Phase III 
trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy 
and docetaxel consolidation in inoperable stage III non-small-cell lung 
cancer: SWOG S0023. J Clin Oncol (2008) 26(15):2450–6. doi:10.1200/
jco.2007.14.4824 

153. Cohen EE, Haraf DJ, Kunnavakkam R, Stenson KM, Blair EA, Brockstein B, 
et al. Epidermal growth factor receptor inhibitor gefitinib added to chemo-
radiotherapy in locally advanced head and neck cancer. J Clin Oncol (2010) 
28(20):3336–43. doi:10.1200/jco.2009.27.0397 

154. Iyengar P, Kavanagh BD, Wardak Z, Smith I, Ahn C, Gerber DE, et al. Phase 
II trial of stereotactic body radiation therapy combined with erlotinib for 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1046/j.1440-1711.1999.00795.x
http://dx.doi.org/10.1038/nature12477
http://dx.doi.org/10.1371/journal.pone.0019499
http://dx.doi.org/10.1200/jco.2008.19.2435
http://dx.doi.org/10.1158/1078-0432.ccr-09-2033
http://dx.doi.org/10.1155/2013/857519
http://dx.doi.org/10.1158/1078-0432.ccr-09-1254
http://dx.doi.org/10.1097/01.cji.0000211309.90621.8b
http://dx.doi.org/10.1038/bjc.2013.227
http://dx.doi.org/10.1200/jco.2011.37.5394
http://dx.doi.org/10.1200/jco.2012.44.6112
http://dx.doi.org/10.1158/1078-0432.ccr-08-1277
http://dx.doi.org/10.1158/1078-0432.ccr-08-1277
http://dx.doi.org/10.1158/2326-6066.cir-14-0138
http://dx.doi.org/10.1172/jci67313
http://dx.doi.org/10.1158/2326-6066.cir-14-0196
http://dx.doi.org/10.1056/NEJMoa1112824
http://dx.doi.org/10.1593/tlo.12280
http://dx.doi.org/10.4161/onci.28780
http://dx.doi.org/10.1016/s1470-2045(14)70189-5
http://dx.doi.org/10.1158/2326-6066.cir-13-0115
http://dx.doi.org/10.1158/2326-6066.cir-13-0115
http://dx.doi.org/10.1056/NEJMoa1200690
http://dx.doi.org/10.1056/NEJMoa1305133
http://dx.doi.org/10.1200/jco.2012.48.3685
http://dx.doi.org/10.1056/NEJMoa1200694
http://dx.doi.org/10.1016/s1470-2045(11)70303-5
http://dx.doi.org/10.1158/1078-0432.ccr-09-0688
http://dx.doi.org/10.1056/NEJMoa1308345
http://dx.doi.org/10.1056/NEJMoa1308345
http://dx.doi.org/10.1056/NEJMoa1308573
http://dx.doi.org/10.1056/NEJMoa053422
http://dx.doi.org/10.1158/1078-0432.ccr-14-0051
http://dx.doi.org/10.1186/1471-2407-11-466
http://dx.doi.org/10.1200/jco.2007.14.4824
http://dx.doi.org/10.1200/jco.2007.14.4824
http://dx.doi.org/10.1200/jco.2009.27.0397


October 2015 | Volume 6 | Article 50518

Derer et al. Radio-immunotherapy-induced immunogenic cancer cells

Frontiers in Immunology | www.frontiersin.org

patients with limited but progressive metastatic non-small-cell lung cancer. J 
Clin Oncol (2014) 32(34):3824–30. doi:10.1200/jco.2014.56.7412 

155. Nogueira-Rodrigues A, Moralez G, Grazziotin R, Carmo CC, Small 
IA, Alves FV, et  al. Phase 2 trial of erlotinib combined with cisplatin and 
radiotherapy in patients with locally advanced cervical cancer. Cancer (2014) 
120(8):1187–93. doi:10.1002/cncr.28471 

156. McTyre E, Scott J, Chinnaiyan P. Whole brain radiotherapy for brain metasta-
sis. Surg Neurol Int (2013) 4(Suppl 4):S236–44. doi:10.4103/2152-7806.111301 

157. Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner 
H, et  al. Phase II study of erlotinib plus temozolomide during and after 
radiation therapy in patients with newly diagnosed glioblastoma mul-
tiforme or gliosarcoma. J Clin Oncol (2009) 27(4):579–84. doi:10.1200/
jco.2008.18.9639 

158. Yoo DS, Kirkpatrick JP, Craciunescu O, Broadwater G, Peterson BL, Carroll 
MD, et  al. Prospective trial of synchronous bevacizumab, erlotinib, and 
concurrent chemoradiation in locally advanced head and neck cancer. Clin 
Cancer Res (2012) 18(5):1404–14. doi:10.1158/1078-0432.ccr-11-1982 

159. Chen SW, Lin LC, Kuo YC, Liang JA, Kuo CC, Chiou JF. Phase 2 study 
of combined sorafenib and radiation therapy in patients with advanced 
hepatocellular carcinoma. Int J Radiat Oncol Biol Phys (2014) 88(5):1041–7. 
doi:10.1016/j.ijrobp.2014.01.017 

160. Hainsworth JD, Ervin T, Friedman E, Priego V, Murphy PB, Clark BL, et al. 
Concurrent radiotherapy and temozolomide followed by temozolomide and 
sorafenib in the first-line treatment of patients with glioblastoma multiforme. 
Cancer (2010) 116(15):3663–9. doi:10.1002/cncr.25275 

161. Tong CC, Ko EC, Sung MW, Cesaretti JA, Stock RG, Packer SH, et al. Phase 
II trial of concurrent sunitinib and image-guided radiotherapy for oligome-
tastases. PLoS One (2012) 7(6):e36979. doi:10.1371/journal.pone.0036979 

162. Kao J, Chen CT, Tong CC, Packer SH, Schwartz M, Chen SH, et  al. 
Concurrent sunitinib and stereotactic body radiotherapy for patients with 
oligometastases: final report of a prospective clinical trial. Target Oncol 
(2014) 9(2):145–53. doi:10.1007/s11523-013-0280-y 

163. Weber JS, O’Day S, Urba W, Powderly J, Nichol G, Yellin M, et al. Phase I/
II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 
(2008) 26(36):5950–6. doi:10.1200/jco.2008.16.1927 

164. Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, et  al. 
Ipilimumab monotherapy in patients with pretreated advanced melanoma: a 
randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet 
Oncol (2010) 11(2):155–64. doi:10.1016/s1470-2045(09)70334-1 

165. Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov 
I, et  al. Ipilimumab in patients with melanoma and brain metastases: an 
open-label, phase 2 trial. Lancet Oncol (2012) 13(5):459–65. doi:10.1016/
s1470-2045(12)70090-6 

166. Weber JS, Amin A, Minor D, Siegel J, Berman D, O’Day SJ. Safety and 
clinical activity of ipilimumab in melanoma patients with brain metastases: 
retrospective analysis of data from a phase 2 trial. Melanoma Res (2011) 
21(6):530–4. doi:10.1097/CMR.0b013e32834d3d88 

167. Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, et al. 
Ipilimumab alone or in combination with radiotherapy in metastatic castra-
tion-resistant prostate cancer: results from an open-label, multicenter phase 
I/II study. Ann Oncol (2013) 24(7):1813–21. doi:10.1093/annonc/mdt107 

168. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of 
PD-L1 on tumor cells in the escape from host immune system and tumor 
immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A (2002) 
99(19):12293–7. doi:10.1073/pnas.192461099 

169. Pilon-Thomas S, Mackay A, Vohra N, Mule JJ. Blockade of programmed 
death ligand 1 enhances the therapeutic efficacy of combination immuno-
therapy against melanoma. J Immunol (2010) 184(7):3442–9. doi:10.4049/
jimmunol.0904114 

170. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle 
EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome 
by concurrent PD-L1 blockade. Cancer Res (2014) 74(19):5458–68. 
doi:10.1158/0008-5472.can-14-1258 

171. Dovedi SJ, Illidge TM. The antitumor immune response generated by frac-
tionated radiation therapy may be limited by tumor cell adaptive resistance 
and can be circumvented by PD-L1 blockade. Oncoimmunology (2015) 
4(7):e1016709. doi:10.1080/2162402X.2015.1016709

172. Philips GK, Atkins M. Therapeutic uses of anti-PD-1 and anti-PD-L1 anti-
bodies. Int Immunol (2015) 27(1):39–46. doi:10.1093/intimm/dxu095 

173. Ansell SM. Targeting immune checkpoints in lymphoma. Curr Opin Hematol 
(2015) 22(4):337–42. doi:10.1097/MOH.0000000000000158 

174. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, 
et  al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s 
lymphoma. N Engl J Med (2015) 372(4):311–9. doi:10.1056/NEJMoa1411087 

175. Schoffski P, Dumez H, Clement P, Hoeben A, Prenen H, Wolter P, et  al. 
Emerging role of tyrosine kinase inhibitors in the treatment of advanced 
renal cell cancer: a review. Ann Oncol (2006) 17(8):1185–96. doi:10.1093/
annonc/mdj133 

176. Bjorndahl M, Cao R, Eriksson A, Cao Y. Blockage of VEGF-induced angio-
genesis by preventing VEGF secretion. Circ Res (2004) 94(11):1443–50. 
doi:10.1161/01.RES.0000129194.61747.bf 

177. Cai J, Han S, Qing R, Liao D, Law B, Boulton ME. In pursuit of new anti-an-
giogenic therapies for cancer treatment. Front Biosci (Landmark Ed) (2011) 
16:803–14. doi:10.2741/3721 

178. Eklund L, Bry M, Alitalo K. Mouse models for studying angiogenesis and 
lymphangiogenesis in cancer. Mol Oncol (2013) 7(2):259–82. doi:10.1016/j.
molonc.2013.02.007 

179. Heiduschka G, Grah A, Oberndorfer F, Seemann R, Kranz A, Kornek G, 
et al. Significance of p16 expression in head and neck cancer patients treated 
with radiotherapy and cetuximab. Strahlenther Onkol (2014) 190(9):832–8. 
doi:10.1007/s00066-014-0652-y 

180. Chen YH, Pan SL, Wang JC, Kuo SH, Cheng JC, Teng CM. Radiation-induced 
VEGF-C expression and endothelial cell proliferation in lung cancer. 
Strahlenther Onkol (2014) 190(12):1154–62. doi:10.1007/s00066-014-0708-z 

181. Dutta PR, Maity A. Cellular responses to EGFR inhibitors and their rele-
vance to cancer therapy. Cancer Lett (2007) 254(2):165–77. doi:10.1016/j.
canlet.2007.02.006 

182. Sonpavde G, Hutson TE. Recent advances in the therapy of renal cancer. 
Expert Opin Biol Ther (2007) 7(2):233–42. doi:10.1517/14712598.7.2.233 

183. Limaverde-Sousa G, Sternberg C, Ferreira CG. Antiangiogenesis 
beyond VEGF inhibition: a journey from antiangiogenic single-target to 
broad-spectrum agents. Cancer Treat Rev (2014) 40(4):548–57. doi:10.1016/j.
ctrv.2013.11.009 

184. Zhuang H, Yuan Z, Wang J, Zhao L, Pang Q, Wang P. Phase II study of 
whole brain radiotherapy with or without erlotinib in patients with multiple 
brain metastases from lung adenocarcinoma. Drug Des Devel Ther (2013) 
7:1179–86. doi:10.2147/dddt.s53011 

185. Hottinger AF, Aissa AB, Espeli V, Squiban D, Dunkel N, Vargas MI, et al. 
Phase I study of sorafenib combined with radiation therapy and temo-
zolomide as first-line treatment of high-grade glioma. Br J Cancer (2014) 
110(11):2655–61. doi:10.1038/bjc.2014.209 

186. Helbling D, Bodoky G, Gautschi O, Sun H, Bosman F, Gloor B, et  al. 
Neoadjuvant chemoradiotherapy with or without panitumumab in patients 
with wild-type KRAS, locally advanced rectal cancer (LARC): a randomized, 
multicenter, phase II trial SAKK 41/07. Ann Oncol (2013) 24(3):718–25. 
doi:10.1093/annonc/mds519 

187. Azria D, Larbouret C, Robert B, Culine S, Ychou M, Verrelle P, et  al. 
[Radiotherapy and inhibitors of epidermal growth factor receptor: preclinical 
findings and preliminary clinical trials]. Bull Cancer (2003) 90:S202–12. 

188. Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, et al. Phase II 
study of bevacizumab plus temozolomide during and after radiation therapy 
for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 
(2011) 29(2):142–8. doi:10.1200/jco.2010.30.2729 

189. Van Buren G II, Ramanathan RK, Krasinskas AM, Smith RP, Abood GJ, 
Bahary N, et al. Phase II study of induction fixed-dose rate gemcitabine and 
bevacizumab followed by 30 Gy radiotherapy as preoperative treatment for 
potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol (2013) 
20(12):3787–93. doi:10.1245/s10434-013-3161-9 

190. Kriegs M, Gurtner K, Can Y, Brammer I, Rieckmann T, Oertel R, et  al. 
Radiosensitization of NSCLC cells by EGFR inhibition is the result of an 
enhanced p53-dependent G1 arrest. Radiother Oncol (2015) 115(1):120–7. 
doi:10.1016/j.radonc.2015.02.018 

191. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side 
effects of monoclonal antibodies. Nat Rev Drug Discov (2010) 9(4):325–38. 
doi:10.1038/nrd3003 

192. Li X, Shan BE, Wang J, Xing LP, Guo XJ, Zhang YH, et al. Incidence and risk 
of treatment-related mortality with anti-epidermal growth factor receptor 
monoclonal antibody in cancer patients: a meta-analysis of 21 randomized 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1200/jco.2014.56.7412
http://dx.doi.org/10.1002/cncr.28471
http://dx.doi.org/10.4103/2152-7806.111301
http://dx.doi.org/10.1200/jco.2008.18.9639
http://dx.doi.org/10.1200/jco.2008.18.9639
http://dx.doi.org/10.1158/1078-0432.ccr-11-1982
http://dx.doi.org/10.1016/j.ijrobp.2014.01.017
http://dx.doi.org/10.1002/cncr.25275
http://dx.doi.org/10.1371/journal.pone.0036979
http://dx.doi.org/10.1007/s11523-013-0280-y
http://dx.doi.org/10.1200/jco.2008.16.1927
http://dx.doi.org/10.1016/s1470-2045(09)70334-1
http://dx.doi.org/10.1016/s1470-2045(12)70090-6
http://dx.doi.org/10.1016/s1470-2045(12)70090-6
http://dx.doi.org/10.1097/CMR.0b013e32834d3d88
http://dx.doi.org/10.1093/annonc/mdt107
http://dx.doi.org/10.1073/pnas.192461099
http://dx.doi.org/10.4049/jimmunol.0904114
http://dx.doi.org/10.4049/jimmunol.0904114
http://dx.doi.org/10.1158/0008-5472.can-14-1258
http://dx.doi.org/10.1080/2162402X.2015.1016709
http://dx.doi.org/10.1093/intimm/dxu095
http://dx.doi.org/10.1097/MOH.0000000000000158
http://dx.doi.org/10.1056/NEJMoa1411087
http://dx.doi.org/10.1093/annonc/mdj133
http://dx.doi.org/10.1093/annonc/mdj133
http://dx.doi.org/10.1161/01.RES.0000129194.61747.bf
http://dx.doi.org/10.2741/3721
http://dx.doi.org/10.1016/j.molonc.2013.02.007
http://dx.doi.org/10.1016/j.molonc.2013.02.007
http://dx.doi.org/10.1007/s00066-014-0652-y
http://dx.doi.org/10.1007/s00066-014-0708-z
http://dx.doi.org/10.1016/j.canlet.2007.02.006
http://dx.doi.org/10.1016/j.canlet.2007.02.006
http://dx.doi.org/10.1517/14712598.7.2.233
http://dx.doi.org/10.1016/j.ctrv.2013.11.009
http://dx.doi.org/10.1016/j.ctrv.2013.11.009
http://dx.doi.org/10.2147/dddt.s53011
http://dx.doi.org/10.1038/bjc.2014.209
http://dx.doi.org/10.1093/annonc/mds519
http://dx.doi.org/10.1200/jco.2010.30.2729
http://dx.doi.org/10.1245/s10434-013-3161-9
http://dx.doi.org/10.1016/j.radonc.2015.02.018
http://dx.doi.org/10.1038/nrd3003


October 2015 | Volume 6 | Article 50519

Derer et al. Radio-immunotherapy-induced immunogenic cancer cells

Frontiers in Immunology | www.frontiersin.org

controlled trials. PLoS One (2013) 8(11):e81897. doi:10.1371/journal.
pone.0081897 

193. Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in 
cancer patients: a meta-analysis. JAMA (2011) 305(5):487–94. doi:10.1001/
jama.2011.51 

194. Brennan FR, Morton LD, Spindeldreher S, Kiessling A, Allenspach R, Hey A, 
et al. Safety and immunotoxicity assessment of immunomodulatory mono-
clonal antibodies. MAbs (2010) 2(3):233–55. doi:10.4161/mabs.2.3.11782 

195. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating 
immunity’s roles in cancer suppression and promotion. Science (2011) 
331(6024):1565–70. doi:10.1126/science.1203486 

196. Wieczorek A, Uharek L. Genetically modified T cells for the treatment 
of malignant disease. Transfus Med Hemother (2013) 40(6):388–402. 
doi:10.1159/000357163 

197. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, 
Feldman SA, et  al. T cells expressing CD19 chimeric antigen receptors 
for acute lymphoblastic leukaemia in children and young adults: a phase 
1 dose-escalation trial. Lancet (2015) 385(9967):517–28. doi:10.1016/
s0140-6736(14)61403-3 

198. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric 
antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 
(2014) 371(16):1507–17. doi:10.1056/NEJMoa1407222 

199. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et  al. T cells 
with chimeric antigen receptors have potent antitumor effects and can 
establish memory in patients with advanced leukemia. Sci Transl Med (2011) 
3(95):95ra73. doi:10.1126/scitranslmed.3002842 

200. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen recep-
tor-modified T cells in chronic lymphoid leukemia. N Engl J Med (2011) 
365(8):725–33. doi:10.1056/NEJMoa1103849 

201. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, et al. TanCAR: 
a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol 
Ther Nucleic Acids (2013) 2:e105. doi:10.1038/mtna.2013.32 

202. Riccione K, Suryadevara CM, Snyder D, Cui X, Sampson JH, Sanchez-
Perez L. Generation of CAR T cells for adoptive therapy in the 
context of glioblastoma standard of care. J Vis Exp (2015) 96:e52397. 
doi:10.3791/52397 

203. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer 
immunoediting and its three component phases  –  elimination, equilib-
rium and escape. Curr Opin Immunol (2014) 27:16–25. doi:10.1016/j.
coi.2014.01.004 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Derer, Deloch, Rubner, Fietkau, Frey and Gaipl. This is 
an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1371/journal.pone.0081897
http://dx.doi.org/10.1371/journal.pone.0081897
http://dx.doi.org/10.1001/jama.2011.51
http://dx.doi.org/10.1001/jama.2011.51
http://dx.doi.org/10.4161/mabs.2.3.11782
http://dx.doi.org/10.1126/science.1203486
http://dx.doi.org/10.1159/000357163
http://dx.doi.org/10.1016/s0140-6736(14)61403-3
http://dx.doi.org/10.1016/s0140-6736(14)61403-3
http://dx.doi.org/10.1056/NEJMoa1407222
http://dx.doi.org/10.1126/scitranslmed.3002842
http://dx.doi.org/10.1056/NEJMoa1103849
http://dx.doi.org/10.1038/mtna.2013.32
http://dx.doi.org/10.3791/52397
http://dx.doi.org/10.1016/j.coi.2014.01.004
http://dx.doi.org/10.1016/j.coi.2014.01.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses – pre-clinical evidence and ongoing clinical applications
	RT-Induced DNA Damage
	RT-Induced Cell Death
	Apoptosis
	Necrosis

	Impact of the Fractionation of Radiation on Anti-Tumor Responses
	Induction of Anti-Tumor Immunity
	The Role of DCs in Anti-Tumor Immune Response
	DAMPs as Mediators of DC Activation

	Therapy-Dependent Modulation of the Tumor Microenvironment
	Immunogenicity of Radiotherapy

	Systemic Effects of Radiotherapy
	Co-stimulatory Molecules as Target to Improve RT and CT-Induced Systemic Immune Responses
	CD40
	OX40
	CD137 (4-1BB)

	Checkpoint Inhibitors as Targets to Improve RT-Induced Systemic Immune Responses
	CTLA-4
	PD-1/PD-L1 (B7-H1)

	Growth Factors as Targets for Cancer Therapeutics
	Growth Factor Inhibitors and RT
	Growth Factor Inhibitors and R(C)T

	Chimeric Antigen Receptors as Tool to Recognize Specific Tumor-Associated Antigens
	Summary
	Acknowledgments
	References


