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Speech unfolds over distinct temporal scales, in particular, those related to the rhythm of
phonemes, syllables, and words. When a person listens to continuous speech, the syllabic
rhythm is tracked by neural activity in the theta frequency range. The tracking plays a
functional role in speech processing: Influencing the theta activity through transcranial
current stimulation, for instance, can impact speech perception. The theta-band activity
in the auditory cortex can also be modulated through the somatosensory system, but
the effect on speech processing has remained unclear. Here, we show that vibrotactile
feedback presented at the rate of syllables can modulate and, in fact, enhance the
comprehension of a speech signal in background noise. The enhancement occurs when
vibrotactile pulses occur at the perceptual center of the syllables, whereas a temporal
delay between the vibrotactile signals and the speech stream can lead to a lower level
of speech comprehension. We further investigate the neural mechanisms underlying
the audiotactile integration through electroencephalographic (EEG) recordings. We find
that the audiotactile stimulation modulates the neural response to the speech rhythm,
as well as the neural response to the vibrotactile pulses. The modulations of these
neural activities reflect the behavioral effects on speech comprehension. Moreover, we
demonstrate that speech comprehension can be predicted by particular aspects of the
neural responses. Our results evidence a role of vibrotactile information for speech
processing and may have applications in future auditory prosthesis.
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Speech is a highly complex acoustic signal, the comprehension of which necessitates
similarly complex hierarchical processes, involving the segmentation and analysis of
individual phonemes, syllables, and words to extract semantic content (1–3). Given this
complexity, the human ability to understand speech in adverse listening conditions is
particularly astounding. We can understand a particular speaker even when background
noise is louder than the target speech, when a speech signal is accompanied by multiple
reverberations in interior spaces with few acoustic absorbers, and even when perceiving
the acoustic signal through a hearing aid or a cochlear implant that provides much less
information to the brain than a healthy inner ear (4–7).

Speech comprehension can be supported by other sensory modalities. Lip reading, for
instance, refers to the human ability to integrate visual information from the moving lips
with the auditory signal to aid speech comprehension (8, 9). Such audiovisual integration
can allow humans to understand speech in background noise that is several times louder
than they would otherwise be able to cope with. Another example of multisensory speech
processing is the addition of tactile signals, delivered through air puffs to the neck of
participants, while they hear a single syllable (10, 11). Such aero-tactile stimulation can
thereby shape what syllable the participant perceives.

The neural integration of the different sensory streams relies on several processes
(12–14). A particularly important temporal mechanism is the neural tracking of rhythms
in the multisensory signals (15, 16). The delta frequency band, 1 to 4 Hz, corresponds to
the rate of words, while the theta frequency band, 4 to 8 Hz, contains the syllable rate.
When a person listens to a speech signal, the neural activity in both frequency bands tracks
these speech rhythms (17, 18).

The neural speech tracking reflects acoustic and linguistic processes. Both delta- and
theta-band tracking are, for instance, modulated by selective attention to one of several
competing talkers (19–21). In addition, the delta-band activity informs on linguistic
aspects such as word similarity, surprisal of word sequences, and speech comprehension
(22–24). Theta-band activity can allow one to decode acoustic aspects such as the signal-
to-noise ratio (SNR) and may allow the brain to parse a speech stream into distinct syllables
(24–26). Moreover, altering the theta-band tracking through transcranial alternating-
current stimulation can impact speech comprehension, evidencing a functional role in
speech processing (27).
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Regarding multisensory speech processing, animal studies have
demonstrated that visual information can lead to phase resets of
auditory cortical activity (28, 29). Such resets of phase relation-
ships related to the cortical tracking of speech rhythms could both
enhance and impede speech comprehension, depending on the
magnitude and direction of the reset (15, 16).

Recordings of neuronal activity in animals have uncovered that
somatosensory stimulation can influence the delta- and theta-
band activity in the auditory cortex as well (30–34). In both
humans and monkeys, such auditory–somatosensory integration
occurs in the primary auditory cortex (34–39). In addition, the
latency of the somatosensory response in the primary auditory
cortex was found to be only about 12 ms longer than the latency
of auditory-evoked activity (32). Somatosensory stimulation can
thus provide a mechanism to alter the cortical tracking of speech
rhythms and to consequently modulate speech comprehension
(34). A recent study paired a speech signal to vibrotactile stim-
ulation with the speech envelope, but did not observe an effect
on speech-in-noise comprehension (40). However, this study
employed a continuous tactile signal that included both delta-
and theta-band portions. Our previous work on transcranial
alternating-current stimulation showed that theta-band stimu-
lation, but not delta-band stimulation, led to a modulation of
speech-in-noise comprehension (27).

Here, we combined the presentation of speech in noise with
sparse vibrotactile pulses that followed the syllabic rhythm in
the theta band. We then investigated whether the vibrotactile
pulses influenced the comprehension of the speech signal. We also
employed electroencephalographic (EEG) recordings to study the
effects of the tactile stimulation on the cortical speech processing,
as well as to investigate the impact of the acoustic signal on
the cortical processing of the tactile pulses. To illuminate the
neurobiological mechanisms of the audiotactile speech processing,
we finally related the electrophysiological observations to the
behavioral findings.

Results

We presented subjects with speech in background noise paired
to vibrotactile stimulation (Fig. 1). The tactile signal was derived
from the speech signal: Individual pulses were located at the
perceptual centers of the different syllables. To investigate the
influence of timing differences, we then considered five different
temporal delays between the audio signal and the tactile stimula-
tion. The delays were −180 ms, −120 ms, −60 ms, 0 ms, and
60 ms, in which a positive value meant that the tactile signal
preceded the audio one. To control for the stimulation with the
tactile pulses per se, and hence for potential placebo effects, we
employed two control conditions. First, we used a tactile sham
stimulus in which the pulses followed the syllable timings of an
unrelated speech stimulus. Second, we presented the volunteers
with the audio signal alone. Taken together, we hence considered
seven different types of stimulation, in the following referred to as
different conditions.

Behavioral Measures. We first determined whether the vibrotac-
tile stimulation affected the speech comprehension of the subjects.
We therefore presented each volunteer with different, semantically
unpredictable sentences in speech-shaped noise. The noise level
was chosen such that the subjects understood approximately half
of the key words of the sentence. The average rate of syllables in
these sentences, and hence the average rate of vibrotactile pulses,
was 4.5 Hz (Fig. 2A). After each sentence, we asked the subject
to repeat what they understood and recorded the percentage of
correct key words. In addition, we also asked the volunteers to
rate how comfortably they felt they could understand the speech
signal.

We found that subjects understood, on average across the
seven different conditions, 43± 2% of the key words (mean and
SEM). The comprehension was, however, not equal across the
different conditions. Instead, we observed that the dependence

Fig. 1. Experimental setup. (A) Each subject listened to speech in background noise, while experiencing vibrotactile stimulation at their right index finger. Brain
activity was recorded simultaneously through EEG. (B) The tactile stimulation consisted of discrete pulses that were located at the perceptual centers of the
syllables in the speech stream. A.u., arbitrary units.
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Fig. 2. Behavioral results on speech comprehension and syllabic rate. (A) Distribution of the syllabic rate of the semantically unpredictable sentences used
during the behavioral experiment (red) and of the naturalistic speech used in the electrophysiological recordings (blue). The means are shown as dashed lines.
(B and C) The z-scores of the speech-comprehension scores (B) and of the comfort rating (C) at the different delays of the tactile stimulation show approximately
sinusoidal variation at the rate of the syllables (red lines). The gray disks denote results from individual subjects. (D) Comprehension scores are positively
correlated (black line) to comfort ratings across the different conditions and subjects (gray disks). (E) Comparison between the optimal delays for comfort rating
and speech-comprehension subject-wise. The correlation between the two is nonsignificant. (F and G) Comparisons between the comprehension scores (F) and
the comfort ratings (G) in the auditory-only condition, in the sham condition, and in the condition at which the auditory and tactile streams are synchronized
(delay of 0 ms). Data from individual subjects are shown as gray disks. (H) Comparison between the comprehension scores for the auditory-only condition, the
sham condition, and the condition at which a subject reported the maximal comfort. Gray dots represent data from individual subjects. A.u., arbitrary units.

of the speech-comprehension score on the delay of the tactile
stimulation exhibited an approximately sinusoidal variation with a
frequency of the syllabic rate of 4.5 Hz (P = 0.035, false discovery
rate (FDR) correction for multiple comparisons, R2 = 0.063;
Fig. 2B). The maximum of the sinusoidal fit occurred at a delay
of −17 ms and hence when the tactile stimulation occurred
approximately in synchrony with the speech signal. This was
confirmed by an analysis of the distribution of the delays that
led to the highest level of speech comprehension for each subject.
The distribution was nonuniform (P = 0.034), with a peak at
0 ms, and was fitted well by a sinusoidal variation (P = 0.049,
R2 = 0.672).

To determine whether the tactile stimulation could not only
modulate, but also enhance, speech comprehension, we compared
the comprehension score at the delay of 0 ms to those obtained
from the sham condition, as well as the audio-only stimulation
(Fig. 2F ). A Friedman test revealed significant differences between
the three conditions (P < 0.005), and subsequent pairwise tests
showed that the comprehension score at the delay of 0 ms was
significantly higher than in the sham condition (P = 0.030,
FDR correction for multiple comparisons), as well as in the
audio-only condition (P = 0.027, FDR correction for multiple
comparisons). The audiotactile stimulus without a temporal delay
yielded a speech-comprehension score that was 4.7± 2 % higher
than that in the audio-only condition, and 6.3± 2 % higher than
that obtained during the sham stimulation (mean and SEM).
No significant difference emerged between the audio-only and
the sham condition (P = 0.32, FDR correction for multiple
comparisons).

The comfort rating exhibited similar behavior. At an average
value of 50± 3%, it was also uneven across the different delays

and was fitted well by a sinusoidal variation (P = 0.025, FDR
correction for multiple comparisons, R2 = 0.045; Fig. 2C ). The
sinusoidal fit peaked at a delay of 9 ms. The distribution of the
best delays across the different volunteers was nonuniform (P =
0.006) and had a peak at a delay of 0 ms, but was not fitted well
by a sinusoid (P = 0.09, R2 = 0.57), as opposed to the speech-
comprehension scores. In addition, the comfort rating at the delay
of 0 ms was not significantly different from those obtained under
the sham stimulation and when presenting the audio signal alone
(Fig. 2G).

Because the results for the speech-comprehension scores
and for the comfort rating appeared so similar, we quantified
their dependence further. First, we observed that, across the
different conditions and subjects, both measures themselves
showed a significant positive correlation (r = 0.43, P = 0.0014,
R2 = 0.079; Fig. 2D). We then evaluated if the optimal delays
for comfort and speech comprehension were consistent for the
individual subjects. Although both measures revealed a cluster
of delays around 0 ms, the correlation between the two was not
significant (P = 0.3, R2 = 0.048; Fig. 2E). The best latency for
comfort therefore did not vary systematically with the best delay
for speech comprehension. To further explore the link between
these two measures, we also compared the speech comprehension
at the preferred condition—that is, for the condition at which
a particular subject reported the highest comfort—to the two
control conditions: the sham stimulation and the audio-only
stimulation (Fig. 2H ). We found that these scores differed
significantly (Friedman test, P = 0.0031). Pairwise tests revealed
that the comprehension score in the preferred condition was
significantly higher than in the audio-only condition (P = 0.025)
and in the sham condition (P = 0.0027).
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EEG Recordings. To investigate the neural mechanisms by which
the vibrotactile stimulation could modulate and enhance speech
comprehension, we measured the subjects’ cortical activity while
they listened to speech in background noise. For this purpose,
we employed long and engaging audiobooks that maintained
subjects’ attention and that allowed us to obtain EEG data of
sufficient length. The audiobooks had an average syllabic rate of
4.0 Hz.

We utilized the same seven conditions that we considered in the
behavioral experiment: audiotactile stimulation with five different
delays of the tactile signal, one sham stimulation, and an audio-
only condition. However, we now added an eighth condition, in
which subjects experienced only the tactile stimulation, without
hearing a sound.

These different conditions enabled us to compute the multi-
sensory gain associated to the audiotactile conditions. If the brain
was not able to integrate the information from the two modalities,
then the neural response in the audiotactile conditions would be a
simple addition of the individual responses observed in the audio-
only and in the tactile-only conditions. By comparing the neural
response to an audiotactile stimulation to the summed neural
activity elicited by the individual modalities, we could therefore
quantify the amount of multisensory integration in the brain.

The subjects’ ability to perform the different tasks was moni-
tored in order to exclude subjects that were not paying sufficient
attention. Subjects answered 75± 12% of questions related to
the content of the stories correctly, and all obtained a score above
chance level. When asked to detect occurrences of a specific tactile
pattern, 72± 20% of these were found. Only one subject’s perfor-
mance fell below the chance level on this task due to malfunctions
of the recording equipment for this specific task.

Neural Encoding of Multisensory Information. To determine
the neural encoding of the information in the audiotactile signals,
we computed two linear regression models, similarly to previous
analysis on multisensory integration related to audiovisual speech
processing (15, 16, 41). The first model estimated the EEG record-
ings from the envelope of the speech signal, an important quantity
that relates to the speech rhythms, shifted by different temporal
latencies. The coefficients of the resulting linear model are referred
to as Temporal Response Functions (TRFs) and quantify the
contribution of the speech envelope at a particular latency to
explain the EEG recording at a particular electrode (Fig. 3A).
Using these coefficients, we can then estimate the EEG response.
By computing the Pearson correlation coefficient between the
estimated and the actual EEG response from a subject, we can
obtain a reconstruction score.

From the envelope-TRFs associated to the audio-only condi-
tion, we identified three latencies at which the speech envelope
yielded particularly large contributions—that is, at which the
envelope-TRFs peaked. These latencies were 98 ms, 154 ms,
and 268 ms. The topographic maps at these latencies showed an
approximately symmetric response between the two hemispheres.

We then estimated the multisensory gain. First, we computed
unisensory models of the envelope-TRFs obtained in the audio-
only and in the tactile-only conditions. These unisensory models
were then shifted appropriately and summed to create addi-
tive models for each of the multisensory conditions. We then
computed the TRF for each audiotactile condition using the
corresponding envelopes simultaneously, therefore obtaining a
multisensory model for each of the multisensory conditions. We
subtracted the additive models from the multisensory models,
yielding the multisensory gain related to the speech envelope. We
then computed the global field power (GFP) of the multisensory

Fig. 3. (A) The TRF for the unisensory response to the speech envelope
shows distinct peaks at positive lags. (B) The GFP associated to the multisen-
sory gain of the envelope-TRFs for the audiotactile stimulation, the envelope-
MGF, exhibits a single peak at a delay of 114 ms, plus the delay of the tactile
signal. The dashed red line indicates the 99% amplitude range of null models.
(C) After normalization through computing z-scores, the amplitude of the peak
of the envelope-MGF depends sinusoidally on the delay of the audiotactile
stimulation (red line). (D) After normalization through computing z-scores, the
multisensory gain in EEG reconstruction depends sinusoidally on the delay of
the audiotactile stimulation (red line). A.u., arbitrary units.

gain across the different electrodes and compared the resulting
multisensory gain function for the envelope (envelope-MGF) to
that obtained by a null model (Fig. 3B).

The envelope-MGF exhibited one peak for each delay of the
tactile stimulation. The peaks occurred at a latency of 114 ms
plus the delay of the stimulation. The multisensory integration
related to the speech envelope therefore occurred in synchrony
with the tactile signal, at a latency of 114 ms. The envelope-MGF
associated to the sham stimulation was, in contrast, below the
magnitude of the null models and hence statistically insignificant.

The amplitude of the peaks of the envelope-MGF differed
between the different delays (Fig. 3C ). After normalization, we
found that the dependence of the peak amplitude on the delay
could be described by a sinusoidal variation at the frequency of
the syllables (P = 0.002,R2 = 0.081; Fig. 3C ). The sinusoidal fit
revealed a peak at the delay of 26 ms. Moreover, the amplitude of
the peak at the audiotactile delay of 0 ms was significantly higher
than that obtained during sham stimulation (P < 0.001).

We then determined the accuracy of the encoding model by
computing Pearson’s correlation coefficients between the EEG
recordings reconstructed from the envelope and the actual EEG
signal for EEG channels located in the auditory region of interest
(ROI). Across the eight conditions, the correlation coefficients
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were 0.012± 0.004. The distribution of the correlation scores was
significantly above chance level (P = 1e − 13).

The multisensory gain was evaluated by first computing an
additive A+T model that described the sum of the unisensory
response to the auditory signal only (A) and that to the tactile
signal only (T), as well as by computing a model of the response to
the audiotactile stimulation (AT model). The accuracy of the A+T
model was then subtracted from that of the AT model, yielding the
multisensory gain. The multisensory gains were significantly larger
than zero for the delays of –120 ms, –60 ms, 0 ms, and 60 ms
(P = 0.016,P = 0.015,P = 0.0032,P = 0.0096, respectively;
FDR correction for multiple comparisons). The multisensory
gains for the sham condition and for the delay of –180 ms
were not significantly different from zero (P = 0.17,P = 0.086,
respectively; FDR correction for multiple comparisons).

After normalization, we found that the dependence of the mul-
tisensory gain related to the reconstruction accuracy on the delay
could be described by a sinusoidal variation at the frequency of
the syllables (P = 0.027,R2 = 0.054; Fig. 3D). The sinusoidal fit
revealed a peak at the delay of −9 ms. Moreover, the multisensory
gain at the audiotactile delay of 0 ms was significantly higher than
that obtained during sham stimulation (P = 0.020).

As a second model, we similarly computed a linear regression
model that estimated the EEG recordings, but this time from
spikes located at the centers of the tactile pulses. The resulting
pulse-TRFs showed, for the case of the tactile-only condition,
three distinct peaks (Fig. 4A). These peaks occurred at the laten-
cies of 45 ms, 172 ms, and 241 ms. They were left-lateralized,
reflecting the tactile stimulation of the subjects’ right hand.

The multisensory gain associated to the pulse-TRFs was com-
puted analogously to that of the envelope-TRFs. We first com-
puted an A+T TRF by shifting and summing the unisensory
pulse-TRFs appropriately. We then subtracted the additive pulse-
TRFs from the pulse-TRFs that resulted from the audiotactile
conditions, yielding the multisensory gain related to the tac-
tile pulses. We then computed the GFP of the multisensory
gain across the different electrodes and compared the resulting
multisensory gain function for the pulses (pulse-MGF) to that
obtained by a null model (Fig. 4B). It revealed two peaks in
the corresponding pulse-MGF: an early peak at 140 ms and a
later peak at 277 ms. The topographies of the two peaks were
comparable, symmetric between the two hemispheres, and similar
to those of the envelope-TRFs.

The sham stimulation exhibited both significant peaks in the
pulse-MGF. To ascertain that the sham stimulation indeed led
to a multisensory gain, we computed the difference between the
pulse-TRFs of the sham condition and the pulse-TRFs of the
tactile-only condition at every latency and channel (Fig. 4C ).
The resulting differences displayed a pronounced peak around a
latency of 136 ms, as well as a broad peak around 300 ms—that
is, at the delays at which multisensory effects were found in the
sham stimulation.

After normalization through computing z-scores, the ampli-
tude of the first peak of the pulse-MGF did not change sig-
nificantly between the different audiotactile delays (P = 0.22,
R2 = 0.019; Fig. 4D). The amplitude of the smaller second peak,
however, exhibited an approximately sinusoidal variation with the
delay (P = 0.022, R2 = 0.056; Fig. 4E). The maximum of the
sinusoidal fit occurred at almost the same delay as for the peak
of the envelope-MGF, namely, at 25 ms. The second peak for the
audiotactile delay of 0 ms was significantly above that obtained
for the sham condition (P = 0.025).

Analogous to our analysis of the encoding of the speech en-
velope in the EEG signal, we quantified the accuracy of the

Fig. 4. (A) The TRF for the unisensory response to the tactile pulses shows
distinct peaks at positive lags. (B) The GFP of the multisensory gain for the
pulse-TRFs, the pulse-MGF, exhibits two peaks, an earlier one at a latency of
140 ms and a later peak at a latency of 277 ms. The topographies are obtained
from the audiotactile stimulation without temporal delay. The dashed red
line indicates the 99% amplitude range of null models. (C) The difference
between the TRF to the tactile pulses in the sham condition and the TRF for the
unisensory response to the tactile pulses shows a pronounced peak at a delay
of 136 ms. (D) After normalization through computing z-scores, the amplitude
of the earlier peak of the pulse-MGF shows no significant modulation by the
tactile delay (red line). (E) After normalization through computing z-scores, the
later peak of the pulse-MGF exhibits a sinusoidal dependence on the delay
of the tactile stimulation (red line). Gray disks denote data from individual
subjects. A.u., arbitrary units.

encoding model by computing the Pearson’s correlation coefficient
between the EEG signal reconstructed from the tactile pulses
and the actual EEG for the electrodes located in the somatosen-
sory ROI. Across the eight conditions, the correlation score was
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0.009± 0.003. Their distribution was significantly above chance
level (p = 1e − 13).

The multisensory gain was evaluated by subtracting the ac-
curacy of the A+T model from that of the AT model. The
multisensory gain, however, was not significantly different from
zero in any of the conditions (p > 0.08, FDR correction for
multiple comparisons). Because of the absence of a supra-additive
effect, we did not carry out further analysis.

Relation between Behavior and the Neural Responses. As de-
scribed above, the peak amplitude of the envelope-MGF, the
amplitude of the second peak of the pulse-MGF, and the gain in
the accuracy of the EEG reconstruction from the speech envelope
were modulated by the audiotactile delay. Because these three
aspects of the neural encoding displayed a similar sinusoidal
modulation with the audiotactile delay as the two behavioral mea-
sures, the speech-comprehension score and the comfort rating,
we wondered if the behavioral measures could be predicted by
the electrophysiological markers. To quantify if such predictions
worked, we computed a multiple linear regression model.

We found that the z-scored speech comprehension could
not be predicted by that multilinear model (F = 0.4095,
P = 0.747, R2 = 0.014; Fig. 5 A–C ). The comfort rating,
however, was positively correlated with the amplitude of the peak
of the envelope-MGF (F = 3.628, P = 0.033, FDR-corrected,
R2 = 0.111; Fig. 5D), but not with the two other features (Fig. 5
E and F ).

Discussion

In this study, we showed that tactile pulses that followed the
rhythm of syllables in a speech signal can influence and, in fact,
enhance the comprehension of a speech signal in background
noise. We further demonstrated that neural activity linked to the
speech envelope as well as to the tactile pulses exhibited signifi-
cant multisensory gains. Moreover, these multisensory gains were
modulated by the delay between the tactile pulses and the speech

signal in a manner that was very similar to the behavioral data,
suggesting that the behavioral effects resulted from multisensory
integration of information linked to the rhythms of the speech
signal and the tactile stimuli.

To investigate the dependency of speech comprehension as
well as of neural activity on the characteristics of the audio-
tactile stimuli, we employed different time shifts between the
speech signal and the tactile pulses. We found that the dependency
of the two behavioral scores that we measured—the speech-
comprehension score and the comfort rating—on the tactile delay
were both approximately sinusoidal and very similar to each other.
The frequency of the sinusoidal variation was that of the syllables
in the speech signal. Because the vibrotactile pulses were located at
the perceptual centers of the syllables, the rate of the tactile pulses
coincided with the rate of the syllables as well.

The highest values of the speech-comprehension measures
occurred when the tactile pulses were aligned with the syllables—
that is, in the absence of a temporal delay. Speech-in-noise
comprehension then improved by 6.3% compared to a sham
stimulus. This substantial enhancement suggests that tactile
stimuli paired to speech can provide an effective speech-in-noise
benefit. Our work hence may open a path to aiding people
with hearing impairment to better understand speech in noisy
environments, an issue that has remained surprisingly difficult
through noise reduction in the audio signal alone (42–46). Such
an application would require the extraction of the syllable rhythms
of a noisy speech signal, but this problem appears more tractable
than extracting the clean speech signal itself and is presumably
achievable due to recent progress in deep neural networks for
speaker segregation (47).

Other studies have already reported improvement in speech
comprehension through tactile stimulation. However, contrary to
our work, they either required training, focused on artificially
vocoded speech instead of the more natural speech in back-
ground noise that we considered, or investigated the recognition
of isolated syllables or words (48–50). Moreover, some previous
investigations into audio-tactile speech comprehension used more

Fig. 5. Multilinear regression between behavioral (y axis) and electrophysiological (x axis) measures. Estimation of the z-scores of speech comprehension,
respectively, of the z-scores of the comfort rating from the z-scores of the peak amplitude of the envelope-MGF (A and D), the amplitude of the second peak of
the pulse-MGF (B and E), and the gain in the accuracy of the EEG reconstruction from the speech envelope (C and F). The only significant neural predictor of
behavior is the peak amplitude of the envelope-MGF: Higher amplitudes signify a higher comfort rating (D).
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continuous, low-frequency tactile stimuli that replicated either
the envelope or the fundamental frequency of speech (40, 48).
In contrast, the vibrotactile pulses that we used were sparse and
focused on syllable timing rather than on other acoustic properties
of speech. The neural integration of the audiotactile stimuli that
we considered here appeared to employ existing neural pathways
that led to multisensory effects without the use of training or feed-
back. Further studies, however, are required to further delineate
the behavioral and neural correlates of vibrotactile signals that
relate to different aspects of a speech signal.

Our working hypothesis was indeed that speech comprehen-
sion relies partly on neural tracking of the syllable rhythm in
the theta range and that this activity can be modulated through
somatosensory stimulation (17, 30, 51). To investigate whether
our observed multisensory effects on speech comprehension likely
originated from such a neural mechanism, we quantified the
neural tracking both of the speech envelope, which contains
information on the syllable rhythm, and of the tactile pulses,
which followed the perceptual centers of the syllables.

The neural encoding of the speech envelope suggested the
presence of sources in the left and right auditory cortex, in
accordance with previous studies (41). The neural response to
our particular tactile stimuli displayed relatively fast dynamics
with a strong early response at 45 ms and a later contribu-
tion at 172 ms, both occurring on the contralateral side of
the stimuli presentation, to the right hand, and in agreement
with earlier work on tactile event-related potentials (52). We
note that, due to the lateralization of the neural response to the
vibrotactile stimulation, our findings do not necessarily generalize
directly to stimulus presentation to the left hand or to left-handed
subjects (53).

For both the neural response to the speech envelope and the
neural response to the tactile pulses, we found significant mul-
tisensory gains (54). The gain associated to the speech envelope
showed significant contributions at a delay of 114 ms, plus the
delay of the tactile pulses. The corresponding scalp topography
showed a bilateral response. This bilateral spatiotemporal pattern
of the neural response suggests an origin in the auditory cor-
tex, rather than in a somatosensory area, for which activity is
localized on the contralateral side of the stimulation (right hand)
(30, 55).

The multisensory gain associated to the neural response to the
tactile pulses revealed two main contributions, both of which were
different in latency and topography from the neural responses
to the tactile pulses alone. The early contribution occurred at a
delay of 140 ms and the later at a latency of 277 ms. The scalp
topographies exhibited similar activity in both hemispheres and
suggested an origin in the auditory cortex.

Moreover, the sham condition elicited a multisensory response
at both peak latencies. This finding suggests that tactile pulses
are integrated differently when subjects are attending speech, as
compared to when they are attending the vibrotactile pulses,
even when the pulses are not coherent with the auditory stream.
Indeed, in the tactile-only condition, subjects focus their at-
tention on the pulses, while their attentional focus is on the
audio signals in all other conditions, including the sham stimu-
lation. As a further corroboration of this observation, we found
a significant difference between the TRFs obtained in the sham
condition and those of the tactile-only condition, with a pro-
nounced peak at a delay of 136 ms and a broad peak around
300 ms.

However, while supra-additivity could be observed in the co-
efficients of the TRFs, this did not translate into a significant
multisensory gain in the correlation score between the EEG

signal reconstructed from the tactile pulses and the actual EEG
recording. This might be explained by noise and the necessity to
correct for multiple tests.

The multisensory gain to the speech envelope in both the pa-
rameters and reconstruction score as well as the later contribution
to the multisensory gain to the tactile pulses were modulated
by the delay of the tactile stimuli. The resulting dependencies
were very similar to those of the behavioral measures: These
multisensory gains displayed a sinusoidal dependency on the delay
of the tactile pulses. The maximal gains occurred at a delay of
∼25 ms, which was comparable to, although slightly later than,
the delays of –17 ms and 9 ms at which the behavioral scores
peaked, respectively. This similarity between the dependencies of
the neural multisensory measures and the behavioral ones sug-
gested that the effect on speech comprehension did indeed result
from the multisensory integration of the rhythmic information in
the audiotactile stimuli.

The audiotactile modulations of these behavioral and
electrophysiological responses could be attributed to a phase-
reset mechanism (34). Somatosensory input can presumably reset
the phase of slow neural oscillations in the primary auditory
cortex. Because these oscillations appear to play a role in syllable
parsing, the vibrotactile signal may modulate syllable parsing,
and hence speech comprehension, in a manner that depends on
the phase shift between the vibrotactile signal and the auditory
one. This hypothesis is supported by our findings, as well as by
our observation that the multisensory integration presumably
originates in the auditory cortex. Moreover, we found that the
optimal lag between auditory and tactile streams was around 0 ms.
Such a small delay is coherent with previous research on macaques,
where the somatosensory-evoked activity in the early auditory
cortex lagged the auditory-evoked activity by about 12 ms
only (32).

The similarity of the dependency of the neural multisensory
gains and the behavioral scores allowed us to infer the comfort
rating from the multisensory gain related to the speech envelope.
Both quantities displayed a positive correlation, evidencing that
a higher multisensory gain was associated to a higher comfort
rating.

However, the speech-comprehension score could not be pre-
dicted from the neural measures. This could be due to several rea-
sons. First, the behavioral measure refers to a high linguistic level,
whereas the neural measures relate to low-level acoustic aspects,
resulting in a mismatch in the levels of speech processing. Second,
the behavioral and the electrophysiological data were collected
on two different tasks and on different days. The behavioral data
assessed the participant’s repetition of semantically unpredictable
sentences in noise, which involved more short-term memory than
the naturalistic speech comprehension during which the neural
data were recorded. Third, there is a small difference in the delays
at which the sinusoidal measures reached their peaks. Although
these differences in the delays represented only a fraction of a cycle
of the sinusoidal variation, they could already suffice to impair a
direct correlation.

An earlier investigation into behavioral and neural measures of
audiotactile speech comprehension employed tactile signals that
followed the envelope of the speech stimuli (40). Although that
study found, similar to our work, significant multisensory gain in
the neural response to the speech envelope, it did not identify a
behavioral effect. Because we employed tactile pulses at the per-
ceptual centers of the syllables, related to the theta rhythms, this
suggests that it is indeed the theta portion of the speech rhythms,
rather than, e.g., the slower word-level delta rhythms, that can
aid speech comprehension. Future investigations of different types
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and rhythms of tactile stimuli derived from speech rhythms will
allow for further clarification of the neural mechanisms of audio-
tactile speech perception, as well as to further improve the efficacy
of such stimuli for enhancing the comprehension of speech in
noise.

Materials and Methods

Participants. Nineteen young adults (19 to 24 y old, 10 females) participated
in the experiment. All volunteers were native English speakers, identified as right-
handed, and had no history of neurological disorders or hearing impairment.
They did not receive prior training regarding tactile or audiotactile stimulation.
Subjects gave their written informed consent before the experiment. The research
was approved by the Imperial College Research Ethics Committee. One male
participant did not complete the study due to personal reasons.

Hardware. Acoustic and vibrotactile stimuli were generated digitally. Both sig-
nals were synchronized and converted into analog signals through the RX8 Multi-
I/O Processor device (Tucker-Davis Technologies) at the sampling rate of 39,062.5
Hz. The acoustic stimuli were presented to the subjects through insert earphones
(ER-2, Etymotic Research) placed in the subject’s ear canals. Tactile stimuli were
delivered through a vibrating motor (Tactuator MM3C-HF, TactileLabs) that vol-
unteers held between the thumb, index finger, and middle finger of their right
hand.

The subject’s spoken response was recorded with a microphone (Blue Snow-
ball, BlueDesigns). EEG signals were acquired by using 64 active electrodes
(actiCAP, BrainProducts) and a multichannel EEG amplifier (actiCHamp, Brain-
Products). The acoustic signals presented to the volunteers were recorded as well
in conjunction with the EEG signals (StimTrak, BrainProducts).

Acoustic Stimuli. To assess speech comprehension, we used single sentences
presented in speech-shaped noise at an SNR of –2 dB and an intensity of 75-dB
sound pressure level (SPL), a comfortable intensity for the subjects. The sentences
were semantically unpredictable and were generated by using Python’s Natural
Language Toolkit (56, 57). Each sentence contained four key words. The sentences
were converted to audio by using the TextAloud software with a female voice at
a sampling rate of 44,100 Hz. Scores were graded by hand twice, at the time of
experiment and through the audio recordings.

When recording EEG, we used nonrepeating continuous stories in speech-
shaped noise. The SNR and the sound intensity were the same as for the assess-
ment of speech comprehension: We employed an SNR of –2 dB and an intensity
of 75 dB SPL. The stories were extracted from “The Children of Odin: The Book
of Northern Myths,” by Padraic Colum, a publicly available audiobook read by
a female speaker, Elizabeth Klett. The narratives were cut into segments of a
duration of 2 min and 30 s.

The speech-shaped noise was generated by determining the Fourier trans-
form of the speech material from the sentences or from the audiobooks, so that
it presented the same spectral content as the target speech. The syllable rate was
evaluated for both types of stimuli by computing the average duration between
the vowels of two consecutive syllables, excluding pauses.

Tactile Stimuli. We constructed vibrotactile stimuli in which pulses were
aligned to the perceptual centers of the syllables in a speech signal. We
therefore first extracted the timing of phonemes from the acoustic signals and
the accompanying text using the Montreal Forced Aligner (58). Because the
continuous stories contained a few unusual words, we used CMU Sphinx-4 to
implement a grapheme-to-phoneme conversion and add their pronunciation
to the forced aligner dictionary. The onset of the vowels were considered to
represent the perceptual center of the corresponding syllables. The obtained
timings were checked manually by using Praat (59).

For the pulse at the perceptual center of a syllable, we used a real Morlet
wavelet ψ(t):

ψ(t) = ψ0 sin(2πft)e− t2

2σ2 , [1]
in which t denotes time. We considered an amplitude ψ0 of 1.4 V, a carrier
frequency f of 80 Hz, and a widthσ of 7.5 ms. We thus obtained a series of pulses
aligned with the syllabic phonetic features for both the individual sentences and
the continuous stories.

Experimental Design. We considered seven different types of audiotactile
stimulation for the behavioral assessments. Five of these types were tactile signals
paired to speech at different delays: −180 ms,−120 ms,−60 ms, 0 ms, and
60 ms. A positive delay referred to the tactile signal proceeding the audio stream.
As a control condition, we employed a sham stimulation, in which we paired the
speech signal to a vibrotactile stimulation that was obtained from an unrelated
speech stream. As a second control, we also considered an audio-only stimulation
in which no tactile signal was included.

For the EEG recordings, we employed the seven types of audiotactile stimu-
lation that we used for the behavioral investigations. We also added an eighth
type, namely, a tactile-only stimulation that did not include an audio signal. The
purpose of this eighth type was to allow the quantification of the multisensory
gain in the neural response.

For each subject, the assessments were split into three distinct parts that were
carried out on three different days. During the experiments, subjects sat in a dimly
lit anechoic chamber and were asked to look at a fixation cross.

The behavioral measures of speech comprehension were obtained in the first
part. Subjects heard short sentences in noise. After each sentence, they were
asked to repeat what they had heard as accurately as possible. They were also
asked to rate how comfortably they could understand the target speaker.

Sentences were presented in 16 blocks. Each block contained 15 sentences
that all occurred in the same type of audiotactile stimulation. In addition, two
blocks were presented at the start to accustom subjects to the task and the stimuli.
In those blocks, the type of stimulation was randomized for each sentence. Each
type of audiotactile stimulation occurred then twice in the remaining 16 blocks,
in a random order.

The speech-comprehension score for each type of audiotactile stimulation was
computed as the average percentage of correctly understood keywords and the
comfort rating as the average rating for that stimulation type.

The second and third parts of the experiment were dedicated to the EEG
recordings. The subjects thereby listened to continuous audiobooks. The speech
material was divided into 32 segments, each with a duration of 2 min and 30 s.
The electrophysiological recordings were split into two sessions, so that each
session would last less than an hour and participants would not be subjected
to fatigue. The type of audiotactile stimulation varied randomly from segment
to segment, in such a way that each type appeared 4 times in the 32 segments
that each participant heard, resulting in 10 min of presentation per type. At the
beginning of each segment, a summary of the previous one was displayed on
the screen, so that the volunteer did not miss the main information, even if their
speech comprehension might have been low.

For the audio-only and the audiotactile stimulation types, after each segment,
the volunteers had to answer multiple-choice questions about the speech to
which they had just listened. For the tactile-only type, during the stimulus presen-
tation, they were asked to focus on the tactile pulses and detect a specific pattern
that was presented to them prior to the experiment.

The orders of the stories, sentences, and conditions were randomized indi-
vidually for each subject, and all experiments were conducted in a double-blind
manner.

Preprocessing of EEG Recordings. EEG data were collected at a sampling
rate of 1,000 Hz with 64 electrodes referenced to the vertex (Cz). The maximal
impedance was kept under 10 kΩ. EEG preprocessing analysis were carried out
by using the MNE Python package (60). Preprocessing involved interpolating bad
channels, band-pass filtering between 0.1 Hz and 32 Hz (one-pass, zero-phase,
noncausal finite impulse response [FIR] bandpass filter of order 33,000), robust
detrending (61), rereferencing to the channel average, and artifact removal
through independent component analysis (62). A low-pass filter at 20 Hz was
applied at the end (one-pass, zero-phase, noncausal FIR bandpass filter of order
660).

Sensory Features. We determined the electrophysiological correlates of two
distinct sensory features that were designed to capture the rhythmic nature of
the stimuli. First, regarding the auditory signal, we considered the envelope of
the speech signal. The envelope e(tn) at time step tn was obtained through the
Hilbert transform of the speech stream and subsequent low-pass filtering at 20 Hz
(one-pass, zero-phase, noncausal FIR lowpass filter of order 660, corner frequency
of 22.5 Hz).
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Second, to characterize the neural processing of the tactile pulses, we con-
sidered a feature that measured the center of the pulses. This feature p(tn) was
accordingly one at the center of a pulse and zero at all other times.

For the subsequent analysis, we then combined the two features to the feature
vector�y(tn) = (e(tn), p(tn)).

Forward Model. To investigate the encoding of the multisensory information
in the neural response, we related the two sensory features to the EEG data
through a forward model. The latter was a linear spatiotemporal reconstruction of
the normalized EEG signal {xi(tn)}N

i=1 for N = 64 channels at each time step
tn from the two normalized sensory features �y(tn − τk) shifted by T different
latencies {τk}T

k=1:

x̂i(tn) =

T∑

k=1

αij(τk)yj(tn − τk), [2]

in which x̂i(tn) is the estimate of the EEG signal at channel i and time step tn.
The coefficients αij(τk) of this linear filter describe the neural encoding of the
sensory information and constitute the TRF (41).

We considered an equally spaced range of latencies{τk}T
k=1 from−1, 000

ms to 1,000 ms, resulting in T = 2, 000 latencies at a sampling frequency of
1,000 Hz. The TRF was estimated for each subject separately by using regularized
ridge regression: α= (Yt

j Yj + γI)−1Yt
j xi, with Yj denoting the design matrix

of the jth feature of size n × T , with n denoting the number of samples, I the
identity matrix, and γ the regularization parameter that was fixed at γ = 1.

To study the multisensory gain of the obtained neural encoding, we consid-
ered a supra-additivity criterion (54). We thereby evaluated whether the multi-
sensory response was different from the sum of the two unisensory responses—
that is, those obtained in the audio-only and in the tactile-only stimulation.
To this end, we summed the TRFs of the unisensory conditions to obtain an
additive TRF, α(A+T), that we refer to as the A+T model. The unisensory TRFs
were thereby shifted according to the delay between speech and tactile pulses
in the corresponding audiotactile stimulus to respect the alignment between the
actual stimuli and the neural response. The multisensory gain α(gain)

ij (τk) then
followed as the difference in the TRF α(AT) for the audiotactile stimulation and
the additive TRF of the A+T model:

α
(gain)
ij (τk) = α

(AT)
ij (τk)− α

(A+T)
ij (τk). [3]

For the sham stimulus, we created an A+T sham model. For each sensory
feature and unisensory condition, we first computed the TRFs of the response to
a unisensory-unrelated stimulus. These unisensory-unrelated TRFs represented
the noise associated to the unisensory TRFs. For each sensory feature, we therefore
summed the unisensory-related TRFs related to one sensory modality (auditory or
somatosensory) and the unisensory-unrelated TRFs to the other sensory modality.
We then assessed the multisensory gain by comparing the TRFs α(AT) for the
audiotactile stimulation to those of the additive sham TRFs. In particular, when
analyzing the neural response to the speech envelope, we compared the TRFs
α(AT) to the sum of the TRFs in the audio-only condition and the TRFs in response
to an unrelated stimuli in the tactile-only condition. The multisensory gain in the
neural response to the tactile pulses was computed by comparing the TRFsα(AT)

to the sum of the TRFs in the tactile-only condition and the TRFs in response
to an unrelated stimuli in the auditory-only condition. We chose this approach
because the mismatch of the auditory and the tactile signal in the sham stimulus
prevented the computation of a meaningful additive model. However, adding
these unrelated unisensory TRFs allowed us to maintain the same noise level as
with other multisensory gains and enabled a meaningful comparison.

The GFP for the jth stimulus feature followed, for each latency τk, as
the average of the multisensory gain α

(gain)
ij (τk) over the different EEG

channels i.
To assess the statistical significance of the GFP, we constructed a null distri-

bution using the latencies before −200 ms and after 800 ms. We then set a
threshold for statistical significance at the 99th percentile of the null distribution.
For each peak of the GFP, and for each of the two sensory features, we then
determined if it was above the chance level, and in that case, extracted the peak
amplitude for each subject.

We then employed the forward models to assess how well the EEG responses
could be reconstructed (16, 41). For the prediction of the EEG recordings from the

speech envelope, we used an equally spaced range of latencies {τk}T
k=1 from

−200 ms to 400 ms, resulting in T = 600 latencies at a sampling frequency
of 1,000 Hz. For the reconstruction of the EEG signals from the tactile pulses,
we used an equally spaced range of latencies {τk}T

k=1 from 0 ms to 400 ms,
resulting in T = 400 latencies at a sampling frequency of 1,000 Hz. The range
of latencies was shorter than when evaluating the TRFs since we did not use
a portion of the delays to compute null models. We focused on auditory and
somatosensory regions of interest, corresponding to the unisensory responses
we observed, and therefore predicted the responses of specific EEG channels only.
As the auditory ROI, we considered the channels FC5, FC3, C5, C3, FC6, FC4, C4,
and C6, showing a bilateral pattern. As the somatosensory ROI, we considered the
channels FC1, FC3, F3, F1, CP5, CP3, P5, and P3 on the contralateral side to the
stimulation (right hand). We used the same regularization parameter γ = 1 as
for the computation of the TRFs.

The models were evaluated separately for each subject by using 20-fold cross-
validation, resulting in folds of around 30 s. The performance of each model was
measured by computing the Pearson’s correlation coefficient between the esti-
mated EEG signals and the actual ones. These values were then averaged across
the considered ROIs. The empirical chance level for the reconstruction accuracy
was calculated by estimating EEG signals from the time-reversed sensory features
and computing the Pearson’s correlation coefficient between the reconstructed
EEG recording and the actual one. We then compared the accuracy of the EEG
reconstruction to the chance level using a t test with a significance criterion of
α= 0.05.

To determine the multisensory gain, as for the evaluation of the TRFs, we
considered a supra-additivity criterion (54). For each sensory feature and subject,
we computed TRFs for the two unisensory responses and summed the two to
create an additive A+T TRF. We thereby shifted the unisensory decoders with
respect to each other by the delay of the corresponding audiotactile stimulation.
For each sensory feature, the A+T sham model was built as the sum of the
unisensory TRF associated to that feature and a TRF between the other sensory
feature and an unrelated EEG response.

We then used the additive TRF on the multisensory EEG data to compute Pear-
son’s correlation coefficients ρ(A+T)

j between the estimated and the actual EEG
responses. These reconstruction accuracies constituted the baseline of additive
audio-tactile integration. The A+T reconstruction accuracies ρ(A+T)

j were then
subtracted from the AT reconstruction accuracies ρAT

j that were obtained from
audiotactile stimulation, yielding the multisensory gain at each delay for each
subject:

ρ
(gain)
j = ρ

(AT)
j − ρ

(A+T)
j . [4]

Statistical Testing. We first analyzed the dependency of the speech-
comprehension score, the comfort rating, the amplitude of the peaks in the
neural data, and the EEG reconstruction scores on the different temporal delays.
To account for differences between subjects, z-scores of the data were computed.
To this end, for each subject, we subtracted the mean and SD of the respective
measure across all conditions. Therefore, for each subject, the resulting z-scores
were centered around zero and had an SD of one. While the consideration of
the z-scores did not impact the nonparametric statistical testing between the
different conditions, the z-scores allowed us to reduce intersubject differences,
and hence to better assess differences between the various conditions.

The speech stimuli displayed syllabic rates that peaked around the average
rates (Fig. 2A). Because we hypothesized that the vibrotactile stimuli would
influence the behavioral and neural measures through the timing of the pulses
in relation to the timing of the syllables in the speech signal, we modeled the
temporal dependencies of the z-scores through a sinusoidal variation at the
respective syllabic rate. Amplitude and phase of the sinusoidal variation were free
parameters and were fitted through least-squares regression. We transformed the
exogenous matrix according to a sine wave with this phase and frequency, but an
amplitude of one. This allowed us to transform the data so that the relationship
between the exogenous and the endogenous matrix was linear and allowed
for standard linear regression (63). The statistical significance of the sinusoidal
fit could then be assessed though the linear regression with the new modified
exogenous matrix. We used a significance criterion of α= 0.05.
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When the modulation of a behavioral or neural score was statistically sig-
nificant, we then further assessed how the maximal score across the different
delays compared to a baseline score. For speech comprehension and comfort
rating, we compared the maximal scores to those obtained in the audio-only and
in the sham condition. For the electrophysiological measures, we compared the
maximal scores to those obtained from the corresponding additive A+T model, as
well as to those obtained from the AT model that described the sham stimulation.

The comparison of the maximal scores to the baseline scores was done
through a second-level group analysis using nonparametric statistical tests for re-
peated measures (Wilcoxon and Friedman). When performing multiple statistical
tests, the P values were corrected by using FDR correction (64).

As an additional test of the modulation of the speech-comprehension scores
and the comfort rating on the delay of the tactile signal, we also computed
a scatter plot of the optimal delays for each of these two measures. We also
computed the correlation between these optimal delays.

We also assessed whether the speech-comprehension scores in the preferred
condition for each subject—that is, in the condition in which they reported the
highest comfort rating—compared to the scores in the audio-only stimulation,

as well as during sham stimulation. If a subject had identical highest comfort
ratings in more than one condition, we averaged the speech-comprehension
scores across these conditions.

We employed multiple linear regression to estimate the behavioral measures
from the multisensory electrophysiological features. We corrected for multiple
comparisons by controlling the FDR via knockoffs at 1,000 iterations. Contrary to
other methods of FDR correction for multiple regression, this method accounts for
the correlation structure of the exogenous matrix and can achieve an exact FDR
correction (65).

Data Availability. Data is available in a publicly accessible database
(https://zenodo.org/record/5512578) (66).
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9. A. Alsius, R. V. Wayne, M. Paré, K. G. Munhall, High visual resolution matters in audiovisual speech
perception, but only for some. Atten. Percept. Psychophys. 78, 1472–1487 (2016).

10. B. Gick, D. Derrick, Aero-tactile integration in speech perception. Nature 462, 502–504 (2009).
11. B. Gick, Y. Ikegami, D. Derrick, The temporal window of audio-tactile integration in speech perception.

J. Acoust. Soc. Am. 128, EL342–EL346 (2010).
12. L. Cappelletta, N. Harte, “Phoneme-to-viseme mapping for visual speech recognition” in ICPRAM (2)

(Citeseer, 2012), pp. 322–329.
13. A. E. O’Sullivan, M. J. Crosse, G. M. D. Liberto, A. de Cheveigné, E. C. Lalor, Neurophysiological indices
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