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Abstract

Partial hepatectomy is a first-line treatment for hepatocel-
lular carcinoma. Within 2 weeks following partial hepatec-
tomy, specific molecular pathways are activated to promote 
liver regeneration. Nevertheless, residual microtumors may 
also exploit these pathways to reappear and metastasize. 
Therapeutically targeting molecules that are differentially 
regulated between normal cells and malignancies, such as 
fibrinogen-like protein 1 (FGL1), appears to be an effective 
approach. The potential functions of FGL1 in both regenera-
tive and malignant cells are discussed within the ambit of 
this review. While FGL1 is normally elevated in regenerative 
hepatocytes, it is normally downregulated in malignant cells. 
Hepatectomy does indeed upregulate FGL1 by increasing the 
release of transcription factors that promote FGL1, includ-
ing HNF-1α and STAT3, and inflammatory effectors, such as 
TGF-β and IL6. This, in turn, stimulates certain proliferative 
pathways, including EGFR/Src/ERK. Hepatectomy alters the 
phase transition of highly differentiated hepatocytes from G0 
to G1, thereby transforming susceptible cells into cancerous 
ones. Activation of the PI3K/Akt/mTOR pathway by FGL1 al-
lele loss on chromosome 8, a tumor suppressor area, may 
also cause hepatocellular carcinoma. Interestingly, FGL1 is 
specifically expressed in the liver via HNF-1α histone acety-
lase activity, which triggers lipid metabolic reprogramming in 
malignancies. FGL1 might also be involved in other carcino-

genesis processes such as hypoxia, epithelial-mesenchymal 
transition, immunosuppression, and sorafenib-mediated 
drug resistance. This study highlights a research gap in these 
disciplines and the necessity for additional research on FGL1 
function in the described processes.
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Introduction
Known for its 18% 5-year survival rate, hepatocellular car-
cinoma (HCC) ranks third among cancer-related causes of 
mortality.1 Both viral hepatitis and nonalcoholic fatty liver 
disease are the primary causes of HCC.2 Chemotherapy and 
radiotherapy have controlled this malignancy well, but they 
typically have serious side effects.3 Hence, liver transplanta-
tion and liver partial resection, also known as partial hepa-
tectomy (PH), are considered as the two main therapeutic 
approaches for HCC.4 As finding a transplant organ is a time-
consuming process in many countries, PH is known as the 
primary strategy to control HCC at the early stages.5

Activation of hepatocyte regeneration pathways is the he-
patic response inherent to hepatectomy and other liver paren-
chymal injuries.4 Growth factors, endocrine gland effectors, 
and liver cells work together in this intricate process.6 Recur-
rence of tumors is unfortunately always a potential when mi-
crotumors remain in patients’ liver tissue after PH. Indeed, 
cancer cells can multiply by exploiting pathways associated 
with liver regeneration.3 Tumor recurrence, with a 70% 5-year 
recurrence, is the most serious PH consequence.7 The liver 
secretes proteins called hepatokines, which play crucial roles 
in diverse medical conditions. As such, fibrinogen-like protein 
1 (FGL1) is a hepatokine that communicates between the liver, 
skeletal muscles, and adipose tissues. It promotes DNA syn-
thesis, inhibits reactive oxygen species production, and causes 
insulin resistance, steatosis, and inflammation.8 Thus, FGL1 is 
important to control liver proliferation factor expression, re-
generate liver, and aid liver repair. Overexpression of FGL1 
in solid tumors reduces the 5-year survival. It is also present 
in bone marrow stromal cells, which are responsible for the 
repair of liver injury and the epithelial intermediate transfor-
mation of lung adenocarcinoma cells. Either direct phospho-
rylation (p) of the epidermal growth factor receptor (EGFR) 
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or nonreceptor tyrosine kinase Src activates the extracellular 
signal-regulated kinase (ERK/p-ERK) pathway to promote cell 
proliferation. Because of the function of FGL1 in cell prolif-
eration pathways, its expression likely regulates tumor cell 
growth and hepatocyte regeneration. Furthermore, by mod-
ulating the poly [ADP-ribose] polymerase 1/caspase 3 path-
way, FGL1 bestows drug resistance on certain solid tumors, 
including non-small cell lung cancer.9 Therefore, this topic is 
intriguing, as focusing on one protein allows for deep under-
standing of mechanisms. This review of recent studies aimed 
to evaluate the role of FGL1, as a hepatokine associated with 
metabolic and immune pathways, in each of the processes of 
liver regeneration and tumorigenesis following hepatectomy.

FGL1
FGL1, a 68-kDa hepatokine that is also referred to as Hepas-
socin or HPS and hepatocyte-derived fibrinogen-related 
protein or HFREP-1, is a member of the fibrinogen family. 
Chromosome 8 (8p22-21.3) in humans contains this protein, 
and Figure 1A shows its exclusive expression in the pancreas 

and liver. Figure 1B shows that this protein can be expressed 
by several types of liver cells, including specialized epithelial 
cells (hepatocytes), immunological cells (Kupffer cells, neu-
trophils, and plasma cells), and endothelial cells (vascular 
and sinusoid endothelial cells).8,10 The fact that FGL1 plays 
a significant role in glucose and lipid metabolism and liver 
regeneration suggests that it may be an important molecule 
in controlling the reprogramming of lipid metabolism in can-
cer cells and other proliferative cells.8,11,12 This protein is 
linked to an extensive array of cellular signaling pathways, 
as shown in Table 1.13 Both gene-gene and protein-protein 
interactive networks of FGL1 and its coexpression gene net-
work are shown in Figure 2 and Table 1.

It is intriguing to note that FGL1 is typically downregu-
lated in patients with HCC, despite being overexpressed in 
response to liver parenchymal abnormalities.13–16 As FGL1 
suppresses the phosphoinositide 3-kinase (PI3K)/protein ki-
nase B (Akt)/mammalian target of rapamycin (mTOR), its 
complete deletion is associated with a poor prognosis in HCC 
patients.17–19 As an immunosuppressive receptor typically 
presents on the surface of activated immune cells, FGL1 is 

Fig. 1.  Tissue-specific and cell type diversity. (A) In The Human Protein ATLAS database, the FGL1 protein is significantly expressed in liver and pancreas. (B) In 
liver, FGL1 is expressed in hepatocytes, Kupffer cells, neutrophils, vascular endothelial cells, plasma cells, and sinusoid endothelial cells. FGL1, fibrinogen-like protein 1.



Journal of Clinical and Translational Hepatology 2024 vol. 12(4)  |  406–415408

Shafieizadeh Z. et al: FGL1 regulation following hepatectomy

Table 1.  Coexpression genes of FGL1 included in the Coexpedia database

Mechanism Genes

Transport SLC30A2, CELA3A, CACNA1I, SLC22A9, TMEM151B, SERPINA7, NHA, SLC1A2, SHBG

Inflammatory and 
immune responses

MBL2, HSD17B6, AGT, GP2, CEACAM7, CD14, C8G, GFRA4, CFB, HOMER2, C4BPA, C4BPB, 
JAK3, F13B, HPR, CCL20, TRIM10, SPEF1, F12, RPS24, CPN2, NCR2, APOH, APCS, CRP, CFHR2, 
C8B, GC, CPB2, F2, F9, TTR, CP, C9, SAA4, RBP4, C8A, CFHR5, CFHR4, C6, CYP8B1, MBL2

Therapeutic 
efficacy of drugs

CYP3A4, SERPINA10, YBX1, CYP3A7, NR1I2, AADAC, SLC28A3, TRIM10, ORM1, ASGR2

Metabolism-
related genes

PNLIPRP1, A1BG, SERPINA6, ADH1B, CTRC, SERPINA1, GATM, HGD, CPA2, SLC22A1, 
CELA2B, SYCN, ACSM2A, CEACAM7, CYP2A6, SPP2, PLA2G1B, SERPING1, CELA3B, CLPS, 
NT5E, PPAP2A, AOX1, MS4A6A, SCAMP1, OPTN, APOC4, PDPR, GYS2, HAL, TMEM97, 
CYP3A7, ACSM5, CPA1, CBS, VNN1, KIRREL2, CELA3A, HSD11B1, ADH6, PIPOX, KCNK3, 
RDH16, SULT2A1, PCK1, CEL, SLC51A, TFR2, LEAP2, FTCD, APOA5, RBPJL, CRYBB3, 
FAM133A, HMGCS2, C10orf10, CSRP3, OR1F1, G6PC, ACADL, CTNND2, CCRN4L, 
KIAA1467, ALDH8A1, ABCB4, SORD, CYP2B6, DIO1, HBQ1, UPB1, OGDHL, GNMT, FTL, 
TMPRSS15, HPX, MAT1A, ALDOB, APOC3, APOA2, LBP, UGT2B15, BHMT, HPD, UGT2B28, 
APOM, FMO3, HAO1, PAH, CPS1, ERP27, LIPC, INSL4, IGFBP1, ADH4, UGT2B4

Tumor suppressors ADH1A, AGXT, HPN, MRPL41, PDIA2, SOX15, GPX3, HABP2, JAK3, SLC10A1, CYP4F2, 
HOXB5, PON3, GLS2, GATA2, CCDC9, HGFAC, TRIM45, INHBE, ALB, APOB, SERPINC1, 
KNG1, HRG, ITIH2, ITIH3, CYP2E1, ITIH1, LECT2, AQP8, TEX11, HAMP, FABP1, SERPINA5

Tumor growth KLK1, YBX1, USH1C, CXCR4, PAQR9, AFM, RPL38, SLC39A6, CPLX2, AZGP1, CD44, CHI3L1, 
ZNF324, IMPA2, NR5A2, PRSS3, FXYD2, TBX6, THBS4, CLDN2, CDH20, MDK, RPS15A, EGF, 
CLDN1, DLX4, NAT2, FMO5, COL11A2, DRD5, PKHD1, MUC15, GPR31, MUC3A, SFSWAP, FGA, 
FGB, AMBP, TF, APOA1, CYP2C9, AHSG, CYP2C8, SERPINA3, HP, ANGPTL3, SLC7A2, PON1, 
SERPIND1, ITIH4, SERPINI2, TM4SF20, MUC5B, A1CF, TM4SF4, CUZD1, MUC5AC, CYP3A4, AHSG

Related to proteasome CTRL

Epithelial-
mesenchymal 
transition

YBX1, CDH18, AZGP1, APOC2, EXPH5, VIM, FGA, FGG, PLG, ARG1, VTN, TDO2

FGL1, fibrinogen-like protein 1.

Fig. 2.  FGL1 interactions in STRING and GeneMANIA databases. (A) Protein-protein. (B) Gene-gene. FGL1, fibrinogen-like protein 1.
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a primary ligand for lymphocyte activation gene (LAG)-3. 
Hence, its amplification can lead to immunotherapy resist-
ance.20,21 To better understand tumor recurrence following 
hepatectomy, it is necessary to identify the function of this 
multifunctional protein in proliferative cells.

Role of FGL1 in liver regeneration following hepatec-
tomy
After tissue mass loss, the liver is the only organ capable of 
self repair.22 This is primarily due to the rapid re-entry into 
the cell cycle of highly differentiated hepatocytes following 
liver damage.6 Within 2 weeks after removing as much as 
70% of the liver, hepatocytes start to replenish the lost bulk. 
A 30% PH is the criterion for liver regeneration.23 Therefore, 
liver failure with a significant mortality rate occurs at a PH of 
80%.24,25 While 70% PH has been the most studied model 
of liver regeneration so far,22,25 it is important to note that 
this procedure is not without risk, especially in older patients 
or those with preexisting liver conditions such as cirrhosis 
or steatosis.26 Consequently, liver tumors are surgically re-
moved by hemihepatectomy.27

Based on in vivo studies in mice, FGL1 is induced 2 h after 
70% hepatectomy. Subsequently, it reaches its second peak 

within 24 h and remains high until 72 h after hepatectomy.28 
As an acute phase reactant, FGL1 can be released by in-
flammatory effectors like interleukin (IL)-6 and transforming 
growth factor-beta (TGF-β).29–31 Following liver parenchymal 
damage, normal hepatocytes begin to release FGL1 under 
the regulation of some transcription factors, two of which are 
hepatocyte nuclear factor-1 alpha (HNF-1α) and signal trans-
ducer and activator of transcription 3 (STAT3).32–34 IL6 regu-
lates FGL1 promoter activity through both STAT3 and HNF-
1α.30–32 The mechanism involves the binding of endogenous 
HNF-1α to high mobility group box-1 (also known as HMGB1) 
and cAMP response-element binding proteins in the cyto-
plasm to form a complex that translocate into the nucleus 
and binds to the FGL1 promoter together with phosphorylat-
ed STAT3.32 Next, as shown in Figure 3, the expressed FGL1 
triggers an EGFR/Src/ERK cascade in hepatocytes through an 
autocrine process to induce liver regeneration.16,32,35

EGFR is a transmembrane glycoprotein receptor that 
belongs to the ErbB family of receptor tyrosine kinases. It 
plays a central role in regulating the proliferation of many 
cell types, including hepatocytes. Upon EGFR dimerization, it 
activates one or more downstream cascades, including PI3K/
AKT, mitogen-activated ERK kinase (MEK)/ERK, mTOR, and 
STAT. Activation of the ERK pathway is an important step in 

Fig. 3.  In proliferative cells, de novo lipogenesis is induced by overexpressing the genes involved in FA synthesis. These include ACLY, ACC, and FASN, reg-
ulated by transcription factor SREBP1c. In HCC, SREBP1c can be overexpressed by P13K/Akt/mTOR pathway activated by CD147 and its downstream molecules, such 
as FOXO1, GSK3, and LPIN1. Hyperlipidemia triggers the release of FGL1, which is a suppressor of the Akt/mTOR pathway. On the other hand, beta-oxidation can be 
suppressed by inhibiting the p38/MAPKs/PPARα/CPT1A/ACOX1 pathway mediated by CD147. In regenerative cells, HNF-1α and phosphorylated STAT3 can upregulate 
FGL1, triggering proliferative pathways like EGFR/Src/ERK. Nonetheless, in HCC, deletion of HNF-1α downregulates FGL1 promoter, which in turn reduces the secretion 
of SREBP. Under hypoxic conditions, the JAK2/STAT3 pathway induces HIF-1α, which inhibits beta-oxidation by inhibiting mitochondrial enzymes like MCAD and LCAD. 
ACC, acetyl-CoA carboxylase; ACOX1, acyl-CoA oxidase 1; AKT, Ak strain transforming; ACL, ATP-citrate lyase; CPT1A, carnitine palmitoyltransferase I; EGFR, epider-
mal growth factor receptor; ERK, extracellular signal-regulated kinase; FASN, fatty acid synthase; FGL1, fibrinogen-like protein 1; FOXO1, forkhead box protein O1; 
GP130, glycoprotein 130; GSK3, glycogen-synthase kinase-3; HIF-1α, hypoxia-inducible factor-1 alpha; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; HNF-1α, 
hepatocyte nuclear factor-1 alpha; IL6-R, interleukin-6 receptor; JAK2, Janus kinase 2; LDLR, low-density lipoprotein receptor; LCAD, long-chain acyl-CoA dehydroge-
nase; MAPKs, mitogen-activated protein kinases; MCAD, medium-chain acyl-CoA dehydrogenase; MEK, mitogen-activated ERK kinase; MUFAs, monounsaturated fatty 
acids; mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol-3-kinase; PPARα, peroxisome proliferator-activated receptor alpha; RAS, rat sarcoma; SCD, 
stearoyl-CoA desaturase; SREBP1c, sterol regulatory element-binding protein 1c; STAT3, signal transducer and activator of transcription 3.
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FGL1-induced mitogenic signaling. FGL1 induces the phos-
phorylation of EGFR and the activation of its downstream ERK 
signaling cascade pathway in a ligand-independent way.16,36 
In addition, FGL1 attaches to a membrane-specific receptor 
on the surface of hepatocytes and stimulates cell prolifera-
tion via an autocrine mechanism that is dependent on the 
EGFR/ERK/Src pathway. Liver injury also increases FGL1 ex-
pression in brown adipose tissue suggesting an interaction 
between the damaged liver and brown adipose tissues.8

In addition to triggering cell proliferation, FGL1 also has 
anti-apoptosis activity in liver cells via activating STAT3 and 
inhibiting apoptotic factors, such as B-cell lymphoma 2 (also 
referred to as Bcl-2)-associated X protein (also referred to 
as BAX) and caspase-9, as well as overexpressing some 
anti-apoptotic factors, such as Bcl-2 and B-cell lymphoma 
extra-large (also referred to as Bcl-xL).22,35,37 Phosphoryl-
ated STAT3 also regulates the expression of genes associated 
with the cell cycle, including c-fos, c-myc and cyclin.38 As a 
result, further study is required to establish the correlation 
between FGL1 and the genes associated with cell cycle. This 
aspect was neglected in early studies. It is apparent that a 
50% PH can induce changes in the expression of 87 proteins 
in mouse models, with 37 proteins being downregulated and 
50 proteins being upregulated, as determined by a proteome 
analysis. Given the substantial number of proteins that have 
both direct and indirect association with c-myc, it is plausible 
that this protein may have a pivotal influence on the regula-
tion of hepatic regeneration.27 In proliferative cells such as 
posthepatectomy hepatocytes and cancer cells, c-myc not 
only promotes glycolysis, but also assists mitochondria to 
utilize nonglucose substrates, such as lipids, in order to pro-
vide the necessary cellular intermediates to complete the cell 
cycle.39 According to several studies, FGL1 is also essential 
for glucose and lipid metabolism.8 Given that the Janus ki-
nase 2 (also referred to as JAK2)/STAT3 pathway regulates 
both FGL1 and c-myc, an unexplored relationship between 
these proteins is conceivable.40 Therefore, evaluating the re-
lation between lipid metabolic reprogramming through the 
FGL1/STAT3/c-myc axis seems to be useful for understand-
ing the underlying mechanisms in liver generation after PH.

Hepatectomy in patients with HCC and the possible 
role of FGL1
As HCC has similar molecular patterns in rodents and hu-
mans, mouse models are usually used to investigate HCC.41,42 
A study on the Mdr2-knockout mice, the most studied of the 
HCC models, revealed that the stress caused by liver resection 
can trigger cancer-prone cells to escape from senescence and 
apoptosis. As a result, they progress through the cell cycle 
and generate tumors. In other words, it seems that hepatec-
tomy may potentially accelerate carcinogenesis.43 The poten-
tial mechanism includes hepatocytes, which are specialized 
epithelial cells that are highly differentiated and mitotically 
inactive under physiological conditions. However, hepatocytes 
begin to replicate within 1 day after PH, undergoing a cell cy-
cle shift from the quiescent G0 to the G1 phase.6 On the other 
hand, nonparenchymal liver cells, i.e. Kupffer cells, hepatic 
stellate cells, endothelial cells, and biliary duct cells begin to 
replicate later. Therefore, hepatic cells have an exceptional 
proliferation capacity to take part in the regeneration process 
when harmful stimuli like hepatectomy are present.

A study examined FGL1 expression in different malignant 
tumor tissues and associated normal tissues and its putative 
association with HCC prognosis. FGL1 is dramatically down-
regulated in most HCC-related cell lines and tissues, accord-
ing to evidence from bioinformatics and western blot studies. 
In HCC patients, increased FGL1 expression was associated 

with longer overall survival, suggesting it may suppress tu-
mors. Hence, FGL1 expression is linked to HCC progression 
and prognosis, supporting its use as a biomarker.44 Another 
study investigated the association of the FGL1-LAG-3 path-
way and programmed cell death ligand 1 (PD-L1) with prog-
nosis in HCC. LAG-3, FGL1, PD-L1, and CD8+ T cells were 
measured in 143 HCC patients. HCC tissue had higher FGL1 
and LAG-3 levels than nearby normal liver tissues, but lower 
PD-L1 and CD8+. Increased populations of cells expressing 
LAG-3 and CD8+ T cells are detrimental and beneficial prog-
nostic biomarkers for HCC, respectively.20 Another study in-
vestigated how tissue-resident memory T (TRM) cells regulate 
HCC immunity. Accordingly, FGL1 was determined to have 
the potential to induce TRM in malignancies, and LAG-3 was 
identified as a promising next-generation immune check-
point. In end-stage HCC, CD8+ TRM cells with high LAG-3 ex-
pression had a poor prognosis. It seems that FGL1-LAG-3 
binding affected HCC CD8+ TRM cell activity, which highlights 
them as an immunotherapeutic target.45 The pathogenesis 
of HCC recurrence following PH seems to involve (1) meta-
bolic reprograming of proliferative cells and (2) alternation 
of growth factor production and hepatokine release. In the 
current review, we tried to explain some of these pathways, 
focusing on the role of FGL1.6,46–48

Involvement of FGL1 in tumor proliferation and pro-
gression
According to the cBioPortal database, it has been determined 
that FGL1 is mutated in prostate, pancreatic, breast, lung, 
liver and bladder cancer, 17 of which have undergone mis-
sense mutations and 1 truncating mutation.13 HCC patho-
genesis involves a multistep process with inactivation of 
tumor suppressor genes (TSGs) and upregulation of proto-
oncogenes.49 Human FGL1 is located on the short arm of 
chromosome 8, a region rich in TSGs. It seems that the 
deletion of these TSGs leads to the development of HCC.50 
The heterozygosity loss analysis of cancers has shown that 
57.1% of HCCs show a loss of the FGL1 allele on chromo-
some 8p22.3.14,51 In fact, knockdown of FGL1 activates Akt/
mTOR pathway in mouse models of HCC, which may also 
be involved in the development and progression of human 
HCC.17–19 Several studies have found that 40–50% of hu-
man HCCs were associated with increased activity of the 
Akt-mTOR pathway.52–54 Therefore, the regulation of FGL1 
expression and its downstream signaling pathways play an 
important role in the proliferation/inhibition of cancer cells.

In the liver, IL6 promotes FGL1 promoter activity through 
STAT3 and HNF-1α, as described previously.30,32 Numerous 
studies have shown that STAT3 is required for HCC develop-
ment, progression, metastasis, and immunosuppression.55,56 
Indeed, proliferating cells exhibit an upregulation of the 
STAT3/c-myc pathway.40 As c-myc facilitates reprogramming 
of lipid metabolism to maintain energy production in neo-
plastic cells, its overexpression is linked to poor prognosis in 
HCC.57 Residual microtumors in the regenerating liver tissue 
are highly proliferative. To limit carcinogenesis, modulation 
of the STAT3-associated pathway can deprive cells of energy 
content.58 The next section explains how lipid metabolic re-
programming affects tumor recurrence after hepatectomy.

FGL1 and lipid metabolic reprogramming of tumor 
cells
By enhancing macromolecular biosynthesis of carbohydrates, 
lipids, amino acids, phospholipids, and nucleotides, prolifera-
tive cells can improve energy output.59 In proliferative cells, 
elevated glucose levels increase FGL1 expression by enhanc-
ing the activity of STAT3, protein phosphatase 2A (also re-
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ferred to as PP2A), and HNF-1α.12 Overexpression of FGL1 
causes insulin resistance, steatosis, and inflammation in the 
liver through the action of peroxisome proliferator-activated 
receptor gamma (also referred to as PPARγ).60 However, 
when glucose is unavailable, cancer cells rely on lipogenesis 
for energy. As lipid biosynthesis increases, cell membrane 
formation and energy generation through β-oxidation of 
fatty acids (FAs) rise.61 Unlike cancer cells, which acquire 
most FAs by de novo synthesis, normal mammalian cells 
primarily acquire FAs by external absorption.61,62 During de 
novo lipogenesis, the expression of some genes involved 
in FA synthesis, such as ATP-citrate lyase (also referred to 
as ACLY), acetyl-CoA carboxylase (also referred to as ACC) 
and FA synthase (also referred to as FASN), are upregulated 
following overexpression of a transcription factor, i.e. sterol 
regulatory element-binding protein 1c (SREBP1c), and its 
transcription cofactor, i.e. peroxisome proliferator-activated 
receptor-gamma coactivator-1β (also referred to as PGC-1β) 
as shown in Figure 3.63–66 Upregulation of SREBP1c leads 
to FA production in HCC, which is caused by the Akt/mTOR 
signaling pathway that is activated by CD147.66 The PI3K/
Akt signaling pathway regulates lipid metabolism in cancer 
cells.67–70 As shown in Figure 3, PI3K/Akt overexpresses 
forkhead box protein O1 (also referred to as FOXO1), which 
initiates SREBP transcription.71 Figure 3 also shows that 
mTOR, a downstream target of PI3K/Akt suppresses lipin-1 
(also referred to as LPIN1) activation, which would sequester 
SREBP and hinder its translocation to the nucleus.72 Here, 
Akt can halt SREBP degradation by blocking glycogen-syn-
thase kinase-3 (also referred to as GSK3) activity.73 At the 
same time, CD147 alters lipid metabolism and improves can-
cer cell invasion by blocking the p38/mitogen-activated pro-
tein kinases (MAPKs)/PPARα/carnitine palmitoyltransferase I 
(also referred to as CPT1A)/acyl-CoA oxidase 1 (also referred 
to as ACOX1) pathway, which in turn slows FA oxidation (Fig. 
3).66 Surprisingly, hyperlipidemia generates FGL1, an Akt/
mTOR suppressor.60

When HNF-1α is deleted, expression of the FGL1 promoter 
in HCC is decreased compared with levels found in normal 
hepatocytes.32 As FGL1 cannot stimulate the EGFR/Src/ERK 
pathway, SREBP, and IL6 production are diminished. Thus, 
partial FGL1 expression in HCC may hinder SREBP1c-medi-
ated lipid reprogramming. Nevertheless, the total elimination 
of this protein appears to be linked to an unfavorable prog-
nosis as a result of the activation of oncogenes.

On the other hand, unsaturated FAs, such as oleic acid, 
can activate STAT3, which has a binding site on the FGL1 
promoter region.74 Activated STAT3 cooperates with the an-
drogen receptor to induce the expression of cell cycle-related 
kinase (CCRK), thereby promoting tumorigenesis.75 In fact, 
CCRK enhances de novo lipogenesis by maturing SREBP1 
via the GSK3β/mTORC1 pathway.76 In HCC, the enzyme re-
sponsible for synthesizing monounsaturated FAs (MUFAs), 
stearoyl-CoA desaturase (also referred to as SCD) is over-
expressed.77 An increase in MUFAs activates the PI3K/Akt 
signaling pathway, translocating SREBP from the endoplas-
mic reticulum to the Golgi. Figure 3 shows how this mecha-
nism boosts de novo lipogenesis.61 High quantities of MUFAs 
may help highly proliferative cancer cells avoid palmitic acid, 
a saturated FA that can trigger endoplasmic reticulum stress 
and apoptosis. Additionally, reducing saturated phospholipids 
alters cancer cell membrane fluidity, which improves glucose 
uptake and metastatic capacity. Finally, phospholipase pro-
duces pro-inflammatory eicosanoids that boost cell survival 
and proliferation.78 Surprisingly, while the liver regenerates, 
levels of polyunsaturated FAs containing sphingomyelin and 
phosphatidylcholine decrease and levels of MUFAs contain-

ing phosphatidylethanolamine, free cholesterol, short chain 
triglycerides, and phosphatidylcholine increase.78 Hepatec-
tomy, hyperplasia, and other models of liver cell prolifera-
tion and cancer all appear to involve an increase in MUFAs 
containing phosphatidylcholine. In most cases, hepatocellu-
lar carcinogenesis and altered hepatocyte proliferation ap-
pear to be closely linked to an increase in MUFAs containing 
phosphatidylcholine.78 Regarding the aforementioned PI3K-
mediated lipogenesis in HCC, no studies have examined the 
function of FGL1 to date.

FGL1, hypoxia and escape from immune checkpoints
In the tumor microenvironment, hypoxia is a major deter-
minant in tumor formation and progression.79,80 Hypoxia 
is induced when the rate of tumor growth is accelerated.81 
Under hypoxic conditions, FA synthesis is enhanced in HCC, 
and beta-oxidation is suppressed to protect cancer cells from 
the excessive generation of reactive oxygen species.82–84 The 
mechanism involves production of hypoxia inducible factor-1 
alpha (HIF-1α), which in the tumor microenvironment sup-
presses the expression of enzymes involved in the first stag-
es of beta-oxidation, i.e. medium- and long-chain acyl-CoA 
dehydrogenases, as shown in Figure 3.84 In addition, hypoxia 
regulates the levels of immune checkpoints, such as CTLA4, 
PD1, PD-L1, CD47, LAG-3, and TIM3.81–85 As mentioned 
above, FGL1 is the primary ligand of the LAG-3 receptor.21 
Although the protein-protein interaction networks obtained 
through the STRING database do not show any interaction 
between HIF-1α and LAG-3, HIF-1α interacts with STAT3 as 
a transcription factor for the promotor of FGL1. As a result, 
it seems that the study of the correlation between HIF-1α 
and the metabolic/immune pathways related to FGL1 can be 
helpful in understanding the underling mechanisms of HCC.

Previously, FGL1 was shown to directly cause drug re-
sistance to HIF-related chemotherapy. Sorafenib is the first 
systemic drug approved by the United States Food and Drug 
Administration for HCC, but unfortunately high drug resist-
ance attributed to this compound has made the use of it chal-
lenging.86 Sorafenib suppresses HIF-1α synthesis, shifting the 
hypoxia response to the HIF-2α pathway. Overexpression of 
HIF-2α activates the TGF-α/EGFR pathway, resulting in drug 
resistance.87 HIF-2α upregulation can also induce HCC pro-
gression by stimulating lipogenesis through the PI3K-AKT-
mTOR pathway, as shown in Figure 4.88 To stop cancer growth, 
targeting HIF-1α and HIF-2α is crucial. Combining TGF-α/
EGFR pathway blockers like gefitinib can lower STAT3, Akt, 
and ERK activation, enabling sorafenib to suppress HCC.87

According to studies of sorafenib resistance in HCC, liver 
cancer cell lines with high FGL1 expression, such as Huh7 
and Hep3B, activate autophagy and apoptosis-related sig-
nals by decreasing ERK phosphorylation. HCC cells with low 
FGL1 levels, as SNU387 and SNU475, did not show these 
alterations. Thus, as shown in Figure 4, assessing FGL1 basal 
expression levels can predict sorafenib sensitivity.89 It should 
be mentioned that HIF-2α can be regulated by both oxygen-
dependent and oxygen-independent mechanisms, such as 
phosphorylation. In low-oxygen environments, ERK1/2 phos-
phorylates HIF-2α at serine 672, regulating its movement 
into the nucleocytoplasm and its ability to activate transcrip-
tion.90 As a result, manipulating the FGL1/ERK/HIF-2α path-
way may be effective in preventing drug resistance in HCC; 
however, this finding needs to be further investigated.

FGL1 and epithelial-mesenchymal transition (EMT)
Tumor invasion and metastasis are thought to be facilitated 
by EMT, a process where epithelial cells change into mesen-
chymal cells.91 During EMT, cancer cells become motile by 
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upregulation of mesenchymal markers (n-cadherin, vimen-
tin, Snail, Twist, MMP12, and fibronectin) and downregula-
tion of epithelial-like markers (e-cadherin and ZO-1).92 In 
one study, FGL1 promoted gastric cancer progression by 
enabling EMT and another found that FGL1 deletion induced 
EMT in lung cancer.93,94 Although our knowledge of FGL1’s 
participation in EMT is limited, we do know that TGF-β is 
required in this process.91 Therefore, further clarification 
is needed about the particular function of TGF-β-mediated 
FGL1 involvement in the EMT process in HCC.

An important transcription factor for liver-specific 
FGL1 expression in HCC
According to a meta-analysis on the Oncomine database, 
FGL1 is upregulated in lung, prostate, melanoma, colorectal, 
breast and brain tumors and downregulated in pancreatic, 
breast, liver, and head and neck cancers.13 In relation to the 
specific expression of this protein in HCC, the role of HNF-1α 
should not be neglected. Although HNF-1α can attach to its 
binding site on the FGL1 gene promoter in different tissues, 
it acts as a transcriptional stimulator only when it has histone 
acetylase activity.32,95 As overexpression of HNF-1α does not 
lead to induction of FGL1 gene expression in nonhepatic tis-
sues, the binding of HNF-1α to the FGL1 promoter may be 
associated with induction of chromatin hyperacetylation in 
liver tissue owing to the histone acetylase activity of HNF-
1α.95 As mentioned earlier, FA synthesis is necessary for the 
survival of the tumor. This process involves maintenance of 

mitochondria cytosolic acetyl coenzyme A (acetyl-CoA) by 
the mitochondria. Acetyl-CoA is an important metabolite that 
links metabolic pathways with different histone acetyltrans-
ferases regulating gene expression. HNF-1α can overexpress 
several genes involved in FA synthesis, e.g., ACLY, 3-hy-
droxy-3-methylglutaryl-CoA reductase and FASN, via chro-
matin hyperacetylation, which in turn helps tumor growth.96

Overall, HNF-1α can specially regulate FGL1 expression at 
transcriptional level in HCC and the presence of HNF-1α is 
necessary for the expression of the FGL1 gene. Downregula-
tion of HNF-1α in HCC may cause a reduction in the expres-
sion of FGL1. Deletion of the HNF-1α binding site on the FGL1 
gene promoter can completely suppress the promoter activ-
ity of FGL1. However, re-expression of HNF-1α in HCC leads 
to the induction of FGL1 expression.32

FGL1 and post translational modifications (PTMs)
In addition to transcriptional regulation, PTMs can affect 
FGL1. FGL1 undergoes glucosyl-galactosyl-hydroxylation at 
lysine 65, a PTM seen in collagen-like proteins.97–99 Despite 
lacking a collagen-like domain, FGL1 can undergo this PTM.99 
During glucosyl-galactosyl-hydroxylation, the lysine residue 
of FGL1 is initially hydroxylated by lysyl hydroxylase family 
proteins (also referred to as LHs), and galactose and glu-
cose are then attached to hydroxylated lysine by procollagen 
galactosyltransferase 1 and 2 (GLT25D1 and GLT25D2). It 
is noteworthy that the deletion of GLT25D1 can reduce the 
level of FGL1.100 However, the expression profile of hydroxy-

Fig. 4.  Impact of FGL1 expression on sorafenib sensitivity in hepatocellular carcinoma. (A) Low FGL1 cells exhibit sorafenib resistance. (B) High FGL1 expres-
sion improves sorafenib sensitivity in HCC. AKT, Ak strain transforming; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; FGL1-R, fi-
brinogen-like protein 1 receptor; HIF, hypoxia inducible factor; mTOR, mammalian target of rapamycin; MEK, mitogen-activated ERK kinase; PI3K, phosphatidylinositol-
3-kinase; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma; STAT3, signal transducer and activator of transcription 3; TGF-α, transforming growth factor alpha.
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lated lysine, GLT25D1 and FGL1 following hepatectomy in 
patients with HCC has not been investigated. More impor-
tant, LH3 encoded by the procollagen-lysine,2-oxoglutarate 
5-dioxygenase 3 (also referred to as PLOD3) gene is often 
overexpressed in HCC, which is considered as a potential di-
agnostic marker of early-stage HCC.101,102 Deletion of PLOD3 
suppressed tumor growth in a spontaneous HCC mouse 
model.101 As LH3 plays a key role in the post translational 
regulation of FGL1, overexpression of this protein may be 
the cause of the change in FGL1 expression in HCC. Thus, 
investigating the role of PTMs of FGL1 in both hepatectomy 
and HCC is recommended.

Successful therapeutic strategies to target HCC via 
FGL1
Recurrence of microtumors that were undiagnosed following 
PH can be prevented effectively by targeting the signaling 
pathways associated with hepatokines and growth factors. 
Liver regeneration efficiency might also be compromised by 
these blockers. Oxysophocarpine downregulates FGL1 ex-
pression in tumor tissue, which inhibits IL6-mediated JAK2/
STAT-3 signaling and improves anti-LAG-3 immunotherapy. 
This allow enhancement of CD8+ T-cell immunotherapeutic 
efficacy against HCC.34 However, when it comes to treat-
ing patients with HCC with sorafenib, we need to know that 
the expression of FGL1 receptors on the surface of cancer 
cells can increase the sensitivity of these cells to this drug.89 
Therefore, the regulation of FGL1 expression seems to be 
associated with the type of treatment that we use for HCC.

Conclusion
FGL1 is a hepatokine, and its gene is located on the short 
arm of chromosome 8, a region rich in TSGs, whose dele-
tion causes tumorigenesis in HCC by inducing the PI3K/Akt/
mTOR pathway. In addition, FGL1 as the primary ligand of 
LAG-3, suppresses host immune responses if it is overex-
pressed in tumors. Nonetheless, in normal regenerative liver 
cells following hepatectomy, this acute phase reactive pro-
tein is upregulated to induce signaling pathways related to 
hepatocyte proliferation, such as the EGFR/Src/ERK cascade. 
Herein, we emphasize the dual roles that FGL1 plays in both 
normal and cancer proliferative cells by being involved in 
mechanisms like lipid metabolic reprogramming, response to 
hypoxia, drug resistance, and EMT-mediated metastasis. We 
show that the significance of regulating FGL1 in the men-
tioned pathways is that it can be regulated at both transcrip-
tional and post translational levels.
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