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Abstract

The ability to design thermostable proteins offers enormous potential for the development of novel protein bioreagents. In
this work, a combined computational and experimental method was developed to increase the Tm of the flavin
mononucleotide based fluorescent protein Bacillus Subtilis YtvA LOV domain by 31 Celsius, thus extending its applicability in
thermophilic systems. Briefly, the method includes five steps, the single mutant computer screening to identify
thermostable mutant candidates, the experimental evaluation to confirm the positive selections, the computational
redesign around the thermostable mutation regions, the experimental reevaluation and finally the multiple mutations
combination. The adopted method is simple and effective, can be applied to other important proteins where other methods
have difficulties, and therefore provides a new tool to improve protein thermostability.
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Introduction

There is a considerable interest in proteins as therapeutics,

biochemical reagents and catalysts. Many proteins tend to degrade

on storage or use, and the instability hampers their applications in

many aspects. Protein stability is very important to its application in

biotechnology. For an industrial enzyme, higher thermostability

means longer survival times and higher reaction temperature, which

usually accelerates enzymatic catalysis and reduces contamination.

Thus, proteins with good stability are highly desirable. Currently

there are three main protein engineering methods, namely directed

evolution [1], sequence consensus [2] and rational design [3]. Each

of the three protein engineering methods has its own strength and

weakness, and all have been used to improve protein thermostability

with some success. Directed evolution uses methods such as DNA

shuffling or error-prone PCR to create different mutations and

employs quick screening essays to select the optimal ones. Sequence

consensus involves the comparison of the targeted protein sequence

to a series of homolog sequences and changes the amino acid at a

specific position to that most frequently seen in the homologs.

Rational design method relies on the 3D structure of a protein.

Once the protein structure is known, the common rational design

approaches include enhancement of core packing [4], removal of

buried polar side chains [5,6], mutation of charged surface residues

[7–9], and introduction of new disulfide bonds [10]. However it is

difficult to predict how well each approach works for a specific

protein and the stability increase is likely caused by a combination of

these effects. The success of rational design depends on the accurate

understanding of the relationship between protein structure and

stability. In principle, each residue in a protein can be substituted by

nineteen natural amino acids but predicting the substitutions’ effect

on stability is very challenging. Many computational screening

methods have been developed to pursue this goal, such as CC/

PBSA [11], EGAD [12], FoldX [13], I-mutant 2.0 [14], Rosetta

[15–17] and etc. Independent assessments of these methods

suggested that all have high efficiency but only moderate accuracy

[18]. A more recent study by Seeliger et. al. [19] using an alchemical

free energy method to study point mutation effects on the

thermostability of a barnase demonstrated much better accuracy.

The free energy method utilizes a well-defined structure (e.g. from

X-ray crystallography) to model the mutational effect on the folded

state and a small peptide (e.g. GXG) to model the effect on the

unfolded state. The thermodynamic cycle used in Seeliger’s study

provides a rigorous way to calculate the free energy change caused

by a point mutation, though the method is computationally much

more expensive than the quick screening methods.

Green fluorescent protein from the jellyfish Aequorea Victoria [20]

and its derivatives are widely used in cell imaging to study gene

regulation, protein syntheses, and other biochemical and cellular

processes. However, in the catalytic formation of the chromo-

phores, the requirement for molecular oxygen as a cofactor [21]

hinders their applications for anaerobic microorganisms and
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oxygen-limited cellular microenvironments [22,23]. The discovery

of bacterial blue-light photoreceptor YtvA from Bacillus subtilis [24]

and the SB2 protein from Pseudomonas putida [25], which fluoresce

in the presence or absence of oxygen, provides new opportunities

to study these oxygen-limited systems. YtvA is composed of 261

residues, with an N-terminal segment (residue 1–24), a LOV (light,

oxygen, voltage) domain (25–126), and a C-terminal STAS (sulfate

transporter/anti-s factor antagonist, 148–258) domain. The LOV

and STAS domains are connected by a long linker (127–147). The

crystal structure of the LOV domain complexed with the

chromophore flavin mononucleotide (FMN) has been determined

for both the light and dark states [26]. The LOV domain forms a

stable dimer in vitro [26], with a dissociation constant less than

1027 M. Blue light absorption causes formation of a covalent bond

between Cys62 and C(4a) of FMN. Drepper et al. mutated Cys62

to an alanine residue, which increases the fluorescence of E. coli

cells by tenfold compared to the cells expressing the wild-type

YtvA LOV domain [22]. However the engineered YtvA LOV

(named FbFP hereafter, Flavin mononucleotide based Fluorescent

Protein) only has moderate thermostability (see results below). A

more thermostable FbFP would be desired for studying anaerobic

microorganisms, especially thermophillic ones.

In this work we combined the quick method FoldX [13] and the

slow but more accurate achemical free energy method to search

for more thermostable FbFP mutants. Eighteen single mutants

were selected for experimental testing, thirteen of which showed

higher melting temperature Tm. Subsequently, different single

mutations were combined to yield even higher Tm values.

Materials and Methods

FoldX prediction
The crystal structure of FbFP (residue 21–147 in subunit 1 and

21–146 in subunit 2, pdb code: 2PR5) [26] was used as the

template for mutation, and the FoldX program was utilized to

estimate mutational effects on protein thermostability. Firstly, the

ligand FMN was removed and the structure was minimized using

the ‘RepairPDB’ command. Then, single mutations were screened

by substituting each residue with the other nineteen possible

natural amino acids using ‘PositionScan’ command. Since the

screening was performed separately for the two subunits, the

predicted DDG values for the same mutation by FoldX, slightly

different due to the structure asymmetry, were averaged. The

predicted stabilizing single mutations were built in both subunits

using ‘BuildModel’ command for further free energy calculations.

Free energy calculation
Molecular dynamics (MD) simulations were carried out using

Gromacs 4.5 [27,28], with the Gromos53A6 force field [29] and

SPC/E water [30]. The starting FbFP structures were from x-ray

crystallography (WT) or the FoldX calculations (mutants). All

residues were assumed to be in their standard ionization states at

pH 7.0. The proteins were solvated by adding 10.0 Å SPC/E

water in a rhombic dodecahedron box and counter ions were used

to neutralize the systems. Before free energy calculations, 1000

steps energy minimizations followed by 1 ns MD simulations at

constant pressure (1 atm) and temperature (300 K) were

performed to equilibrate the systems. The pressure was regulated

using the extended ensemble Parrinello-Rahman approach

[31,32] and the temperature was controlled by a modified

Berendson thermostat [33]. The Particle-Mesh-Ewald Method

[34,35] was used to evaluate the contributions of the long-range

electrostatic interactions. A nonbonded pair list cutoff of 10.0 Å

was used and the nonbonded pair list was updated every 5 steps.

All bonds to hydrogen atoms in proteins were constrained by using

the LINC [36] algorithm whereas bonds and angles of water

molecules were constrained by SETTLE [37] algorithm, allowing

a time step of 0.002 ps.

The folding free energy difference between two mutants X and

Y was calculated from the difference of the free energies between

the folded and unfolded simulations. Instead of directly calculating

the folding free energies DG1 and DG2 for mutants X and Y, a

thermodynamic cycle was built (Figure S2A) so that DG3 and DG4,

corresponding to the free energy changes of mutating X to Y in

unfolded and folded states, were computed through an alchemical

process. Then the free energy difference DDG defined as

DG22DG1 can be obtained by DG42DG3, with a negative value

indicating mutant Y is more stable than X and a positive value

meaning X is more stable. It has been shown that for large

mutations, direct transformation from X to Y (e.g. WRR) is

challenging [19] and it becomes difficult to extract reliable free

energy values. In this work, an intermediate state was built

corresponding to a pseudo alanine residue (state I in Figure S2B),

with the Cb atom type (zero charge) defined as CH1 instead of

CH3 as in alanine in the Gromos53A6 force field. The

transformation from X to Y was separated into two steps, XRI

and YRI, and the free energy difference of the two steps is the

XRY transformation free energy. The X (or Y)RI free energy

change was calculated by the computational alchemy method [38–

41], which is briefly described here. Taking XRI alchemy as an

example, a l dependent Hamiltonian H(l) was introduced, with l
ranging from 0 to 1, H(0) = H(X) and H(1) = H(I). Since the only

difference between the X state and the I state is the extra side

chain atoms of residue X (except for alanine which has the same

number of atoms as the I state), the computational alchemy

corresponds to the annihilation of these atoms up to Cb. A path

was built to remove the side chain atom charges first followed by

the van der Waals parameters elimination. The side chain charges

were removed using linear l transformation with 21 windows and

l set at 0.05n (n = 0, 1, …20). Then the van der Waals (VDW)

interaction was eliminated using a soft core Lennard-Jones

potential which converts the side chain atom types to dummy

atoms [42], with a= 0.5, s= 0.3, and a soft-core power of 1.

These dummy atoms have the VDW radius and the depth of

VDW potential well, as well as bonded parameter equal to zero.

As a result, in the VDW transformation the bonded interactions

with the side chain atoms (up to Cb) of residue X were also

removed. Forty-one windows were used for the VDW transfor-

mation, with l equal to 0.025n (n = 0, 1, …40). Each window was

run for 250 ps, and the last 200 ps data were used for free energy

evaluation which was done using Bennett’s acceptance ratio

method [43]. Since X was mutated to I simultaneously in both

subunits, the computed electrostatic and VDW free energies were

scaled by 0.5. The total free energy change of the XRI alchemical

Author Summary

The bacterial blue-light photoreceptor YtvA from Bacillus
subtilis, which fluoresces in the presence or absence of
oxygen, provides new opportunities to study oxygen-
limited cellular systems. However its thermostability is
poor, hindering its applicability in thermophilic systems. In
this work, we develop an iterative combined computa-
tional and experimental method to significantly improve
this protein’s thermostability. The method is simple and
effective, which in principle can be applied to other
protein systems, thus adds a new tool to the protein
engineering arsenal.

A More Thermostable YtvA LOV Domain
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transformationDG(XRI) =DGele(XRI)+DGvdw(XRI), whereDGele(XRI),

DGvdw(XRI) are free energy changes corresponding to Coulomb

switching and VDW switching respectively. The same relationship

applies for the YRI transformation. The free energy change of

the XRY transformation, DG4 =DGele(XRY)+DGvdw(XRY) =

(DGele(XRI)2DGele(YRI))+(DGvdw(XRI)2DGvdw(YRI)). The error for

each term was estimated as follows. We divided the 200 ps simulation

data to five blocks and calculated the standard deviation of

corresponding DG values (the free energy difference between two

neighboring windows). We used the standard deviation as the

estimation for the error of DG. The typical average correlation time

for DH (the Hamiltonian difference between two neighboring

windows) is about 3 ps (Figure S4), comparable to the value from

the literature [44], suggesting the data from five blocks are

independent in the simulation time span. However, longer correlation

time that is not sampled well in the simulation may still contribute to

the error of DG. When comparing the computed DG with the

experimental value, one has to bear in mind that this error can be a

source of the discrepancy.

Unlike the folded state, which has a well-defined structure, the

unfolded state is difficult to model. It has been proposed to use a GXG

tripeptide to mimic the unfolded state where X is the residue intended

for mutation. This simple model yields reasonable results compared to

the experimental DDG values [19] and thus was adopted in this work.

Similar to the folded state, the two step transformations were used to

calculate the free energies and the same MD simulation protocol was

employed for the GXG model. The free energy difference DG3

between the unfolded X and Y mutants can be calculated with the

equation similar to that for DG4 as described above. The folding

free energy change DDG(XRY) =DG42DG3 =DDGele(XRY)+
DDGvdw(XRY) = (DGele(XRY, F)2DGele(XRY, U))+(DGvdw(XRY, F)2

DGvdw(XRY, U)), where subscript F (U) stands for the folded (unfolded)

state. DDGele(XRY) and DDGvdw(XRY) are the electrostatics and VDW

contributions to the folding free energy differences between X and

Y mutants. The error of DDG(XRY) is propagated from that of DG.

It is worth noting that DDGele(XRY) and DDGvdw(XRY) depend on

the path selected for the free energy integration thus are not

uniquely defined. But the free energy decomposition provides

valuable information which cannot be obtained by DDG(XRY) alone

[45–47].

Sequence alignment analysis
Bacillus Subtilis FbFP was used as the initial target for sequence

search in NCBI nonredundant protein database. Sequences were

aligned using BLAST [48] and those with identity higher than

90% were excluded. A total of 83 sequences were collected and all

have identity higher than 45% with Bacillus Subtilis FbFP. The

frequency of one amino acid type at a specific site was defined as

the total number of the occurrence of the amino acid at this site

divided by 83, the total number of sequences.

Cloning, expression and purification
The DNA encoding residues 20–147 of FbFP and a His tag at

the C-terminus was ligated with the vector pET-30a digested with

the same restriction enzymes. The ligation mixture was trans-

formed into an E. coli strain DH10B. The correct coding sequence

of the cloned fbfp gene was verified by DNA sequencing. The

expression construct (pET-30a-fbfp) was then transformed into E.

coli strain BL21 (DE3). All the mutations were made by PCR-

based site-directed mutagenesis and verified by DNA sequencing.

All the mutants were expressed and purified in a similar way.

Briefly, 250 mL of LB medium containing 50 mg/mL kanamycin

was inoculated with a fresh colony of expression strain BL21 (DE3)

containing pET-30a-fbfp. The culture was grown at 37uC with

vigorous shaking (,200 rpm). When the OD600 of the culture

reached 0.8, the expression of YtvA LOV was induced by the

addition of IPTG to a final concentration of 0.5 mM. The culture

was then grown for an additional 4 h. The cells were harvested by

centrifugation, washed twice with water, resuspended in 20 mL of

5 mM imidazole, 0.5 M NaCl, and 20 mMTris-HCl buffer

(pH 7.9), and disintegrated by three passes through a French

press. The disintegrated cells were centrifuged (9600 g, 4uC,

20 min) and the resulting supernatants were purified by Ni-NTA

affinity chromatography (Novagen) to homogeneity as determined

by sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE). Protein concentration was determined by Bradford

protein assay [49].

Fluorescence measurements and data analysis
The decrease of FMN fluorescence when heating FbFP to a

higher temperature allows one to monitor protein folding and

unfolding by fluorescence spectroscopy (Figure S3). By setting the

excitation wavelength at 450 nm (maximum absorption frequency

at room temperature [24]), the maximum change of fluorescence

on thermal denaturation was obtained with an emission

wavelength of 506 nm (Figure S3). The final protein concentration

was 4.2 mM of monomer. Spectroscopic measurements were

carried out in a thermostated cuvette holder and the temperature

was gradually increased. For each data point at different

temperature, a delay of 10 min was applied before performing

fluorescence measurement to allow the full equilibration between

folded and unfolded states. The errors were estimated based on

duplicated measurements. The thermal denaturation of FbFP is

reversible based on the observation that heating the protein to a

higher temperature (e.g. 70uC) attenuates the fluorescence by

more than 80%, but it is fully recovered when the protein is cooled

to room temperature. The Gibbs free energy of unfolding at a

specific temperature T is written as [50],

DGU (T)~DH(Tm) 1{
T

Tm

� �
z

DCp T{TmzT ln
T

Tm

� �
{RTm ln Ct

ð1Þ

where Tm is the melting temperature (half of the protein

population is unfolded), DH is the unfolding enthalpy at Tm.

DCp is the difference of heat capacity in the folded and unfolded

state which is assumed to be temperature independent. Ct is the

total protein monomer concentration. This equation shows that

the Gibbs free energy as well as the melting temperature is related

to the protein concentration [50]. Thus, in this work for different

mutants, the same concentration (4.2 mM) was used to eliminate

this effect. The fluorescence intensity (IF) at specific temperature

can be expressed as [51],

IF (T)~
aF zbF Tz aUzbU Tð Þexp {DGU=RTð Þ

1zexp {DGU=RTð Þ ð2Þ

where aF (aU) is the fluorescence of the folded (unfolded) state at

zero K, and bF (bU) is the slope of the corresponding temperature

dependence. Incorporating eq. 1 to 2 shows there are a total of

seven parameters (DH, Tm, DCp, aF, aU, bF, bU) to be fitted to

experimental fluorescence intensities. A simpler five-parameter

model was also tested (DH, Tm, DCp, aF, aU, bF = bU = 0). Before

data fitting, fluorescence intensities were scaled so that the

maximum value was equal to 100. The fitting for FbFP using

seven parameters yielded a reduced x2 of 14.7 while fitting to the

A More Thermostable YtvA LOV Domain
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five-parameter model gave x2 of 17.9, from which an F statistic

value of 1.31 was obtained. This number was smaller than the

critical F(2,12) value of 3.88 (a= 0.05), indicating the complex

seven-parameter model did not yield a significantly better fit. For

all other mutants, the five-parameter model fittings also produced

satisfactory results, and thus were selected for all fluorescence data

analysis throughout this work. By adding random Gaussian

distributed noise to the experimental data (with the standard

deviation equal to the fluorescence measurement error), 100

synthetic data sets were created and fitted to estimate the errors of

the fitting parameters. All the fittings were performed using an in-

house script. The results show that DCp and DH have a

considerable error derived from Gaussian noise (Table S1), but

the error of DG is much smaller, with an average of 0.14 kcal/mol

for all single mutants (Table 1). It is known that the DCp parameter

is difficult to determine with the fitting of protein thermal

denaturation fluorescence curve. Apparently the errors of DH

and DCp cancel out each other. Thus, DG can be determined with

accuracy higher than DH and DCp.

Results/Discussion

Computational screening
Starting from the crystal structure (pdb code: 2PR5), 2394 single

mutants (126619, saturation mutagenesis) were built and quickly

screened by FoldX, which predicted 712 mutants from 94 sites

have improved thermostability. Because it is very time consuming

to do free energy calculations for all the mutants, the number of

mutants was reduced to 103 using the following criteria: 1). For

each site, if several mutations show improved thermostability, only

the ones with relatively larger DDG are selected. 2). For mutations

involving charged residues, only those on surface that may form

salt bridges are selected. Free energy calculations suggest that 70 of

103 mutants are more stable than the wild type (WT) FbFP,

among which 40 mutants from 22 sites have DDG more negative

than 21 kcal/mol. The distribution of the 22 sites is shown in

Figure S1.

Experimental validation
Thirteen mutants that have relatively more negative DDG were

tested experimentally, including V25I, T30M, A33Y, T50M,

T54Y, A81M, V88L, V90I, L106M, N107F, D109E, V120I, and

N124F. Melting temperatures of the wild-type (WT) and mutants

were determined (see Materials and Methods) and are listed in

Table 2. The WT FbFP has a Tm of 42.8uC, indicating a moderate

thermostability. The temperature fluorescence plot suggests at

37uC, 25% of fluorescence is already lost compared to that of

14uC which is the starting temperature of measurements (Figure 1).

Eight of the tested mutants displayed improved stability (Table 2),

whereas four mutants are less stable and one mutant L106M loses

fluorescence at room temperature, presumably because L106

points to the active site and the mutant might perturb the FMN

binding pocket. The success rate of 62% is encouraging,

highlighting effectiveness of the computational screening. Loca-

tions of the eight thermostable sites with higher Tm are shown in

Figure 2. As can be seen, five sites are from the dimeric interface

including V25, N107, D109, V120 and N124, suggesting that

forging stronger interactions between subunits is an effective way

to increase FbFP thermostability.

Among the tested mutants, V120I has the highest Tm (54.2uC),

11.4uC higher than that of the WT. It is surprising that mutating a

valine to an isoleucine, equivalent to substituting one Hb atom

with a methyl group, has such a dramatic effect. In the free energy

calculation, the force field GROMOS53A6 was used where the

side chain charges are zero for these two residues. So the

stabilization of the methyl substitution is exclusively from the van

der Waals interaction (Table 1). The analysis of V120I MD

trajectory suggests that in subunit one this methyl is in contact with

V279 and I299 while in subunit two it contacts I299, I29 and M111

Table 1. Predicted and experimental DDGs for different mutant proteins.

DDG(Coulomb switching) DDG(VDW switching) DDG(Total) DDG(Experimental)

H22K 20.0 20.6 20.660.65 20.360.03

H22W 20.6 22.2 22.860.67 21.260.06

V25I 0 22.3 22.360.22 20.460.07

T30M 21.8 23.7 25.560.63 20.560.06

A33Y 20.7 21.5 22.260.35 20.560.05

T50M 21.1 20.7 21.860.38 0.5060.14

T54Y 1.4 24.0 22.660.43 20.260.02

A81M 0.1 21.3 21.260.37 0.460.19

V88L 0 21.1 21.160.28 0.260.21

V90I 0 21.3 21.360.28 0.760.04

L106M 23.9 0.8 23.160.50 N/Aa

N107F 20.3 22.0 22.360.73 20.960.07

N107Y 20.4 22.5 22.960.70 20.860.08

D109E 27.1 20.8 27.961.17 20.360.14

M111F 21.8 20.6 22.460.64 22.960.36

V120I 0 21.5 21.560.26 21.460.60

N124F 20.4 23.2 23.660.54 21.160.03

N124Y 21.2 23.0 24.260.41 22.660.22

aDDG was not determined due to the weak fluorescence of the sample at room temperature.
doi:10.1371/journal.pcbi.1003129.t001
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(prime denotes residues from the neighboring subunit, Figure 3A

and B, table S2). The contact differences in two subunits reflect the

asymmetry of the dimer.

N107F and N124F have second (50.9uC) and third (50.2uC)

highest Tm among the thirteen mutants. The free energy

calculation suggests that the stabilization of the mutants is mainly

from stronger van der Waals interaction (Table 1). It is worth

noting that the free energy decomposition to the electrostatics and

van der Waals is only an approximate process [46,52,53]. In this

work, we decompose the free energy to two components, the free

energy change of Coulomb switching and that of VDW switching,

slightly different from the literature. Though the decomposition is

exact, the values depend on the integration path and the process

should only be considered as a qualitative analysis. However it can

be linked to the structure and interaction more easily, thus

provides important insight about the enthalpic part of the free

energy. The MD simulation of the WT shows that N124 from

subunit 1 is in contact with R249 and V25, whereas N124 from

subunit two is in contact with V239, V25 and E105. In the mutant

N124F, F124 forms much more contacts than WT N124 in both

subunits (Figure 3C and D, Table S2). But for N107F, the

difference is less dramatic. Free energy calculations indicate van

der Waals contributes more than the electrostatics to DDGs for all

stabilizing mutants except D109E, revealing the importance of

enhancing core packing to protein stability. The carboxyl group of

D109 forms a hydrogen bond as an acceptor with the phenol

group of Y1419. Mutating D109 to a glutamic acid extends the

side chain and an extra hydrogen bond is formed with the N107

side chain amide (Table S3).

Rational design of more mutants
The high success rate of the stable interface mutants prompts us

to search for more candidates in the region. Most of the discovered

stabilizing mutants including V25I, N107F, D109E, V120I and

N124F are from the middle of the beta-strands that form the

interface. In searching for other stabilizing mutants, more effort

was put in interface regions away from the middle part because the

combination of mutants close to each other may not be additive.

Residues H22, M111 were identified. H22 was mutated to a lysine

to promote a potential salt bridge formation with E1059 or E1339,

or to a tryptophan to form more contacts. M111 was mutated to a

phenylalanine to increase this residue’s contacts with the

neighboring subunit. Free energy calculations demonstrate that

all three mutants have negative DDG values, suggesting they are

more stable than the WT. Inspection of the mutants N107F and

N124F MD snapshots implies it is possible to further stabilize the

protein by mutating F107 or F124 to a tyrosine to form more

favorable electrostatic interactions with the surroundings. This

observation is supported by the free energy calculations that

N107Y (N124Y) has a more negative DDG value than N107F

Figure 1. Thermal denaturation of the WT FbFP, the single
point mutant N124Y, and the triple mutant N107Y-N124Y-
M111F. The fluorescence intensity of the bound FMN is used to
monitor the protein denaturation. As can be seen, the mutants have
higher percentages of fluorescence at elevated temperature than WT
suggesting mutations increase FbFP thermostability.
doi:10.1371/journal.pcbi.1003129.g001

Figure 2. Locations of mutated sites exhibiting improved
thermostability. WT residues of the mutated sites are highlighted
in yellow and labeled in red. The two subunits are drawn in grey and
dark cyan respectively. Residues H22, V25, N107, D109, M111, V120 and
N124 are from the dimer interface. The figure was drawn based on FbFP
x-ray structure 2PR5 by using Discovery Studio Visualizer program.
doi:10.1371/journal.pcbi.1003129.g002

Table 2. Melting temperatures of WT and mutant FbFP.

FbFP Tm(Celsius) FbFP Tm(Celsius)

WT 42.860.3 N107F 50.960.3

H22K 45.360.2 N107Y 52.060.5

H22W 49.460.2 D109E 46.862.0

V25I 46.660.5 M111F 56.561.0

T30M 47.360.4 V120I 54.260.9

A33Y 46.660.3 N124F 50.260.1

T50M 36.461.7 N124Y 63.860.1

T54Y 43.760.1 N107F-N124F 59.360.8

A81M 39.862.3 N107Y-N124Y 69.560.1

V88L 41.062.5 N107Y-V120I 56.460.6

V90I 33.661.1 N107Y-N124Y-H22W 67.560.2

L106M N/Aa N107Y-N124Y-M111F 74.960.2

aTm was not determined due to the weak fluorescence of the sample at room
temperature.
doi:10.1371/journal.pcbi.1003129.t002
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(N124F) and the difference is mainly from electrostatic interactions

(Table 1).

Five mutants H22K, H22W, M111F, N107Y and N124Y were

tested experimentally and the corresponding Tm values were listed

on Table 2. All five mutants were proved to be more stable,

consistent with the computational results, among which N124Y

has the highest Tm (63.8uC), 21.0uC higher than that of the WT.

The analysis of the N124Y MD trajectory suggests besides close

contacts with various residues (Table S2), N124Y forms extra

hydrogen bonds. Specifically, in subunit one the side chain

hydroxyl group of N124Y is h-bonded to V239 and V259, and in

subunit two it is h-bonded to V239 and Q129 (Table S3). These

hydrogen bonds are expected to contribute the most to the 13.6uC
Tm increase of the F to Y mutation. In comparison, N107Y is also

more stable than N107F but the difference is much smaller, only

,1uC. M111F has a Tm of 56.5uC, 13.7uC higher than the WT.

MD simulation suggests F111 in subunit one forms close contacts

with I29, I299, Y419, Y118 and V120, and in subunit two this

residue is in contact with I299, V409, Y419, Y118 and V120

(Figure 3G and H, table S2). H22K and H22W have Tm values

3uC and 7uC higher than the WT respectively. MD trajectory

shows K22 forms salt bridges (Table S4), and W22 forms several

contacts with the surroundings (Table S2).

Multiple mutations combination
About a dozen mutants have Tm higher than that of the WT,

providing an opportunity to improve the thermostability of the

protein further by combining multiple mutations. But there are

many ways of combining them. Two factors were considered, the

DTm (melting temperature difference with the WT) and the

distance between different mutants. Several multiple mutants were

tested, among which double mutant N107Y-N124Y displays better

thermostability than both N107Y and N124Y, and triple mutant

N107Y-N124Y-M111F has its Tm higher than all three single

mutants (Table 2). However, not all the multiple mutants have

higher thermostability than the single or double mutant. For

example, N107Y-N124Y-H22W has a Tm value 2uC lower than

that of N107Y-N124Y, though H22W has a Tm 7uC higher than

that of the WT. Similarly, N107Y mutation increases the Tm by

9uC, but N107Y-V120I is only marginally more stable than V120I

(Table 2). So the additivity of the thermostability seemly holds true

only for certain multiple mutants. N107Y-N124Y-M111F is the

mutant with the highest Tm presented in this work, which is 31uC

higher than that of the WT. To ensure that the triple mutations do

not compromise the fluorescence brightness of the protein, its

fluorescence quantum yield was determined, QF = 0.38, compara-

ble to that of the WT FbFP 0.39 [22].

Performance of the computational methods
FoldX method provides a quick way to evaluate the mutational

effect on the protein stability. It takes about 82 hours to screen

the amino acids at each site for FbFP (,2400 mutations) in a dual

processor (2.9 GHz Intel) computer. In this work, FoldX predicts

the thermostability of twelve out of seventeen mutants correctly,

suggesting that overall FoldX is effective in identifying stable

mutants. Three mutants, T50M, A81M and V88L, which are less

stable than WT, were not predicted correctly. Furthermore,

H22W and M111F were predicted less stable than the WT with

the DDG of 0.40 and 4.25 kcal/mol respectively but the

experimental DDGs are 21.16 and 22.87 kcal/mol. Further

inspection suggests that steric clashes exist for the M111F mutant

with its surroundings. By using the last MD snapshot of the 1 ns

NPT M111F simulation as the FoldX input, a DDG of

20.70 kcal/mol was obtained indicating M111F is more stable.

For mutations causing steric clashes, it has been recommended to

either soften the VDW repulsion [16] or relax the backbone

atoms slightly [15] which is not allowed in FoldX. The

correlation between the FoldX predicted and experimental

DDG is shown in Figure 4A. A Pearson correlation coefficient

RP of 0.19 was obtained, suggesting that FoldX only provides

qualitative information of the relative thermostability. For

mutations at the same site, e.g. N107Y/F or N124Y/F, FoldX

also predicts the relative thermostability in the wrong trend. For

example, N124Y is significantly more stable than N124F but

FoldX predicts DDG of 22.68 kcal/mol for the former and

23.67 kcal/mol for the later.

Free energy calculations, derived from statistical mechanics,

offer a more rigorous way to estimate mutational effect on

thermostability but with a much slower speed. A single point

mutation of FbFP needs 440 processor (AMD 1.9 GHz) hours,

about 13,000 times slower than the FoldX approach. Thirteen

of seventeen mutants were predicted with the correct sign of

DDG, except T50M, A81M, V88L and V90I. The predicted

and experimental DDGs are shown in Figure 4B. Two mutants,

T30M and D109E, are apparent outliers. Excluding these two, a

correlation coefficient RP of 0.68 was obtained with the best

Figure 3. Residues in close contact with I120 (A, B), F107 (C, D), F124 (E, F) and F111 (G, H) are labeled where (A, C, E, G) are from
subunit 1 and (B, D, F, H) are from subunit 2.
doi:10.1371/journal.pcbi.1003129.g003
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fitted line of DDG (predicted) = 0.59DDG (experimental)

21.80 kcal/mol. A negative intercept suggests that free energy

calculations systematically overestimate the stability of the

mutants, which may be caused by the force field error.

Excluding the two outliers T30M and D109E, the mean

absolute error is to 1.7 kcal/mol. Applying the linear correction

reduces the error to 0.93 kcal/mol, comparable to results in the

literature [19]. Compared to FoldX, the free energy method is

more accurate and yields semiquantitative results. But there is

still room for improvement.

There are a total of 13 stabilizing mutants from 10 sites

(Table 2). It is interesting to see that 7 of the 10 sites are from

the dimeric interface, except T30, A33 and T54. Unlike the

interface, mutants around these three residues have not been

thoroughly examined. In fact, about 2/3 of the 40 stabilizing

mutants predicted by the free energy method (Figure S1) are

not from the interface region among which about half of the

mutation sites have not been tested experimentally. More

effort will be spent to search for single mutants away from the

dimeric interface and tune computational methods for screen-

ing multiple mutants.

Consensus analysis
A multiple sequence alignment was carried out for a total of 83

FbFP sequences from the NCBI protein database. It is striking that

none of the 13 stable mutants discovered in this work have the

highest occurrence frequency (defined as the probability to have a

specific amino acid at a particular site) at the mutated site (Table

S5). For example, for residue 120, valine has the highest

occurrence frequency of 78.3% which is much larger than that

of isoleucine 15.7%, but V120I improves the thermostability by

11.4uC. In fact the majority of the stable mutants have the

occurrence frequency at mutated sites smaller than that of the

WT. This finding strongly suggests that FoldX and free energy

calculations explore very different sequence spaces from the

consensus analysis method.

Conclusion
In this work, we developed a protocol to engineer a more

thermostable FbFP. Firstly, FoldX followed by free energy

calculations are performed to identify stable single mutant

candidates. Secondly, mutants predicted with more negative

DDGs are selected for the experimental validation. For FbFP,

the majority of stable mutants are from the dimeric interface

which is a ‘‘hot spot’’ of the protein. Thirdly, more single mutants

Figure 4. Correlation between the experimental and computa-
tional DDG by using FoldX (panel A) and the free energy
method (panel B). The best fit line is DDG_com = 0.233DDG_exp
20.72 kcal/mol in panel A, and DDG_com = 1.38DDG_exp 21.42 kcal/
mol in panel B.
doi:10.1371/journal.pcbi.1003129.g004

Figure 5. Flowchart of designing thermostable FbFP mutants.
Briefly, FoldX followed by FEC (free energy calculation) are used to
search for potential thermostable single mutants, from which a dozen
are selected for experimental tests. The distribution of thermostable
mutants is analyzed to identify the ‘‘hot spot’’. Then more mutants in
the ‘‘hot spot’’ are calculated by FEC and those predicted to be more
stable are tested by experiments. Finally all stabilizing mutants are
pooled together and multiple mutants are combined to further improve
the protein’s stability.
doi:10.1371/journal.pcbi.1003129.g005
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from the ‘‘hot spot’’ are selected and verified by free energy

calculations first and those with more negative DDGs are subject to

experimental tests. Finally, stable single mutants are combined to

further improve the protein thermostability. A flow chart of the

protocol is shown in Figure 5. Thirteen out of eighteen tested

FbFP single mutants are more stable than the WT. Most of the

stabilizing mutants form a better core packing. The best triple

mutant N107Y-N124Y-M111F increases the Tm by 31uC without

compromising the fluorescence quantum yield. The experimental

test is by no means extensive but the effectiveness of the protocol

has been demonstrated. The combined experimental and compu-

tational method adopted in our work adds a new tool to enhance

protein thermostability, which can be extremely useful when

conventional methods (e.g. directed evolution) fail.

Supporting Information

Figure S1 Distribution of the thermostable mutations in the 3D

X-ray FbFP structure (pdb code: 2PR5). The 40 mutants are:

V23I/M/W/K, V25I, T30L/M, A33Y/L, V40I, T50M/I,

T54L/Y, V75I/M, A81M, V88L/Y, V90I, N94M/Y, L106M,

N107M/F, D109E, T117L, V120I/L/M, G121M/Q, N124I/M/

F, Q129M, S139M and T141M. Residues highlighted in yellow

are those with DDG more negative than 21 kcal/mol. The

stability was predicted by free energy calculations.

(DOCX)

Figure S2 A). Thermodynamic cycle built for free energy

calculations. B). The intermediate state I designed to connect

the X and Y mutants.

(DOCX)

Figure S3 Fluorescence emission spectra of FbFP at different

temperatures. The excitation wavelength was set at 450 nm.

(DOCX)

Figure S4 Correlation time t of DH (the Hamiltonian difference

between two neighboring windows) as a function of l in the F111

electrostatic (panel A) and vdw (panel B) transformation. The

average correlation time is 3.0 ps for the electrostatic transforma-

tion and 2.5 ps for the vdw transformation.

(DOCX)

Table S1 DH, Tm, DCp, aF, aU values derived from the

fluorescence curve fitting for FbFP WT and mutants.

(DOCX)

Table S2 Contacts of selected residue side chains in the WT and

mutants.

(DOCX)

Table S3 Hydrogen bond lists of selected residues.

(DOCX)

Table S4 Salt bridges formed with K22 in H22K mutant.

(DOCX)

Table S5 Frequency of a specific amino acid occurrence at

selective sites of the WT and mutants from the alignment of 83

FbFP sequences.

(DOCX)
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