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Human brain aging is characterized by the gradual deterioration of its function and
structure, affected by the interplay of a multitude of causal factors. The sleep, a
periodically repeating state of reversible unconsciousness characterized by distinct
electrical brain activity, is crucial for maintaining brain homeostasis. Indeed, insufficient
sleep was associated with accelerated brain atrophy and impaired brain functional
connectivity. Concurrently, alteration of sleep-related transient electrical events in
senescence was correlated with structural and functional deterioration of brain regions
responsible for their generation, implying the interconnectedness of sleep and brain
structure. This review discusses currently available data on the link between human brain
aging and sleep derived from various neuroimaging and neurophysiological methods.
We advocate the notion of a mutual relationship between the sleep structure and
age-related alterations of functional and structural brain integrity, pointing out the
position of high-quality sleep as a potent preventive factor of early brain aging and
neurodegeneration. However, further studies are needed to reveal the causality of the
relationship between sleep and brain aging.
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INTRODUCTION

Aging is accompanied by a gradual loss of function and structural degeneration in all organ systems
(López-Otín et al., 2013). In the central nervous system, the declining metabolic rate together with
diminished effectiveness of the antioxidant system (Emir et al., 2011; Goyal et al., 2017) is reflected
in impaired clearance and accumulation of metabolic waste products. Accumulated toxic waste
products, e.g., amyloid beta, bind to microglial toll-like receptors and activate the complement
system leading to phenotypic changes in the microglia (Walter et al., 2007; Wyss-Coray and Rogers,
2012). These microglial cells predominantly polarize into classically activated M1 state and increase
the secretion of pro-inflammatory cytokines—interleukin-6, interleukin-1β, and tumor necrosis
factor α (Wyss-Coray and Rogers, 2012; Cherry et al., 2014; Gomez-Nicola and Boche, 2015).
Subsequent chronic inflammation contributes to macroscopic gray and white matter (GM and
WM, respectively) atrophy (Perry and Teeling, 2013; Moreno-García et al., 2018). These changes
in structure and function are considered to be the underlying basis of eventual cognitive decline
(Suzuki et al., 2019), sleep disturbances (Cheng et al., 2013; Dubé et al., 2015; Carvalho et al., 2017),
and may even lead to the development of neurodegenerative disorders (Akiyama et al., 2000; Salat
et al., 2009; Power et al., 2019). The resultant overall performance decline represents a burden for
the individual and for society.
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Therefore, understanding the processes underlying brain
aging is crucial to preventing the development of age-related
diseases, and potentially also neurodegenerative disorders,
opening a window for eventually targeted prevention and early
treatment—the holy grail of a vast segment of neuroscientific
research (Dai et al., 2018; Babazadeh et al., 2020; Soo et al.,
2020). Particularly nutrition (Kelsey et al., 2010; Domenico and
Giudetti, 2017), physical activity together with mental wellbeing
(Steffener et al., 2016), and high-quality sleep (Cheng et al.,
2013; Dubé et al., 2015; Carvalho et al., 2017) are, when
appropriately managed, important modifiable protective factors
against early brain aging.

The sleep of insufficient quality and length does not only
immediately reduce the elimination of toxic waste products
(Spira et al., 2013; Shokri-Kojori et al., 2018) and next-day
cognitive performance (Scullin and Bliwise, 2015; Varga et al.,
2016; Fogel et al., 2017), but is, in long run, also associated
with advanced brain atrophy (Spira et al., 2016; Baillet et al.,
2017; Sexton et al., 2017; Tahmasian et al., 2020) and a higher
risk of developing dementia (Bah et al., 2019). The risk of
the development of the most common type of dementia—
Alzheimer’s disease—has been linked with sleep deprivation [as
reviewed in Ju et al. (2014); Wu et al. (2019); Bishir et al.
(2020); Wang and Holtzman (2020)]. Further, sleep disorders
are associated with advanced brain aging and the development
of neurodegenerative disorders (Kumar et al., 2012; Rupprecht
et al., 2013; Chen et al., 2015; Li et al., 2016; Weihs et al., 2021).
Regarding the essential role of sleep in brain homeostasis, we
consider it to be one of the most important modifiable risk
factors of brain aging.

Filling the void in the currently available literature, this review
focuses on the link between brain aging and sleep—one of the
key modifiable risk factors—through the viewing glass of various
neuroimaging and neurophysiological methods.

NEUROIMAGING CORRELATES OF
BRAIN AGING

There is wide agreement among neuroimaging studies that
cortical and subcortical GM volume decreases with age (Resnick
et al., 2003; Du et al., 2004; Raz et al., 2004; Allen et al.,
2005; Walhovd et al., 2005; Mueller and Weiner, 2009; Eavani
et al., 2018), with substantial inter-regional variance. The
midline frontal cortex and structures underlying the default
mode network (DMN) alongside the medial temporal lobe
subsystem appear to be particularly susceptible to age-related
changes (Sowell et al., 2003; Raz et al., 2004; Fjell et al., 2009).
Accordingly, DMN regions are among the earliest to show
abnormal amyloid deposition (Mintun et al., 2006). Akin to
GM, cerebral WM exhibits regionally variable deterioration in
aging (Walhovd et al., 2005; Sexton et al., 2014b; Liu et al.,
2017). The first and most affected are frontal and temporal
WM pathways (Salat et al., 2005; Sexton et al., 2014b; Liu
et al., 2017). In contrast to GM, the degeneration pattern
of WM has a shape of inverted “U,” i.e., the WM volume
increases until the 50–60 s, and begins to decline afterward

(Allen et al., 2005). Diffusion tensor imaging (DTI) sensitive to
microstructural tissue properties (Song et al., 2005, 2003; Budde
et al., 2007) provides information complementary to volumetry.
Fractional anisotropy (FA) indicates that the uniformity of water
diffusivity increases sharply in adolescence and early adulthood.
Approximately at the age of 30, FA reaches its maximum,
subsequently enters the plateau phase, with a consequent FA
decline and radial diffusivity (RD) and mean diffusivity (MD)
increase. Interestingly, the FA and RD peak happens almost
20 years earlier than macrostructural WM atrophy can be
detected in structural images (Westlye et al., 2010). Thus, DTI
represents a method capable of detecting microstructural changes
preceding the development of irreversible macroscopic changes.

In addition to trophic changes, brain functional connectivity
changes with age. In conformity with morphological tissue loss,
the effects of aging were most consistent in highly overlapping
regions of DMN and medial temporal lobe subsystem (Dennis
and Thompson, 2014; Liu et al., 2018). The functional
connectivity in these regions was significantly lower in older
compared to young adults (Liu et al., 2018). Moreover, the
decrease in functional connectivity was associated with amyloid
deposition in DMN (Bero et al., 2012), which is predominantly
deposited in highly metabolically active regions and may disrupt
functional connectivity even before it causes any detectable
atrophy (Sheline and Raichle, 2013).

NEUROIMAGING PARAMETERS
RELATED TO SLEEP

The sleep of insufficient length and quality is associated with
accelerated brain atrophy (Sexton et al., 2014a; Spira et al., 2016;
Tahmasian et al., 2020). Concerning sleep duration, The National
Sleep Foundation recommends optimally at least 7 h of sleep
per day for adults, with respect to inter-individual variabilities
in the sleep need (Hirshkowitz et al., 2015). Participants self-
reporting sleep shorter than 7 h a day exhibited a significant
longitudinal decrease of cortical thickness in fronto-temporal
regions (Spira et al., 2016; Tahmasian et al., 2020). However,
not only short but also sleep longer than 7 h was associated
with higher cortical thinning rate, namely, in the left superior
and middle frontal gyrus (Spira et al., 2016). Likewise, poor
sleep quality was associated with decreased cortical thickness and
higher cortical thinning rate in fronto-temporo-parietal regions,
such as the medial superior frontal cortex and cingulate (Sexton
et al., 2014a). Alike age-related GM atrophy, poor sleep seems to
mostly affect fronto-temporal brain regions.

The integrity of WM tracts is also affected by sleep (Yaffe et al.,
2016; Baillet et al., 2017; Sexton et al., 2017). Even though total
WM volume was not associated with night-time sleep duration
or self-evaluated sleep quality in either young or older adults (Y.-
R. Lo et al., 2014; Liu et al., 2018; Aribisala et al., 2020), WM
integrity impairment in sleep-deprived subjects was detected with
the use of DTI. Specifically, short and fragmented sleep was linked
with a diminution of WM integrity predominantly in fronto-
temporal and fronto-subcortical WM tracts in middle-aged and
older adults, reflected in decreased FA and increased MD and

Frontiers in Aging Neuroscience | www.frontiersin.org 2 December 2021 | Volume 13 | Article 726662

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-726662 December 8, 2021 Time: 11:37 # 3

Kokošová et al. Sleep and Brain Aging

RD (Yaffe et al., 2016; Baillet et al., 2017; Sexton et al., 2017).
Sleep appears to affect rather WM integrity with no significant
correlation with macroscopic WM atrophy.

Furthermore, the functional connectivity of neuronal
networks changes during the sleep-wake cycle (Horovitz
et al., 2009; Sämann et al., 2010; Regen et al., 2016). Sleep
deprivation was correlated with decreased resting-state
functional connectivity in DMN (Sämann et al., 2010).
Correspondingly, reduced DMN connectivity is favorable
for restful sleep, and increased DMN connectivity is correlated
with poor sleep efficiency and prolonged sleep-onset latency
(Horovitz et al., 2009; Regen et al., 2016). Changes in functional
connectivity may therefore participate in the development of
sleep disorders.

NEUROIMAGING AND
NEUROPHYSIOLOGICAL CORRELATES
OF THE ASSOCIATION BETWEEN SLEEP
AND BRAIN AGING

As previously mentioned, sleep has an ample impact on the
structural and functional changes of the brain during the life
course—both sleep duration and quality are crucial (Sämann
et al., 2010; Sexton et al., 2014a, 2017; Spira et al., 2016; Yaffe et al.,
2016; Baillet et al., 2017; Tahmasian et al., 2020).

Two types of sleep are distinguished –rapid-eye movement
(REM) and non-rapid-eye movement sleep (NREM) sleep.
NREM is further divided into three stages (N1, N2, and
N3), based on distinct electroencephalographic features (Berry
et al., 2017). These stages cycle during sleep and are highly
complementary and in the long-run equally important for brain
homeostasis (Vyazovskiy and Delogu, 2014).

Similar to brain morphology and function, sleep structure is
also substantially impaired in senescence. Total sleep time, and
proportionally mainly N3 sleep, becomes progressively shorter
and more fragmented with subsequent diminution of sleep
efficiency and quality (Dubé et al., 2015; Varga et al., 2016). At
the level of sleep microarchitecture, the diminution of oscillatory
neuronal activity, predominantly of sleep spindles (SS), and slow
waves (SWs) is a characteristic of aging (Massimini et al., 2004;
Murphy et al., 2009; Martin et al., 2013). Namely, the changes
in SS amplitude and density dominate over frontal regions,
while their duration is decreased predominantly over posterior
electroencephalographic (EEG) derivations (Martin et al., 2013;
Mander et al., 2017). On the other hand, the diminution of
SW activity, density, slope, and amplitude occurs globally, with
dominant affection over frontal and prefrontal regions (Mander
et al., 2013; Dubé et al., 2015; Varga et al., 2016). In addition to
differences in aging pattern of SS and SW, their formation and
propagation retain high intraindividual stability in contrast to
substantial interindividual variability (Massimini et al., 2004; De
Gennaro et al., 2005; Rusterholz and Achermann, 2011), limiting
the yield of simple cross-sectional studies. Nonetheless, EEG
feature variability and their age-related changes bear a substantial
association with age-related changes of GM and WM involved in

their generation and subsequent spread (Buchmann et al., 2011;
Piantoni et al., 2013; Saletin et al., 2013).

The neuronal activity of the thalamocortical loop plays a
key role in SS generation during sleep (Berry et al., 2017;
Fernandez and Lüthi, 2020). Correspondingly, the age-related
fronto-temporal WM atrophy was, specifically in the tracts
connecting thalamus to cortical areas and in corpus callosum and
association fibers, correlated with the decrease of SS amplitude
and density over frontal areas (Piantoni et al., 2013; Mander
et al., 2017; Gaudreault et al., 2018). Furthermore, in concordance
with SS shortening over posterior EEG derivations in aging
(Mander et al., 2017), a higher GM volume in the cerebellum,
hippocampus, cingulate, and parietal cortices was predictive
of longer SS duration in both young and older adults (Fogel
et al., 2017). Regarding SW, their formation is dependent upon
cortico-cortical networks (Steriade et al., 1993; Timofeev et al.,
2000; Shu et al., 2003). In concordance with their age-related
global diminution, with dominant affection over the frontal
and prefrontal areas (Mander et al., 2013; Dubé et al., 2015;
Varga et al., 2016), the cortical volume of the medial prefrontal
cortex, also the cortical thickness of the middle frontal gyrus,
the superior parietal lobule, the superior temporal area were
positively correlated with SW amplitude (Saletin et al., 2013;
Dubé et al., 2015) activity (Varga et al., 2016) and density in
both young and older adults (Dubé et al., 2015). All these cortical
regions, such as the medial prefrontal cortex, also exhibit the
most evident age-related cortical atrophy (Mander et al., 2013;
Dubé et al., 2015). The age-related changes in SW characteristics
and GM integrity are not independent of each other, as cortical
thinning in these areas consistently and significantly attenuates
the effect of age on SW density, amplitude, and activity (Mander
et al., 2013; Dubé et al., 2015). These data indicate the age-
related cortical atrophy in regions involved in the generation and
propagation of sleep neuronal events as a mediator between age
and age-related changes in sleep microstructure and quality.

Additionally, the integrity of WM and GM seems to moderate
the effect of sleep on memory consolidation. The integrity of
temporal WM tracts and hippocampal GM volume and its
neural activity were predictive of SS impact on overnight motor
memory consolidation (Fogel et al., 2017; Mander et al., 2017).
This motor memory consolidation after sleep was significantly
higher in young compared to older participants, even though
the learning ability, i.e., the pattern of increasing performance
during learning, did not differ between these groups (Fogel et al.,
2017; Mander et al., 2017). In comparison to SS, slow-wave sleep
strongly correlates with spatial (Varga et al., 2016) and declarative
(Marshall et al., 2006; Backhaus et al., 2007; Mander et al.,
2013) memory consolidation. Deficits in spatial and declarative
overnight memory consolidation were proportional to the extent
of SW activity impairment with age, and older adults again failed
to gain the same benefits from sleep when compared to young
counterparts (Mander et al., 2013; Varga et al., 2016). Moreover,
medial prefrontal cortex volume significantly mediated the effect
of age on the decrease in SW activity (Mander et al., 2013).
The above stated implies that age-related decline in sleep-
dependent memory consolidation may be dependent on WM
and GM integrity.
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DISCUSSION

The current review presents and attempts to synthetize the
following conclusions:

(1) Brain atrophy and disruption of functional neuronal
connectivity are hallmarks of brain aging. This conclusion
is supported by a number of neuroimaging studies (Resnick
et al., 2003; Sowell et al., 2003; Raz et al., 2004; Allen
et al., 2005; Fjell et al., 2009; Mueller and Weiner, 2009;
Eavani et al., 2018). However, the aging patterns are
not unanimous, even in cognitively unaffected individuals
(Eavani et al., 2018).

(2) Aging is associated with sleep shortening, fragmentation,
and deterioration of its quality. Both, NREM and REM
sleep are affected (Van Cauter et al., 2000; Ohayon et al.,
2004). Even though the NREM deterioration seems to be
more extensive (Van Cauter et al., 2000; Ohayon et al.,
2004), NREM and REM are highly complementary, and
in the long-run, equally important for brain homeostasis
(Vyazovskiy and Delogu, 2014).

(3) Individuals with inadequate sleep length and/or quality
are more commonly affected by brain atrophy and have
lower cerebral functional connectivity. Short sleep duration
and poor sleep quality are longitudinally associated
with an increased cortical thinning rate (Sexton et al.,
2014a; Spira et al., 2016; Tahmasian et al., 2020).
During sleep, the brain is cleansed from toxic waste
products (Xie et al., 2013), which might eventually
trigger chronic inflammation, leading to subsequent tissue
atrophy. Moreover, the glymphatic system—one of the
major clearance mechanisms—operates predominantly
during the sleep period (Demiral et al., 2019). Secondly,
according to animal models, sleep also influences gene
expression. Specifically, the expression of genes involved in
phospholipid synthesis and oligodendrocyte proliferation
significantly increases during sleep, sustaining the integrity
of WM tracts (Bellesi et al., 2013). Furthermore, the
expression of genes regulating the antioxidant system
(Lungato et al., 2013), immune and stress responses, and
neuronal plasticity (Cirelli et al., 2006) is sensitive to sleep
deprivation. These data imply the role of sleep in brain
trophic changes.

(4) Simultaneously lower GM and WM integrity is predictive
of poorer sleep. Studies using mediation analysis models
suggest that neuronal sleep oscillations, a proxy of the
quality of sleep, are influenced by cortical integrity

(Mander et al., 2013; Dubé et al., 2015; Liu et al., 2018).
Specifically, when considering cortical thickness in the
analysis, the significance of age in the prediction of sleep
oscillatory events variance drops significantly (Mander
et al., 2013; Dubé et al., 2015).

Taken together, sleep and brain structure and function
are strongly interconnected. Brain structure impacts the
interindividual variability of sleep oscillations, while sleep
significantly affects brain metabolism, gene expression and,
consequently, brain tissue integrity. Ergo, possible improvements
in the duration and quality of sleep may represent a potent
modifiable factor in the prevention of aging-related brain
changes, ultimately also dementia and other neurodegenerative
diseases. Considering the ubiquitous chronic sleep deprivation,
we are in dire need of longitudinal multimodal studies, which
could shed further light on the causality of the relationship
between age-related alterations and sleep disturbances and
possibly also on the extent and further qualities of the proposed
bidirectionality.

In conclusion, the currently available literature implies a
plausible and non-negligible interconnection between age-related
alterations to the central nervous system integrity and sleep
structure. Nevertheless, the true underlying causality of the
relationship between sleep and aging remains elusive. Does
poor sleep quality or quantity lead to accelerated brain atrophy,
microstructural, and functional changes generally seen in aging?
Or is the direction of the association inverse—is poor sleep
quality only a secondary symptom of aging-related cerebral
changes? Can we slow down or prevent some of the brain
changes associated with aging by improving sleep quality and
duration? Unfortunately, we do not know. Thankfully, the
field of sleep research is going through a rapid evolution in
available study methods, with much to be expected from novel
polysomnographic approaches and imaging-derived metrics.
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