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Sensory processing in the cortex should integrate inputs arriving from receptive fields
located on both sides of the body. This role could be played by the corpus callosum
through precise projections between both hemispheres. However, different studies
suggest that cholinergic projections from the basal forebrain (BF) could also contribute
to the synchronization and integration of cortical activities. Using tracer injections
and optogenetic techniques in transgenic mice, we investigated whether the BF cells
project bilaterally to sensory cortical areas, and have provided anatomical evidence
to support a modulatory role for the cholinergic projections in sensory integration.
Application of the retrograde tracer Fluor-Gold or Fast Blue in both hemispheres of the
primary somatosensory (S1), auditory or visual cortical areas showed labeled neurons
in the ipsi- and contralateral areas of the diagonal band of Broca and substantia
innominata. The nucleus basalis magnocellularis only showed ipsilateral projections to
the cortex. Optogenetic stimulation of the horizontal limb of the diagonal band of Broca
facilitated whisker responses in the S1 cortex of both hemispheres through activation
of muscarinic cholinergic receptors and this effect was diminished by atropine injection.
In conclusion, our findings have revealed that specific areas of the BF project bilaterally
to sensory cortices and may contribute to the coordination of neuronal activity on both
hemispheres.

Keywords: diagonal band of Broca, basal magnocellular nucleus, cholinergic neurons, somatosensory evoked
potential, optogenetic stimulation, mouse

INTRODUCTION

In the process of exploring their environment rats actively beat their whiskers although this process
is not an isolated sensory stimulus. They analyze multiple contextual factors that may occur
simultaneously in both whisker pads during their explorations. Thus, it would be expected that the
primary somatosensory cortex (S1) in both hemispheres are activated and synchronized to analyze
sensory inputs. It has been shown that the S1 neurons decrease their tactile responses when another
somatosensory stimulus i.e., a distracter stimuli or sensory interference is applied simultaneously
in the contralateral whisker pad, indicating that the S1 cortex receives information from the
contralateral S1 cortex (Alenda and Nuñez, 2004). Therefore, the number of S1 neurons showing
sensory interference decreases in animals with 192 IgG-saporin basal forebrain (BF) lesions
that decreases the number of cortical cholinergic fibers. Thus, these data suggest that cholinergic
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projections may contribute to sensory interference (Alenda and
Nuñez, 2007). In addition, it is well known that the cortex
has the ability to focus sensory processing on selected sensory
inputs while ignoring irrelevant inputs, involving the cholinergic
system (Fanselow and Nicolelis, 1999; Reynolds and Desimone,
2003; Petkov et al., 2004; Sarter et al., 2005; Sussman and
Steinschneider, 2006; Klinkenberg et al., 2010). These findings
suggest that the cholinergic system may exert a modulation of
both hemispheres in a coordinated way to enhance a relevant
stimulus that may appear on either side.

The corpus callosum may also participate in the interaction
between stimuli that occur on both sides of the body by precise
projections between both hemispheres. Pyramidal neurons in
layers 2/3 and layer 5 of S1 cortex target the contralateral
S1 cortex via the corpus callosum projections and may
therefore synchronize the activity of the two cortical hemispheres
(Olavarria et al., 1984; Larsen et al., 2007; Petreanu et al.,
2007; Aronoff et al., 2010). Furthermore, functional interactions
between the S1 cortices of both hemispheres have also been
suggested because a chronic suppression of the activity in
one-hemisphere down-regulates the activity in the contralateral
S1 cortex (Li et al., 2005). However, sensory interference was
not affected after the corpus callosum transection (Alenda and
Nuñez, 2007), which suggests that interhemispheric connections
are not crucial for sensory interference.

Cholinergic projections to the cortex are provided by a
dense innervation from disperse groups of cholinergic neurons
within the BF. The BF contains cortically-projecting cholinergic
and noncholinergic neurons as well as several interneurons
(Zaborszky and Duque, 2000; Zaborszky et al., 2012). The BF
includes the medial septum, the horizontal and vertical limbs of
the diagonal band of Broca (HDB and VDB, respectively), the
substantia innominata, and the nucleus basalis magnocellularis
(B) nucleus (Semba and Fibiger, 1989; Semba, 2000; Zaborszky
et al., 2012, 2015).

Anatomical studies have indicated the existence of a
topographic organization of the BF efferent projections to
the sensory cortices (Zaborszky, 2002; Zaborszky et al., 2005,
2015). Anatomical pathways linking the BF with sensory cortical
areas studied in rodents have shown that separate or partially
overlapping groups of BF neurons display specific projection
pathways to primary sensory cortices of different modalities
and to the prefrontal cortex (Semba, 2000; Zaborszky et al.,
2015; Chaves-Coira et al., 2016). Optogenetic activation of
cholinergic neurons in the BF facilitated somatosensory or
auditory responses in S1 or in the primary auditory (A1)
cortices (Chaves-Coira et al., 2016). Consistent with this
specific organization of anatomical pathways, regionally-specific
acetylcholine (ACh) release has also been demonstrated in visual
and somatosensory cortices following the presentation of either
visual or somatosensory stimuli, respectively (Fournier et al.,
2004; Laplante et al., 2005). Therefore, distinct cholinergic BF
neurons are theoretically capable of modulating specific cortical
regions. Consequently, the BF cholinergic system possesses the
necessary connectivity to modulate the cortex within the context
of specific behavior thus contributing to the modulation of many
brain functions.

However, the participation of BF cholinergic projections in
coordinating the activity of two hemispheres has not been studied
previously because it does not seem to have been supported by
previous anatomical results. For example, it is reported that the
projection from the B nucleus, which corresponds to the nucleus
of Meynert in humans, to S1-M1 cortices is almost exclusively
ipsilateral (Semba, 2000; Beak et al., 2010). However, these results
contradict those of Katsumi et al. (1999) in which unilateral
lesions of the B nucleus in rats decreased the cerebral metabolic
rate of glucose in the ipsilateral frontal cortex, but recovered
over the course of a few weeks. The authors suggested that this
recovery could be due to the cholinergic projection from the
contralateral nucleus because bilateral lesions of the B nucleus
produced persistent bilateral suppression of glucose metabolism
(Katsumi et al., 1999).

Since it is known that sensory processing is coordinated in
both hemispheres, and that EEG changes that occur during
the wake-sleep cycle are synchronized in both hemispheres,
it is reasonable to believe that bilateral BF projections could
contribute to these synchronous and integrated cortical activities.
In the present study we examine whether certain populations of
BF cells project bilaterally to sensory cortical areas, and provide
anatomical evidence to support the important role of cholinergic
projections in sensory integration.

MATERIALS AND METHODS

Animals
Experiments were performed on 28 B6Cg-Tg (Chat-
COP4∗H134R/EYFP, Slc18a3)5Gfng/J mice (The Jackson
Laboratory) of both sexes (3–6 months old). We used these
transgenic mice because they express the light-activated
cation channel, channelrhodopsin-2, tagged with a fluorescent
protein (ChR2-YFP) under the control of the choline-
acetyltransferase promoter (ChAT). Thus, all cholinergic
neurons express the ChR2 and could be stimulated with
blue light during optogenetic experiments. The animals were
housed under standard colony conditions with food and water
supplied ad libitum. All procedures were approved by the
Ethics Committee of the Autonoma de Madrid University
(CEI72-1286-A156), in accordance with Council Directive
2010/63 of the European Union. Efforts were made to minimize
animal suffering as well as to reduce the number of animals
used.

Anatomical Procedures
The anatomical pathways linking the BF with cortical
areas were studied by injecting, or depositing, the
neuroanatomical fluorescent retrograde tracers Fluoro-Gold
(FlGo; Fluorochromes, LLC., Denver, CO, USA) and Fast Blue
(FB; Polysciences, Inc., Warrington, PA, USA). Solution of 4%
FlGo was injected in the S1 using a 0.5 µl Hamilton syringe
(20 nl applied slowly over a 2-min period; 10 nl per minute);
alternatively, deposits of 2 mm2 absorbable gelatin ‘‘Spongostan’’
embedded in 1% saline solution of FB were placed in the A1 and
the primary visual (V1) cortices (Figures 1A,B).
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FIGURE 1 | Location of injection sites into primary somatosensory (S1) and primary auditory (A1) cortices. (A) Schematic drawing and microphotograph of a brain
coronal section showing the injection site in A1 cortex. (B) The injection site is located in S1 cortex.

The animals were anesthetized with an intraperitoneal
injection of ketamine (70 mg/Kg) plus xylazine (5 mg/Kg) before
being placed in a stereotaxic frame for appropriate craniotomy;
supplementary doses were applied when it was necessary
(35 mg/Kg and 2.5 mg/Kg, respectively; i.p.). The analgesic
Metacam (meloxicam1 mg/Kg; s.c) was also administered
to the animals at the end of tracer injections. Animals
were returned to the animal house under standard colony
conditions.

Injections/Deposits of Fluorescent
Retrograde Tracers in Sensory Cortices
In all 18 animals, 20 nl of FlGo solution was injected through a
Hamilton syringe in S1 at the following stereotaxic coordinates:
antero-posterior, −1.7 mm from Bregma; lateral, 3.0 mm and
vertical, 1.5 mm. FB deposits were placed for 20 min in 6 of
the 18 animals in S1, at the same stereotaxic coordinates. In
addition, FB deposits were placed in 6 of the 18 animals in
A1 at the following stereotaxic coordinates: antero-posterior,
−2.4 mm from Bregma; lateral, 4.0 mm and vertical, 2.2 mm;
in the remaining six animals, FB deposits were placed in V1 at
the following stereotaxic coordinates: antero-posterior,−6.3 mm
from Bregma; lateral, 3.5 mm and vertical, 0.5 mm (Paxinos and
Franklin, 2004).

Once the wounds had been sutured, the animals were housed
in individual cages in accordance with the dimensions required
for the species and located in a special post-surgery room at

the Veterinary Office. The animals were treated with ibuprofen
(Dalsy; 20 mg/cc solution; 3 cc/500 cc of drinking water)
for the following days and additional doses of meloxicam, a
non-steroidal anti-inflammatory drug (Metacam; 1 mg/Kg; s.c)
was also administered when necessary.

After a survival period of 1 week the animals were
anesthetized with an overdose of the same anesthesia and
perfused transcardially with 4% paraformaldehyde in 0.1 M
phosphate buffer at pH 7.3 followed by increasing concentrations
of sucrose solutions (5%, 10%, 20%) in the same buffer. The
brains were stored in 30% sucrose for at least 3 days for tissue
cryopreservation to be frozen sectioned on the coronal plane
at 40 µm. The sections were collected in three consecutively
ordered series devoted to Nissl staining, fluorescent visualization
and for ChAT immunostaining series. HDB and B nuclei
were delimitated with the help of the adjacent Nissl stained
sections and the use of the stereotaxic Atlas. In addition, in
the sections devoted to fluorescent visualization the anterior
commissure, third ventricle and caudate-putamen were taken
as reference points for assessing the HDB correct location.
Series processed for ChAT immunostaining sections were
incubated with 1:100 goat anti-ChAT primary antibody and
with 1:200 anti-goat Alexa 546 secondary antibody. The sections
were mounted on glass slides, dehydrated through passage in
ascending grades of alcohol, defatted in xylene for 30–60 min
and finally coverslipped with DePeX mounting medium (Serva,
Heidelberg, Germany).
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Single and double-labeled neurons were studied under both
a Nikon Axioskop fluorescent microscope and a confocal
microscope (Spectral Leica TCS SP5) in which a Tile Scan tool
of LAS AF software was used to acquire the images. Samples
were analyzed using bio-mapping (maximal projections) by
sequentially applying both lin405 mm (ultraviolet) laser line and
linAr488 mm (applying argon) laser line, to ensure complete
channel separation. The regions of interest were studied using
10×, 20×, 40× objectives and a 63× oil objective for the
quantification of neurons in each channel. The images were a
stack of sections in maximal projection, but the neurons were
counted in each individual layer. Image stacks and maximal
projections of the images were analyzed in the two channels
(ultraviolet and green) and the merged image was also studied.
The images shown in the figures are a stack of sections
in maximal projection. For the semi quantitative study the
neurons were counted in each individual layer of the confocal
image.

Optogenetic Stimulation and
Electrophysiological Recordings
Experiments were performed on 10 adult (3–6 months-old)
B6.Cg-Tg (Chat-COP4∗H134R/EYFP, Slc18a3)5Gfng/J mice.
The animals were anesthetized with an initial dose of ketamine
(13 mg/kg) plus xylazine (5 mg/Kg) followed with isoflurane
mixed with O2 (0.5%–1%; 0.5 l−1, min−1). The anesthetic level
was monitored by toe pinch, respiration, and pupil dilation.
Also, the anesthetic induced the presence of delta frequency
waves (1–4 Hz) of high amplitude (>50 µV). The animals
were placed on a water-heated pad (Gaymar T/Pump, Orchard
Park, NY, USA) set at 37◦C to maintain body temperature,
and their head placed in a Kopf stereotaxic device (David Kopf
Instruments, Tujunga, CA, USA) on which surgical procedures
and recordings were performed. Skin incisions were infused with
a local anesthetic (Lidocaine, 1%), and their eyes covered with
mineral oil to prevent drying. After a midline skin incision, the
periosteum and muscle were retracted to expose the skull. A
craniotomy was then drilled and the duramater over the target
areas was opened.

Field potential recordings were performed in S1 cortex
(antero-posterior −1 mm to −2 mm, lateral 3 mm, vertical
1 mm from Bregma) through tungsten macroelectrodes (<1 MΩ,
World Precision Instruments, WPI, Sarasota, FL, USA). Field
potentials were filtered between 0.3 Hz and −100 Hz, and
amplified using a DAM80 preamplifier (WPI). The signals were
sampled at 1 kHz through an analog-to-digital converter built
into the Power 1401 data acquisition unit, and fed into a PC
computer for off-line analysis with Spike 2 software (Cambridge
Electronic Design, Cambridge, UK).

Light stimulation of ChR2-expressing neurons was achieved
with a light-emitting diode (LED; 473 nm; Thomas Recording,
Germany) delivered from an optical fiber (core diameter 120
µm) positioned directly above theHDB or B nuclei. The LEDwas
triggered with a single square-step voltage pulse (0.5 s duration)
Illumination intensity was <30 mW/mm2, which is below the
damage threshold of∼100 mW/mm2 for blue light (Cardin et al.,
2010). Under these conditions, the effective stimulation area is

assumed to be quite restricted as the total light energy transmitted
within the cortical tissue in vivo decreases rapidly with distance
(about 100–200 µm in radius; Aravanis et al., 2007).

Sensory Stimulation
Whisker deflections were produced by brief air pressure pulses
using a pneumatic pressure pump (Picospritzer; 1–2 kg/cm2,
20 ms duration), delivered through a 1-mm-inner diameter
polyethylene tube. All whiskers were first trimmed to a length
of 5 mm. The experimental protocol consisted of 120 air pulses
delivered to the principal whisker at 0.5 Hz (4 min; control
period) followed by the light stimulation. Air pulses at 0.5 Hz
were delivered again to the selected whisker during 10 or 30 min
after the optogenetic stimulation.

Drugs
Atropine (1 mg/Kg in 0.9% NaCl i.p.) was administered 10 min
before the start of recordings to assess whether the cholinergic
modulation of the cortical responses was due to activation of the
muscarinic receptors.

Data Analysis
The average of the cortical evoked potentials in the S1 cortex
triggered by tactile stimuli were calculated every 2 min
(60 stimuli), using Spike 2 software. To perform statistical
analysis, the area of the evoked potential was measured from
the negative slope beginning with the first negative wave up
to the same voltage level with a positive slope. The evoked
potentials were recorded 4 min before blue light stimulation (the
control period) and 10 or 30 min after the light stimulation.
The magnitude of the change in the area was expressed as a
proportion (%) of the base line control amplitude and plotted in
function of time. The mean area of the control period (4 min)
was considered 100%.

The results are reported as means ± SEM (Standard error
of mean). Non-normally distributed data were compared with
the Wilcoxon matched-pairs signed rank test. For multiple
comparisons for normally distributed data (Shapiro-Wilk
normality test), one-way analysis of variance (ANOVA) followed
by Dunnett’s post hoc test was used. A P-value <0.05 was
considered statistically significant.We have chosen this threshold
to have a false positive risk probability less than 3:1.The data
presented below had P-values less than 0.01, indicating that the
probability of a false positive result is low. Graph Pad Prism
7 Software (San Diego, CA, USA) was used for the analysis.

RESULTS

Bilateral Projections from BF Neurons to
Sensory Cortices
The anatomical pathways linking the BF with the cortical
areas were studied by injecting, or depositing, neuroanatomical
fluorescent retrograde tracers into the mice (Figure 1). The
mice that received a fluorescent tracer injection in the S1 or
A1 cortices showed labeled neurons in the ipsi- and contralateral
BF. Stained neurons were present in the VDB (Figure 2), HDB

Frontiers in Neuroanatomy | www.frontiersin.org 4 January 2018 | Volume 12 | Article 5

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Chaves-Coira et al. Bilateral Pathways from the Basal Forebrain to the Cortex

FIGURE 2 | Confocal microphotograph of vertical limb of the diagonal band of
Broca (HDB) showing labeled neurons of animals injected with the fluorescent
tracers in the left hemisphere in S1 (yellow neurons) and A1 (blue neurons).
Since the injection was in the left hemisphere, ipsilateral neurons are at the left
side of the dash line (indicated above) and contralateral neurons are the ones
located at the right side of the dash line indicating the middle line (upper
images). Bottom left image shows positive neurons for
choline-acetyltransferase (ChAT) immunostaining labeled in red color. FB: Fast
Blue (blue) labeled neurons; Fluoro-Gold (FlGo; yellow): FlGo labeled neurons;
ChAT (red): cholinergic labeled neurons. Labelled neurons were observed both
in the ipsi (left hemisphere) and the contralateral (right) injection site.

(Figure 3) and SI areas but not in the B nucleus (<2% of labeled
neurons). Similar projection patterns were observed in the VDB,
HDB and SI when the retrograde tracer was applied to the
A1 and V1 cortices (see Figures 4G–I). In all cases, the B nucleus
showed an abundance of labeled neurons from ipsilateral trace
injections, however, B neurons projecting to the contralateral
sensory cortices were very scarce.

Although it is well known that BF cholinergic neurons project
to sensory cortices (for review see Zaborszky, 2002; Woolf and
Butcher, 2011), we corroborated these findings by performing
an immunostaining ChAT study. Representative neurons in the
VDB or HDB nuclei are shown in Figures 2, 3, respectively. The
results indicate that most of the projecting neurons to the ipsi-
and contralateral sensory cortices were cholinergic neurons.

In addition, a rostro-caudal gradient was observed in the
distribution of contralateral BF projecting neurons, mainly in
the VDB and HDB. S1 tracer injections in both hemispheres
revealed ipsi- and contralateral projecting neurons at all levels of
the VDB and HDB areas (Figures 4A–C). However, contralateral
projection neurons showed a gradient in the rostro-caudal
direction that increased from 16% to 27% in the VDB, while in
the HDB the gradient decreased from 11% to 6% (Figure 4J). The

FIGURE 3 | Confocal microphotographs of labeled neurons in horizontal limb
of the diagonal band of Broca (HDB) nuclei of the basal forebrain (BF) of
animal injected with both fluorescent tracers in the left hemisphere in S1
(yellow neurons) and A1 (blue neurons). The left column shows the HDB
labeled neurons of the ipsilateral injection site; the right column shows the
HDB contralateral labeled neurons to the injection site. Blue indicated FB
labeled neurons; Yellow indicated FlGo labeled neurons and red color
indicates positive neurons for ChAT immunostaining. The upper row shows
the merge of all labeled neurons in HDB.

gradient observed in the contralateral projections from the BF to
the sensory cortices coincided with that observed in the ipsilateral
projections (data not shown).

A1 tracer injections also showed ipsi- and contralateral
labeled neurons in the VDB and HDB areas of the BF
(Figures 4D–F). The proportion of contralateral labeled neurons
was constant (30% of total neurons) at all levels of the rostro-
caudal direction. However, a gradient was observed in the VDB
(from 25% at rostral levels to 19% at caudal levels; Figure 4K).
Ipsi- and contralateral labeled neurons were found in the VDB
and HDB when retrograde tracers were injected in the V1 cortex

Frontiers in Neuroanatomy | www.frontiersin.org 5 January 2018 | Volume 12 | Article 5

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Chaves-Coira et al. Bilateral Pathways from the Basal Forebrain to the Cortex

FIGURE 4 | Fluorescent microscope images showing the rostro-caudal distribution of fluorescent labeled neurons. (A–C) Fluorescent microscope images from
animals injected with FlGo and FB in S1. (D–F) Fluorescent microscope images from animals injected with FlGo in A1 and FB deposit in A1. (G–I) Fluorescent
microscope images from animals injected with FlGo in V1 and FB deposit in V1. (J–L) Graphic representation of rostro-caudal distribution of neurons in VDB, HDB
and B nucleus and the proportion of contralateral labeled neurons.

(Figures 4G–I). Contralateral VDB labeled neurons (16%) were
found at the rostral levels while 27% of labeled neurons were
observed at the caudal levels when the tracer was located at
the V1 cortex (Figure 4L). The HDB also showed a rostro-
caudal distribution but in the opposite direction to the VDB,
decreasing the percentage of contralateral labeled neurons from
16% to 4%. Similar to the S1, the gradient observed in the
contralateral projections from the BF to the A1 or V1 cortices
were similar to that observed in the ipsilateral projections (data
not shown).

Effect of Optogenetic Stimulation of HDB
Neurons on Whisker S1 Cortical
Responses
To test if the contralateral BF projections to the S1 cortex had
the same functional effect on whisker responses as the ipsilateral
projections, we applied a blue-light pulse to the HDB nucleus.
Somatosensory evoked potentials (SEPs) were elicited with a
short-lasting air pulse (20 ms duration) applied to a contralateral
whisker of each of the S1 cortices. The effect of the blue-light
pulse on whisker responses was simultaneously recorded in the
S1 cortex of both hemispheres. The mean area of the earlier
negative wave was calculated every 60 stimuli. The control period
consisted of 4 min of continuous stimulation at 0.5 Hz and the
mean area was considered to be 100%. Blue-light stimulation of
the HDB induced an increase in the SEP areas in the S1 cortex
of both hemispheres (Figure 5A). The SEP area increased rapidly
when the blue-light stimulation was delivered to the HDB, and

the SEP was recorded in the ipsilateral S1 cortex, reaching
a maximum 4 min after blue-light stimulation (191 ± 12%,
P = 0.0011; ANOVA plus Dunnett’s test; n = 8). The effect was
sustained for up to 26min after blue-light stimulation (142± 9%;
P = 0.0033; ANOVA plus Dunnett’s test; n = 8). The SEP area
slowly increased when the blue-light stimulation was delivered to
the HDB, and the SEPwas recorded in the contralateral S1 cortex,
reaching amaximum 8min later (156± 9%, P = 0.0017; ANOVA
plus Dunnett’s test; n = 8) and sustained for up to 18 min after
stimulation (142 ± 12%; P = 0.048; ANOVA plus Dunnett’s test;
n = 8).

Blue-light stimulation of the B nucleus also induced an
increase in the SEP area in the S1 cortex of the ipsilateral
hemisphere, although to a lower extent or showing a less
extended response, than when the light was delivered to the
HDB (Figure 5B). The maximum effect was observed 4 min
after blue-light stimulation (146 ± 8%, P = 0.001; ANOVA plus
Dunnett’s test; n = 6). However, the SEP area was not affected
when the blue-light stimulation was delivered to the B nucleus
and the SEP recorded in the contralateral S1 cortex (P > 0.05;
ANOVA plus Dunnett’s test; n = 6).

The facilitatory effect evoked by HDB stimulation was
blocked by atropine sulfate (1 mg/kg; i.p.). In the control
condition (after injection of saline solution; 0.1 ml) the SEP
area of the ipsi- and contralateral S1 cortices increased to
168 ± 10% and 143 ± 7% (P = 0.0078, P = 0.0078, with respect
to the control period; n = 8, in each group; Wilcoxon matched-
pairs test; Figure 5C). Ten minutes after atropine application,
blue-light stimulation did not affect the SEP area in either ipsi-
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FIGURE 5 | Effect of blue-light stimulation of HDB and B nuclei on ipsi- and contralateral S1 cortices. (A) Plot of the somatosensory evoked potential (SEP) area
during the control period (4 min before blue-light stimulation) and 30 min after blue light stimulation of HDB. The mean area of the control period was considered as
100%. HDB induced a facilitation of both SEP recorded in both hemispheres, although the area increased slower in the contralateral cortex to the stimulated HDB.
(B) Same plot as in (A) after blue light stimulation of B nucleus. Note that contralateral SEP area was not affected. (C) Plots of the effect of atropine sulfate on HDB
stimulation. The effect was measured 10 min after HDB stimulation respect to the mean SEP area during the control period (4 min before blue light stimulation). After
saline i.p. injection blue-light stimulation induced a facilitation of SEP area in both ipsi- and contralateral cortices (n = 8). However, the effect was blocked when
atropine was i.p. injected 10 min before HDB stimulation. Insets in (A,B) show representative traces of the SEP in control and 10 min after optogenetic stimulation
(black and blue tracers, respectively). ∗p < 0.05; ∗∗p < 0.01.

or contralateral cortices 104 ± 2% and 106 ± 4% (P > 0.05, with
respect to the control period; n = 8, in each group; Wilcoxon
matched-pairs test; Figure 5C).

DISCUSSION

Our findings have revealed that the HDB and VDB nuclei of
the BF project bilaterally to sensory cortices, facilitating whisker
responses in the S1 cortex through activation of muscarinic
receptors. By contrast, the B nucleus did not project bilaterally
to the cortex. Previous data from our laboratory indicated
that the HDB projects mainly to the S1 cortex, while the B
nucleus does not show a specific pattern of cortical projections
(Chaves-Coira et al., 2016). Taken together, these findings
suggest that the areas of the BF that are mainly involved in
the modulation of cortical sensory responses show bilateral
projections to the cortex, while the B nucleus that has less
effect on sensory modulation, only projects to the ipsilateral
cortex. Consequently, it is possible that the bilateral projections
from the BF may contribute to coordinating the neuronal
activity of both hemispheres, and consequently enhance sensory
processing.

The anatomical results presented here corroborated that the
BF is a heterogeneous region that projects differently to the S1,
A1 or V1 cortices according to the BF nuclei (VDB, HDB) and to
the rostro-caudal distribution. This heterogeneity was also shown
in the contralateral projections from the BF to the cortex. As is
well known, the majority of the ipsi- and contralateral projecting
neurons were cholinergic cells because they stained positively
against the ChAT enzyme. There are numerous studies that have
demonstrated the participation of cholinergic BF neurons in
many behavioral functions such as learning, memory, attention
and arousal (Buzsaki et al., 1988; Fibiger, 1991; Vanderwolf et al.,
1993; Duque et al., 2000; Sarter and Bruno, 2000; Klinkenberg
et al., 2010). For example, the detection of cues in attentional
contexts depends on the cholinergic activity in the cortex (for
review see Sarter et al., 2005). The release of ACh in the cortex
increases prior to and during sustained attention tasks, with a
further increase in response to distracters, presumably serving to
enhance signals of behaviorally relevant targets (Himmelheber
et al., 2000; Klinkenberg et al., 2010). Bilateral cholinergic
projections from the BF may contribute to these behavioral
functions.

Most of the previous anatomical studies have indicated that
the BF projects to the ipsilateral cortex (see ‘‘Introduction’’
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section). Using a combined method of retrograde tracing and
optogenetic stimulation, we have shown that there is also an
important contralateral projection that may contribute to the
synchronization of the neurons located in the corresponding
sensory areas of both hemispheres. The bilateral projections
were restricted to the VDB and HDB nuclei but not to the
B nucleus, indicating that the bilateral projections from the
BF have a particular cortical projecting pattern for specific BF
nuclei. The HDB nucleus shows specific anatomical projections,
mainly to the S1 cortex that facilitate sensory responses (Chaves-
Coira et al., 2016). By contrast, the B nucleus has more
widespread targets in the sensory-motor cortex, and its effect
on sensory responses is lower. Moreover, it has been reported
that the projections from the B nucleus are almost exclusively
ipsilateral (Semba, 2000; Beak et al., 2010; and present results).
Consequently, optogenetic stimulation of the B nucleus only
facilitated sensory responses in the ipsilateral cortex.

Taken together, these findings suggest that the BF nuclei
that have specific projections to sensory areas, such as the
VDB and HDB, have bilateral projections, while the less
specific BF nucleus, such as the B nucleus, mainly project
ipsilateral. Consequently, this suggests that bilateral projections
may participate in sensory processing by maintaining a similar
cortical activation level in the cortical areas of both hemispheres,
helping to compare stimuli from both sides.

We used a transgenic mouse that expresses the ChR2 in
cholinergic neurons to corroborate that most of the BF neurons
projecting bilaterally to the cortex were cholinergic. Optogenetic
stimulation of theHDB neurons evoked a long-lasting facilitation
through the activation of muscarinic receptors since the effect
was blocked by atropine. It has also been indicated that nicotinic
cholinergic receptors might facilitate cortical responses (e.g.,
Howe et al., 2017). Although we cannot discard that they may
participate in the initial phase of the facilitation response, our
data suggest that the long-lasting facilitation was mainly due to
activation of muscarinic receptors.

Neuronal synchronization is also an important tool for
processing cortical information during these behavioral
functions because it receives a vast amount of stimuli that

have to be analyzed according to their relevance to a specific
task or behavior. Task-relevant stimuli can synchronize activity
between ensembles of cells (Engel et al., 2001; Fries et al., 2001;
Buschman and Miller, 2007; Gregoriou et al., 2009). Likewise,
fast-frequency oscillations have been observed during the
performance of attentional task states (Fries et al., 2001; Bichot
et al., 2005; Womelsdorf and Fries, 2006, 2007). Fast oscillations
may synchronize activity in neural networks to support for
example, cue detection. Recently, Howe et al. (2017) have shown
that cues evoke phasic ACh release and an increased neuronal
synchrony across several frequency bands in the prefrontal
cortex. We propose that the bilateral projections described here
may also contribute to the synchronization of rhythmic activities
that may occur in both hemispheres.

In conclusion, our results together with previous findings,
suggest that distinct cholinergic BF neurons are capable of
participating in sensory modulation by means of a specific
cortical projecting pattern. The BF cholinergic system has the
connectivity needed to modulate the cortex within the context
of the ongoing behavior, and contribute to sensory processing in
a coordinated manner in both hemispheres.
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