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The fast Padé transform (FPT) is a method of spectral analysis that can be used to reconstruct nuclear mag-
netic resonance spectra from truncated free induction decay signals with superior robustness and spectral
resolution compared with conventional Fourier analysis. The aim of this study is to show the utility of FPT in
reducing of the scan time required for hyperpolarized 13C chemical shift imaging (CSI) without sacrificing
the ability to resolve a full spectrum. Simulations, phantom, and in vivo hyperpolarized [1-13C] pyruvate CSI
data were processed with FPT and compared with conventional analysis methods. FPT shows improved sta-
bility and spectral resolution on truncated data compared with the fast Fourier transform and shows results
that are comparable to those of the model-based fitting methods, enabling a reduction in the needed acquisi-
tion time in 13C CSI experiments. Using FPT can reduce the readout length in the spectral dimension by 2-6
times in 13C CSI compared with conventional Fourier analysis without sacrificing the spectral resolution. This
increased speed is crucial for 13C CSI because T1 relaxation considerably limits the available scan time. In
addition, FPT can also yield direct quantification of metabolite concentration without the additional peak
analysis required in conventional Fourier analysis.

INTRODUCTION
Hyperpolarized Magnetic Resonance (MR) with Dissolution-Dy-
namic Nuclear Polarization is a clinically emerging technique,
and it shows great promise in investigating diseases of meta-
bolic dysregulation such as cancer and heart diseases (1). Chem-
ical shift imaging (CSI) is a well-known and powerful tool for
the investigation of metabolic processes following the injection
of hyperpolarized MR media. Because the T1 relaxation rate of
hyperpolarized 13C places an ultimate limit on the time of
acquisition of CSI data (forming a window of 50-80 seconds in
vivo) (2, 3), spectroscopic 13C imaging is typically performed
with a multipoint Dixon approach (4) to limit the number of time
points required for spectral analysis. However, this approach
requires a priori knowledge of the number and spectral location
of spectral peaks expected to be present in the spectrum. If other
signals are present at unexpected resonant frequencies (ie, un-
expected reactions occur), these multipoint methods are prone to
producing incorrect results. In contrast, full-spectrum CSI yields
a complete MR spectrum for each image voxel, with zero to few
prior assumptions. However, the acquisition time necessary to
obtain full spectra with adequate resolution from spatially re-

solved voxels represents a significant limitation in hyperpolar-
ized 13C imaging.

Numerous novel methods have been proposed for gaining
higher spatial and temporal resolution at the expense of spectral
resolution (4-10). Undersampling the spectral dimension can
considerably reduce the amount of data that is required to be
acquired and hence the acquisition time; this is typically offset
by the introduction of uncertainties in the spectral domain of the
acquired data, which often require prior spectral knowledge to
reconstruct, causing a potential for misinterpretation. Conse-
quently, despite an increasing number of alternatives, the CSI
sequence is still considered a gold standard sequence for hyper-
polarized imaging experiments and a preferred starting point for
testing experimental hyperpolarized setups (7, 11-18).

The CSI sequence makes few prior assumptions about ob-
tained spectral frequencies and is therefore both more robust
experimentally and less prone to misinterpretation than faster
alternatives. This flexibility in the acquisition and processing
makes the CSI sequence a valuable tool for clinical and preclin-
ical investigations. The per-shot acquisition time for optimal
signal-to-noise ratio (SNR) is typically taken to be in the range

RESEARCH ARTICLE

A
B
ST

R
A

C
T

© 2016 The Authors. Published by Grapho Publications, LLC This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ISSN 2379-1381 http://dx.doi.org/10.18383/j.tom.2016.00154

TOMOGRAPHY.ORG | VOLUME 2 NUMBER 2 | JUNE 2016 117

http://creativecommons.org/licenses/by-nc-nd/4.0/


of 1 to 2 times the T2* value, maximizing acquisition of the free
induction decay (FID) and minimizing the sampling of back-
ground noise. Owing to the need of fully sampling an individual
FID for each resolved voxel, CSI is traditionally limited in tem-
poral resolution. Reducing the imaging time necessary to ac-
quire full spectra with adequate spectral resolution will increase
the temporal resolution of the CSI experiment.

After acquisition of a CSI data set, the identity and relative
concentrations of hyperpolarized metabolites are often deter-
mined by measuring the individual peak heights, integrating
peaks, or fitting models to the resonances in the spectra (7, 13,
14, 19) obtained after Fourier transforming CSI data. These
methods are robust when peaks are well separated and nonover-
lapping. Hankel singular value decomposition methods have
also been proposed in various papers (20). Here, we present an
alternative approach, using the fast Padé Transform (FPT) as
opposed to the fast Fourier transform (FFT), to directly quantify
both simulated CSI data and data obtained from the spectral
imaging of hyperpolarized [1-13C]pyruvate in the rat kidney.

Theory
FFT is the traditional method for transforming data in the time
domain to the frequency domain. If the Nyquist criterion is
satisfied, it is a robust and efficient tool to obtain the spectral
envelopes of metabolic data sets when no or very little prior
knowledge is present. However, the interpretation and quanti-
fication of the results are limited when the FID is truncated
because of noise or rapid acquisition, as the artificial zero-filling
of the FID results in a sinc-shaped interpolation with oscillating
side-lobes around each resonance present. For any pair of
closely spaced resonances, truncating the acquisition of the FID
can produce spurious peaks or dips in the resulting spectrum.
Correspondingly, parametric approaches are often taken to min-
imize the effect of this interpolation and quantify the spectra by
fitting Lorentzian or Gaussian lineshapes to their envelopes in a
least-squares fashion. Popular spectral and time-domain fitting
algorithms such as AMARES (21), LCModel (22), and VAPRO
(19) use user-supplied prior information to find the spectral
parameters of interest to the Fourier transformed data fitting,
either a predicted FID in the time domain or the envelope of the
spectrum in the frequency domain. Such fits are not unique, but
are robust and straightforward to interpret (23).

An alternative approach to fitting spectral data is the direct
extraction of frequency and amplitude information from the FID
by methods other than FFT by the construction of objects called
parametric estimators, and their utility in MR is well known. In
particular, FPT has been shown to enhance the resolution of
nuclear magnetic resonance (NMR) spectra and to be less af-
fected by truncation artifacts and baseline modulations than
FFT alone (23-26). The derivation of FPT is further described.

Let �cn�, n � 0, . . ., N � 1 be a discretely sampled signal,
where cn is the (n � 1)th value of the FID composed of N data
points. Then, in general, the discrete Fourier components ĉ��� of
c is given as follows:

ĉ(�) � �
n�0

N�1
cn exp(i�n�) ,

where � is the sampling delay between acquired points. Defining
z to z :� exp(i��), we arrive at the general frequency spectrum
defined as follows:

S�z� : � �
n�0

N�1
cnz

n .

The Padé transform constructs a Padé approximant to S (z)
before exploiting analytical properties of rational polynomials
to extract quantities of interest such as amplitudes and frequen-
cies from this polynomial. The Padé approximant of S is defined
as a quotient of polynomials, A (z)/B (z), such that for as many
k � 0, 1, . . . as possible, there holds the following:

dk

dzk
S(z)|z�0 :� � dk

dzk
(A(z))

1

B(z)�z�0
,

dk �further read as dk space�,

where

A(z) � �
i�0

P
aiz

i ,

B(z) � �
j�0

Q
bjz

j ,

are complex polynomials of degree P and Q, respectively, and
where we set P � Q � N/2. The set of unique coefficients {aibj}
can be found by noting that A (z) � B (z) S (z) and equating equal
powers in z, yielding 2 systems of linear equations. Singular
value decomposition yields {bj} efficiently, and {aj} can then be
explicitly computed given the data. For the systems considered
in hyperpolarized MR experiments, where N typically is 1024-
4096, FPT reconstruction does not present a significant compu-
tational challenge.

Once A (z) and B (z) are known, it can be shown that the k
roots of B (z) are related to the resonances in the spectrum as
follows:

zk�1 � exp	 �i

�k�

) �k �

i

�
ln�zk�1� ,

for which several efficient numerical algorithms exist. The cor-
responding complex amplitudes of each �k are derived from the
Cauchy residue of the rational approximant A (z)/B (z) evaluated
at the given root k, which is known analytically as follows:

dk �
A(z)

�B(z)

�z
�

z�zk

.

Accordingly, the amplitude and spectral position of reso-
nances can be recovered, and the spectrum is generated in any
desired mode (absorption, dispersion, and magnitude) by using
Heaviside partial fractions (27), that is, by the expansion.

A(z)

B(z)
� �

k

dk

z � zk
.

It can be shown that Re (�k) and Im (�k) are the position and
width of the resonance k, and dk and arg (dk) are its amplitude
and phase, respectively. Thus, FPT can find every peak param-
eter of interest for a resonance, without ever using the Fourier
spectrum or a fitting procedure. In the case that B (z) contains
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unique roots, the returned spectrum consists of several Lorent-
zians; if B (z) has repeating roots, then the resulting spectrum
contains spectrally overlapping resonances with a non-Lorent-
zian lineshape. Depending on the shim of the region of interest
(ROI), these multiple resonances may be spurious. In addition,
the Padé approximation has the advantageous property that the
analytical approximant constructed can be used for spectral
extrapolation inherently, analogously to zero-filling the FID
before calculating FFT (28).

Experimentally acquired spectra contain noise, whose pres-
ence can manifest in FPT formalism as common zeros of A (z)
and B (z), is referred to as Froissart doublets for historical
reasons, which can yield spurious signals (ie, artifacts) in the
approximation. Froissart doublets are poles and zeroes with a
numerical distance of zero in the noiseless setting, and in real
experimental data, close to zero (23, 24, 26, 29) with a large
residue (30). The doublets can also be observed through the
iteration of FPT as nonconverged frequencies and can be re-
moved by a threshold in relation to the background noise levels.
Here, the noise threshold contribution was set as amplitudes
occurring within 5 standard deviations of the noise as manually
identified in the edges of the spectrum (ie, the outer 10% of the
bandwidth). An iterative approach, where the number of sam-
pled points K is varied with K � Q, can identify spurious signals,
as noisier signals have a higher likelihood of changing param-
eters in-between iterations (23, 24, 26).

METHODS
Simulated Data
Simulated time-domain data from an NMR spectrum with 5
peaks typical of a [1-13C] pyruvate experiment was processed
with FFT with 256 points over a 4000 Hz bandwidth and a
truncated FPT with 16 points (K � Q � 8) and the same
bandwidth, interpolated to 256 points. Frequency components

found by FPT was reconstructed both with a Gaussian and a
Lorentzian model for comparison.

Phantom Data
[1-13C]urea and [1-13C]acetate phantoms (with a spectral sep-
aration of 1890 Hz at 9.4 T) were scanned to explore image
properties of the accelerated acquisition using a 9.4 T horizontal
bore magnet (Agilent, Yarnton, UK) with VnmrJ 4.0A (Agilent,
Santa Clara, California). A dual-tuned 13C/1H volume rat coil
(Doty Scientific, Columbia, South Carolina) was used for 1H and
13C magnetic resonance imaging. A standard slice-selective
2-dimensional 13C CSI sequence was used for imaging the phan-
toms. Parameters were as follows: flip angle � 10°, a Cartesian
k-space trajectory, matrix � 32 � 32, repetition time/echo time �
200 ms/0.67 ms, field of view � 60 � 60 mm2, average � 4,
spectral width � 6000 Hz, number of points � [256 128 64 42 32
16] complex points, and an axial slice thickness of 20 mm.
FPT reconstruction of the accelerated data was compared
with the iterative decomposition of water and fat with echo
asymmetry and least-squares estimation (IDEAL) method to
assess the image quality (31).

Magnetic Resonance Spectroscopy Data
Experimental magnetic resonance spectroscopy (MRS) (n � 6)
data [obtained from an earlier study (14)] were collected from rat
kidneys using a 4.7 T horizontal bore magnet (Oxford Instru-
ments, Oxford, UK) equipped with a Varian Direct Drive console
and VnmrJ 2.3A (Agilent, Santa Clara). A bicarbonate phantom
was placed next to the rat. A dual-tuned 1H/13C volume coil with
a 13C 4-channel phased array receive coil (Rapid Biomedical,
Würzburg, Germany) was used for 1H and 13C magnetic reso-
nance imaging and MRS, respectively. The kidneys were local-
ized by a standard gradient-echo sequence, and a slice covering
both kidneys was manually shimmed. A standard slice-selective

Figure 1. Simulated [1-13C] pyruvate signal, processed with fast Fourier transform (FFT) with 256 points over 4000 Hz
and a truncated fast Padé transform (FPT) by using the first 16 points (K � Q � 8), zero-filled to 256 points over 4000 Hz,
showing similar overall resolution (A). The individual components of the FPT show a good reasonable fit with K � Q � 1 � 7
frequencies with the Lorentzian model. Using a Gaussian model, the spectrum show less precise results (B). The Froissart dou-
blets show 2 spurious signals inside the unit circle, where the zk,Q � zk,P, ie, dk � 0 (C).
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2-dimensional 13C CSI sequence was used for hyperpolarized
[1-13C] pyruvate imaging. The parameters were as follows: flip
angle � 10°, a full centric circular k-space trajectory, matrix �
16 � 16, repetition time/echo time � 75 ms/0.65 ms, field of
view � 60 � 60 mm2, spectral width � 4000 Hz, number of
points � 256 complex points, and an axial slice thickness of 20
mm, covering both kidneys. The script for FPT CSI processing
was implemented in MATLAB (MathWorks, Natick, Massachu-
setts) available at http://www.mr.au.dk/software. Both trun-
cated FPT and standard FID-CSI data were processed in
MATLAB, and spatial dimensions were apodized with a Ham-
ming function and zero-filled to a 32 � 32 matrix. Different
levels of truncation of the FID data were investigated using the
initial 1/2, 1/4, 1/6, 1/8, and 1/12 of the total data. The spectral
domain was processed as sum-of-squares of the 4 coil channels.
The metabolite maps were imported to OsiriX, and an ROI
analysis was performed. The metabolite maps were normalized
relative to the sum of all metabolites. Statistical plots were
produced in GraphPad Prism (GraphPad Software, Inc. La Jolla,
San Diego, California).

RESULTS
FPT of the noiseless simulated data identifies genuine signals
(Figure 1) even from extremely truncated signals. No prior
knowledge is required for identification of the genuine frequen-

cies, as the Froissart doublet assumption is valid in the noiseless
situation. The Lorentzian model produces better results as a
model for the extracted metabolites when compared with the
Gaussian model (Figure 1B). One Froissart doublet is seen as a Q
and P root at the same position (Figure 1C).

In Figure 2, the comparison between accelerated data re-
constructed by FPT and IDEAL can be seen. FPT reconstructs
similar images compared with the IDEAL method, and it is able
to separate the 2 phantoms even with very high acceleration.
Phantom signal and noise levels are consistent in FPT recon-
struction, and shapes features are preserved.

Truncating the in vivo FID caused some inaccuracy in the
identification of frequencies’ peaks by FPT (Figure 3). As shown
in Figure 3, FPT was more resilient to FID truncation. The
apparent degradation of the NMR spectrum caused by FID trun-
cation was much less with FPT analysis, compared with FFT
analysis, with spectral lineshapes notably preserved by FPT and
not FFT. In addition, quantification of metabolite concentra-
tions in the frequency domain with conventional FFT analysis
requires an additional computation to be performed on the NMR
spectrum (eg, peak fitting or peak integration).

The ROI analysis of the metabolite maps formed by FPT was
consistent with maps created by full-dataset FFT as the degree of
signal truncation increases (Figure 4). However, the ROI analysis
of the MRS data showed that increasing truncation of the FID

Figure 2. [1-13C]urea and [1-13C]acetate phantoms (with a spectral separation of 1890 Hz at 9.4 T) reconstructed
with FPT and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) are
shown in the images on a logarithmic scale. The images with progressively reduced numbers of points acquired show a
great similarity between the 2 methods.
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increases the contribution of signal from pyruvate in the kid-
neys by both FPT and FFT. On FFT maps, the increased FID
truncation resulted in increasing errors in concentration estima-
tion of the different metabolites. In comparison, FPT maps were

relatively unaffected by FID truncation. To assess stability
against truncation, an ROI was placed in the kidney and in the
urea phantom. The difference in bicarbonate and urea signal
between the 2 sites was then measured. As seen in the urea

Figure 3. Representative data set comparing FFT and FPT performance with varying amounts of truncated data. Spectrum
from region of interest (ROI) position is shown with truncation 1/2, 1/4, 1/6, 1/8, and 1/16 of the original data.

Figure 4. ROI analysis was obtained from 3 locations (kidney, background, and urea phantom) in both FFT and FPT
images with increasing truncation, 1/2, 1/4, 1/6, 1/8, and 1/16 parts of the full dataset (x-axis, 1-6). The FPT shows
an increasing signal separation for the 3 selected metabolites, and FFT shows a decrease and has severe truncation er-
ror on the bicarbonate.
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phantom signal (Figure 4), FFT urea signal decreases with trun-
cation, whereas FPT shows signal stability even with high trun-
cation factors. Figure 5 shows a significant (P � .05) difference
between FFT and FPT in the bicarbonate signal from this trun-
cation at (1/4, 1/6, 1/8, and 1/12) parts of the original signal. In
the case of urea signal, FFT and FPT showed a significant
difference from truncation at (1/6, 1/8, and 1/12) parts of the
original signal (Table 1). The filtering features of FPT are initi-
ated in the fully sampled data set, which can be seen in Table 1,
and show a slightly higher SNR compared with FFT.

DISCUSSION
FPT offers a novel method for reducing the acquisition time for
spectroscopy by a factor of 2-6, without decreasing the apparent
resolution of the NMR spectrum, thereby significantly acceler-
ating 13C CSI. A 16-second total scan time can be reduced to 3
seconds by reducing FID by 6, as the sampling time is a major
determinant of the minimum repetition time. A reduction to
50% sampling reduces the scan time to 8 seconds. FPT can be an
alternative to subsampled FFT methods, which require prior

knowledge of metabolites and produce inaccurate results when
unanticipated signals are present. There are benefits to obtain-
ing full-spectral data compared with specific metabolic imaging
with, for example, a spectral–spatial pulse as follows: spectro-
scopic approaches are relatively immune to bulk frequency
offsets or B0 inhomogeneity, whereas either of these effects can
prevent the successful acquisition of a spectral–spatial dataset.
Using FPT allows “full spectrum truncated” 13C CSI, which is not
possible with conventional FFT analysis. FPT assumes a Lorent-
zian lineshape for each signal in the frequency domain, result-
ing in nonLorentzian signals being represented by several com-
ponents, a biophysically meaningless fit; however, a simple
integral over a specified region incorporated these components.
The results from the experimental MRS data give a good indi-
cation of the stability provided by FPT. Unwanted bleeding of
frequency signal to nearby metabolites occurs in FFT analysis of
truncated data but not in FPT, which, in the future, may be a key
feature in choosing FPT. The model-based IDEAL reconstruction
approach shows superior acceleration capabilities compared
with FPT; however, this is at the expense of little flexibility post

Figure 5. Difference between kidney and phantom mean bicarbonate ROI signal in the bicarbonate image (visual rep-
resentation of Table 1) (A). Difference between kidney and phantom mean ROI signal in the urea image (B). As the de-
gree of data truncation increases, signals from the different metabolites are blurred by FFT analysis. This effect is signifi-
cantly diminished with FPT analysis (P � .05).

Table 1. The Difference Between FFT and FPT in Urea and Bicarbonate

Number of
Samples 256 128 64 42 32 21

Bicarbonate P value 0.556 0.566 0.046 0.027 0.044 0.000

Difference �0.008 �0.008 �0.033 �0.040 �0.037 �0.106

SE of difference 0.012 0.013 0.015 0.015 0.016 0.017

FFT: Mean � SD 0.020 � 0.017 0.008 � 0.025 �0.011 � 0.033 �0.019 � 0.032 �0.015 � 0.035 �0.090 � 0.037

FPT: Mean � SD 0.028 � 0.025 0.015 � 0.021 0.022 � 0.014 0.021 � 0.020 0.022 � 0.018 0.016 � 0.021

Urea P value 0.130 0.312 0.041 0.005 0.002 0.000

Difference �0.076 �0.057 �0.123 �0.203 �0.219 �0.335

SE of difference 0.046 0.053 0.053 0.056 0.053 0.045

FFT: Mean � SD 0.272 � 0.087 0.286 � 0.100 0.263 � 0.095 0.207 � 0.085 0.183 � 0.076 0.117 � 0.066

FPT: Mean � SD 0.348 � 0.072 0.342 � 0.084 0.387 � 0.088 0.411 � 0.107 0.402 � 0.105 0.452 � 0.087

Notes: Mean ROI signal in urea and bicarbonate detected using FFT and FPT methods.
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acquisition and the necessity for a prior knowledge. The differ-
ence in SNR between IDEAL and FPT originates from the differ-
ence in integration of the peak (FPT) and fitting the exact peak
(IDEAL).

A priori and a posteriori knowledge is easily incorporated
into FPT during the sorting of the Froissart doublets, allowing
simple and intuitive filtering of the spurious spectral compo-
nents. An iterative filtering process can improve the SNR and the
genuine frequencies’ recognition by varying K, using the Frois-
sart doublets and the robustness in the genuine peaks, with
regard to varying the frequency, damping, and area, thereby
filtering out frequencies that are not present in all iterations (29,
32). The method is similar to the well-known Hankel singular
value decomposition methods. However, the unique utilization
of the Froissart criteria makes FPT approach an interesting
alternative to previous methods, with the potential of reducing
the overall experimental time, without losing the flexibility in
the acquisition and processing.

The main advantages of FPT are the direct quantification of
spectral data and the possibility of considerably decreasing

acquisition time. Future directions for research based on this
work include implementation of a no prior knowledge of met-
abolic selection filter for 13C spectroscopy and incorporation of
compressed sampling methods to further decrease the required
acquisition time and combine FPT with acceleration methods
such as parallel imaging (12) and compressed sensing (33),
allowing further reduction in scan times.

CONCLUSION
We have implemented FPT as a method for estimating metabo-
lite concentrations in hyperpolarized 13C chemical shift imag-
ing. The short T1 of hyperpolarized 13C severely limits the time
available for signal acquisition, making conventional CSI diffi-
cult or impossible. However, with FPT, spectra can be recon-
structed from truncated FID signals without the loss of spectral
resolution. This allows shortening of the data acquisition time,
making 13C CSI more feasible. We have shown, with numerical
simulations and in vivo 13C CSI data, that FPT gives more
accurate quantification of metabolites with truncated data ac-
quisition than conventional Fourier analysis.
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