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Abstract
The task of discriminating the motor imagery of different movements within the same limb

using electroencephalography (EEG) signals is challenging because these imaginary

movements have close spatial representations on the motor cortex area. There is, however,

a pressing need to succeed in this task. The reason is that the ability to classify different

same-limb imaginary movements could increase the number of control dimensions of a

brain-computer interface (BCI). In this paper, we propose a 3-class BCI system that discrim-

inates EEG signals corresponding to rest, imaginary grasp movements, and imaginary

elbow movements. Besides, the differences between simple motor imagery and goal-

oriented motor imagery in terms of their topographical distributions and classification accu-

racies are also being investigated. To the best of our knowledge, both problems have not

been explored in the literature. Based on the EEG data recorded from 12 able-bodied indi-

viduals, we have demonstrated that same-limb motor imagery classification is possible. For

the binary classification of imaginary grasp and elbow (goal-oriented) movements, the aver-

age accuracy achieved is 66.9%. For the 3-class problem of discriminating rest against

imaginary grasp and elbow movements, the average classification accuracy achieved is

60.7%, which is greater than the random classification accuracy of 33.3%. Our results also

show that goal-oriented imaginary elbow movements lead to a better classification perfor-

mance compared to simple imaginary elbow movements. This proposed BCI system could

potentially be used in controlling a robotic rehabilitation system, which can assist stroke pa-

tients in performing task-specific exercises.

Introduction
A brain-computer interface (BCI) system translates human brain activity to commands that
can operate a device, such as a computer [1]. Existing BCI systems have many applications. For
example, a BCI allows a user to spell with a virtual keyboard [2, 3], to control an orthosis [4], a
functional electrical stimulator (FES) [5], and to navigate the World Wide Web [6], with differ-
ent degrees of success. In the early stage of BCI research, most BCI applications aimed to help
people with limited mobility including those with amyotropic lateral sclerosis and spinal cord
injury [7]. Recently, there is also an emerging interest in BCI with applications targeting stroke
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individuals. More specifically, investigations have been performed to evaluate the possibility of
using BCIs for post-stroke rehabilitation to restore upper and lower limb functions [8, 9].

It is not straightforward to apply existing BCI systems to control devices such as a robotic
exoskeleton. The main reason is that these systems have low dimensional control, i.e., they can
only recognize a limited number of mental tasks as unique control commands. Motor imagery
tasks such as left hand, right hand, and foot motor imagery are among the most frequently
used in a BCI system [10]. Wolpaw and McFarland have shown that their participants were
able to move a cursor with two-dimensional control (i.e., horizontal and vertical) on a comput-
er screen after several sessions of training [11]. In this study, each dimension of cursor move-
ment was controlled by the mu (8–12 Hz) or beta (18–26 Hz) rhythm, which was associated
with left or right hand motor imagery. This strategy was then extended to three-dimensional
cursor control (i.e., horizontal, vertical, and depth) in which the BCI was based on the changes
in mu and/or beta rhythm during foot, left, and right hand motor imagery [12]. Scherer et al.
have proposed a virtual keyboard controlled by a three-class BCI that discriminated the motor
imagery of left hand, right hand, and foot [2]. Some studies employed intelligent control strate-
gies to achieve multi-dimensional BCI control. For example, four-class BCIs have been devel-
oped, which allowed users to fly a virtual helicopter [13] and a robotic quadcopter in a three
dimensional space [14]. The users would imagine moving/resting both hands to fly the helicop-
ter forward/backward and imagine moving left/right hand to rotate the helicopter left/right.
Doud et al. extended the work in [13] and introduced a six-class BCI. The third dimensional
control of raising and lowering the helicopter was achieved by imagining moving the tongue
and feet respectively [15]. They have demonstrated the ability of users to control the flight of a
virtual helicopter with three dimensional control that can be independently adjusted in
strength according to user preference.

While the classification of left hand, right hand, foot, and tongue motor imagery have been
rather successful, the task of detecting the intention or discriminating the motor imagery of dif-
ferent movements within the same limb, on the other hand, is challenging. This is due to the
fact that these motor tasks activate regions that have very close representations on the motor
cortex area of the brain [16, 17]. To date, not many studies have addressed this problem. A
summary of the studies that classify the motor imagery or the execution of different upper-ex-
tremity movements within the same limb is provided in Table 1.

Liao et al. [18] have investigated the binary classification of the following ten different pairs
of executed finger movements using 128-channel EEG signals: thumb vs index,; thumb vs mid-
dle; thumb vs ring; thumb vs little; index vs middle; index vs ring; index vs little; middle vs
ring; middle vs little; and ring vs little finger. The average accuracy achieved in this study is
77.1% when power spectral changes are used as features and support vector machine is used as
a classifier.

Three of the studies in Table 1 look into the decoding of different wrist movements. The
classification of four different imaginary wrist movements namely wrist flexion, extension, pro-
nation, and supination have been demonstrated in [19]. Unfortunately, the accuracies achieved
are not satisfactory (approximately 35%). Vuckovic et al. [20] and Ghani et al. [21] also look
into discriminating two different wrist movements using EEG signals. Their binary classifica-
tion tasks include six combinations of different wrist movements: extension vs flexion; exten-
sion vs supination; extension vs pronation; flexion vs supination; flexion vs pronation; and
supination vs pronation. The accuracies achieved in these studies are reasonably high (in the
range of 60 to 80%). Vuckovic et al. [20] show that the best results were obtained when imagi-
nary wrist extension was one of the classes being selected for classification. Ghani et al. [21], on
the other hand, do not demonstrate any consistency in terms of the best classifiable type
of movement.
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Next, Deng et al. [22] and Zhou et al. [23] attempt to classify the intention of executing
shoulder abduction and elbow flexion, which is used in a BCI system to overcome the abnor-
mal coupling that exists between the shoulder abduction and elbow flexion following stroke. In
these papers, the intention is defined as the time window of 1800 to 60ms prior to the onset of
a voluntary shoulder or elbow torque. These two studies have demonstrated promising results,
with accuracies above 70% for stroke patients and 80% for healthy volunteers. Finally, Chakra-
borti et al. [24] propose to use a multi-class BCI to control the motion and orientation of a
robot. For each left and right hands, the execution of shoulder, elbow, and finger movements
are classified using only 2-channel EEG signals. The classification of these same limb move-
ments results in surprisingly high classification accuracies (i.e., in the range of 56%—93%).

In this paper, the research effort is focused in the classification of upper-limb movements
within the same limb. We propose a 3-class BCI system that discriminates EEG signals corre-
sponding to rest, imaginary grasp movements, and imaginary elbow movements. Motor imag-
ery of grasp and elbow movements are chosen due to their potential use in controlling the
robotic arm [25] developed in our lab and an FES. This rehabilitation system is designed to
help stroke patients perform task-specific rehabilitation exercises and eventually improve their
upper-extremity functions. The three classification tasks employed in this study are different
from those listed in Table 1. Even though Chakraborti et al. [24] also look into the classification
of elbow and finger movements, but their work focuses on real movements and resting states
are not considered in their study. In contrast, both imaginary movements and a rest state are
included in our classification problem. In the present study, we also investigate the differences
between simple motor imagery and goal-oriented motor imagery in terms of their topographi-
cal distributions and classification accuracies.

To the best of our knowledge, the classification combination employed in this study as well
as the difference between simple and goal-oriented motor imagery have not been explored in
the BCI literature. In addition, all BCIs designed for stroke rehabilitation only classify two clas-
ses (left vs right motor imagery or mostly rest vs motor imagery), as shown in Table 2. A
3-class BCI system for stroke rehabilitation has some advantages over the state-of-the-art
2-class BCIs designed for stroke rehabilitation. First, it has an additional dimension to operate
a robotic system when performing task-specific exercises. For example, the user can imagine
elbow movements to move the robotic device close to a cup, and then imagine grasp move-
ments to activate the FES, which in turn close the user’s fingers to grab the cup. Such control is
more intuitive than that derived from a BCI system that identifies the motor imagery of differ-
ent limbs (i.e., left/right hand and foot). The second advantage of the 3-class BCI system is that
the users can perform mental practice on two different joint movements using the same device.

Table 1. BCI studies that classify different same limbmovements.

Bibliography # EEG Real/MI BCI Classes Accuracy (%)

Liao et al. [18] 128 Real 2-class: Different Pairs of Thumb, Index, Middle, Ring, Little Fingers 77.11% (11 Healthy)

Navarro et al. [19] 21 Real, MI 4-Class: Wrist Flexion, Extension, Pronation, Supination 35%, 34%, 35%, 32% (4 Healthy)

Vuckovic et al. [20] 64 Real, MI 2-Class: Different Pairs of wrist Flexion, Extension, Pronation, Supination 63%–82% (10 Healthy)

Ghani et al. [21] 64 Real 2-Class: different pairs of wrist Flexion, Extension, Pronation, Supination 61%–75% (3 Healthy)

Deng et al. [22] 163 Real (*Intention*) 2-Class: Shoulder Abduction, Elbow Flexion 89% (4 Healthy), 76% (1 Stroke)

Zhou et al. [23] 163 Real (*Intention*) 2-Class: Shoulder Abduction, Elbow Flexion 92% (4 Healthy), 75% (2 Stroke)

Chakraborti et al. [24] 2 Real 3-Class: Shoulder, Elbow, Finger 56%–93% (8 Healthy)

BCI studies that classify different same limb movements.

doi:10.1371/journal.pone.0121896.t001
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Studies have shown that a rehabilitation program that includes mental practice can help im-
prove the use and function of the affected arm of a stroke patient [26, 27].

In the following section, the experimental procedures as well as the feature extraction and
machine learning algorithms are described. Results are presented in Section 3 and Section 4 is
dedicated to discussion and conclusion.

Experimental Procedure

EEG Recording
All of the methods within this study were in compliance with the declaration of Helsinki and
were approved by the Simon Fraser University (SFU) Office of Research Ethics (#2012s0527).
We recruited twelve able-bodied individuals for this study. Participants gave a written consent
before participating in the experiment. Each individual was seated comfortably in front of a
computer monitor. The computer provided a simple Graphical User Interface (GUI) that dis-
plays commands or cues to the participant.

A 32-channel EGI’s Geodesic sensor net was applied on the participant’s head [48]. The lo-
cations of all the electrodes are shown in Fig. 1. The labeled electrodes were those we employed
for our BCI system. The remaining unlabeled electrodes, on the other hand, were not consid-
ered in this study because they were very close to sources that generate muscle activities or arti-
facts. All these electrodes were referred to the vertex (Cz position in Fig. 1) of the participant.
The EEG signals were amplified and sampled at 1000 Hz using a Geodesic Net Amps 400 series
amplifier [49]. Throughout the experiment, the electrode impedance was maintained below
50 kO.

Table 2. BCI studies in stroke rehabilitation, focusing on upper-extremity rehabilitation and EEGwas used as a modality to measure brain
activities.

Bibliography Feedback BCI Classes

Prasad et al. [28] BCI + Visual 2-Class: MI Left vs MI Right (Arm/Hand)

Ortner et al. [29] BCI + Visual 2-Class: MI Left vs MI Right (Hand)

Kaiser et al. [30] BCI + Visual 2-Class: MI/AT (Grasp) vs Rest

Daly et al. [31] BCI + Visual + FES 2-Class: MI/AT (Finger Extension) vs Relax

Tam et al. [32], Meng et al. [33] BCI + Visual + FES 2-Class: MI (Wrist) vs Rest

Young et al. [34] BCI + Visual + FES + TDU 2-Class: AT (Open + Close Hand) vs Rest

Tan et al. [35] BCI + Visual + NMES 2-Class: MI (Hand) vs Rest

Ang et al. [36–38] BCI + Visual + Robot 2-Class: MI (Hand) vs Rest

Ang et al. [39] BCI + Visual + Robot 2-Class: MI (Grasp) vs Rest

Rodriguez et al. [40, 41] BCI + Visual + Robot 2-Class: MI (Elbow Flexion) vs Rest;

2-Class: MI (Elbow Extension) vs Rest

Buch et al. [42], Broetz et al. [43] BCI + Visual + Orthosis 2-Class: MI/AT (Grasp) vs Rest (Open)

Shindo et al. [44] BCI + Visual + Orthosis 2-Class: MI (Open Hand) vs Rest

Ramos-Murguialday et al. [45] BCI + Orthosis 2-Class: AT (Reach & Grasp) vs Rest

Frisoli et al. [46] BCI + Arm Exoskeleton + Kinect + Eye-Tracker 2-Class: MI (Right Arm) vs Rest

Cincotti et al. [47] BCI + Visual / BCI + EMG + FES 2-Class: MI/AT (Grasp/Finger Extension) vs Rest

MI: Motor Imagery; AT: Attempted Movement; FES: Functional Electrical Stimulation; TDU: Tongue Stimulation;

NMES: Neuromuscular Electrical Stimulation.

BCI studies in stroke rehabilitation, focusing on upper-extremity rehabilitation and EEG was used as a modality to measure brain activities.

doi:10.1371/journal.pone.0121896.t002
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Experimental Procedures
Each experiment for each participant lasted for approximately 1.5 hours. The experiment con-
sisted of four sessions. Each session lasted 12 minutes. The participant was asked to perform
different repetitive tasks according to the visual cues displayed on the computer monitor. Four
different visual cues (see Fig. 2) were presented in a random order to the participant. They are
listed as follows:

1. Rest (REST): rest and relax [Fig. 2(a)]

2. Motor imagery of grasp (MI-GRASP): imagine opening and closing all the fingers to grab
an object [Fig. 2(b)]

Fig 1. The EEG electrode positions employed in this study. The labeled electrodes were used in our BCI system. The remaining unlabeled electrodes, on
the other hand, were not considered in this study. All these electrodes were referred to the vertex (Cz position).

doi:10.1371/journal.pone.0121896.g001
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3. Motor imagery of elbow flexion and extension (MI-ELBOW): imagine moving the forearm
up and down [Fig. 2(c)]

4. Goal-directed motor imagery of elbow flexion and extension (MI-ELBOW-GOAL): imagine
reaching out for the glass of water displayed and bringing it back [Fig. 2(d)]

There is a clear distinction between MI-ELBOW and MI-ELBOW-GOAL. MI-ELBOW in-
volves only simple repetitive elbow flexion and extension. MI-ELBOW-GOAL on the other
hand is a goal-oriented action, i.e., a visible goal (a glass of water) is present. MI-ELBOW-
GOAL was included in this study to investigate the effect of goals or targets on EEG activity
and consequently on the classification accuracy of the multi-class BCI system proposed.

Each session consisted of 20 trials for each tasks. Each trial lasted from 8 to 10 s (see Fig. 3).
Each visual cue was randomly selected and displayed on the screen for 3 s, indicating which
task to perform. The participant was asked to perform each designated task for 3 s, followed by
5 to 7 s of rest. Throughout the experiment, the participant could take a break whenever
needed.

Fig 2. Visual cues presented during the experiments. (a) REST: rest and relax; (b) MI-GRASP: imagine opening and closing the fingers; (c) MI-ELBOW:
imagine moving the forearm up and down; (d) MI-ELBOW-GOAL: imagine reaching out for the glass of water displayed on the computer monitor and bringing
it back.

doi:10.1371/journal.pone.0121896.g002
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Feature Extraction and Classification
The EEG data collected from each experiment contained a mixture of four different mental
states: REST, MI-GRASP, MI-ELBOW, and MI-ELBOW-GOAL. In this paper, we first looked
into the binary classification of the following combinations:

1. REST vs MI-GRASP

2. REST vs MI-ELBOW

3. REST vs MI-ELBOW-GOAL

4. MI-GRASP vs MI-ELBOW

5. MI-GRASP vs MI-ELBOW-GOAL

Next, the classification of the following three classes were performed:

1. REST vs MI-GRASP vs MI-ELBOW

2. REST vs MI-GRASP vs MI-ELBOW-GOAL

The EEG data were processed by a signal processing unit that performs signal preprocess-
ing, feature extraction, and classification operations. The relevant features were extracted and
translated to useful control signals that could be employed to control one or more devices. In a
three-class classification problem, the output of the classifier had one of the three discrete states
‘0’, ‘1’, or ‘2’ and was not a continuous function. The logical states ‘1’ and ‘2’ indicated the
user’s intention to activate a device (e.g. a robotic arm or an FES). The logical states ‘0’, on the
other hand, implied that the user did not intend to activate the system.

In this study, an open-source MATLAB toolbox, BCILAB, was utilized to process the EEG
data [50]. In the following subsections, details about the data preprocessing, feature extraction,
and classification algorithms are given.

Data Preprocessing
The EEG data were downsampled to 250 Hz and then band-pass filtered to the 6–35 Hz fre-
quency band. This frequency band encompasses the mu and beta rhythms which have been re-
ported to desynchronize during motor imagery [51]. The band power changes of the mu and
beta rhythms have been successfully used in BCI systems to classify EEG signals related to
motor imagery [52–54]. Also, by band-pass filtering the data, ocular artifacts caused by the low
frequency components of the EEG data were minimized.

Fig 3. Experimental paradigm. At 0 s, a visual cue is randomly selected and presented. After 3 s, a blank
screen appears for 5 −7 s before another visual cue is presented. During this period of time, the participant is
requested to rest.

doi:10.1371/journal.pone.0121896.g003
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Feature Extraction
EEG epochs from 1 to 3 s after a visual cue were segmented. Then, features were extracted
from each segment. The following feature extraction methods, which are widely used in BCI re-
search, were employed:

1. Common Spatial Patterns (CSP) [53]

2. Filter-Bank Common Spatial Patterns (FBCSP) [55]

3. Logarithmic Band Power (BP) [10]

The frequency window used and the feature dimension for each method are presented in
Table 3.

CSP has been widely used in BCI research to extract features from EEG signals. This algo-
rithm can effectively extract discriminatory information from two classes of EEG signals [53].
The algorithm finds the directions where the EEG signals should be projected onto so that the
differences between any two classes of EEG signals are maximized (i.e. the variance of one class
is maximized while at the same time, the variance of the other class is minimized) [52]. These
directions are provided by a weight matrix in which its rows give the weights of the
EEG channels.

Here, the formulation of the CSP algorithm for a 2-class problem is described. This same
formulation of the 2-class CSP algorithm was also used when classifying the three classes of
EEG signals in this study as only binary classifiers were trained. More specifically, for a 3-class
problem, three different binary classifiers were trained and a voting scheme was employed to
determine the class label. More details about the voting scheme is provided in the
next subsection.

Given two classes of EEG signals: Class 1 and Class 2, the CSP algorithm finds a spatial filter
such that the signals can be projected into a 1-dimensional space where one class of signals is
maximally scattered and the other is minimally scattered. High variance of the signals indicates
strong rhythms whereas low variance indicates attenuated rhythms [52]. Let S = {S1,S2,. . .,SM}
where Si 2 R

Nc×N denotes the filtered i-th trial EEG signal,M the number of EEG trials, Nc the
number of EEG channels, and N the number of samples in the signal. The optimization prob-
lem is expressed as:

min
w

X

i2C1
varðwTSiÞ

s:t:
X2M

i¼1

varðwTSiÞ ¼ 1 ð1Þ

where C1 represents all Class 1 EEG trials and w 2 R
Nc is the unknown weight vector of the spa-

tial filter. In this study, the CSP features selected for classification were the log-variance of the

Table 3. Frequency window, time segment, and feature dimension for each feature extractionmethod.

Method Frequency Window Time Segment Feature Dimension

CSP 7–30 Hz 1–3 s 6

FBCSP 7–15 Hz, 15–25 Hz, 25–30 Hz 1–3 s 18

BP 7–30 Hz 1–3 s 20

Feature extraction algorithms used in this study.

doi:10.1371/journal.pone.0121896.t003
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EEG signals projected using six different spatial filters. These spatial filters were a) the three
most important spatial filters that explain the largest variance of Class 1 and the smallest vari-
ance of Class 2 and b) the three most important spatial filters that explain the largest variance
of Class 2 and the smallest variance of Class 1.

FBCSP is an extension of the CSP algorithm [55]. First, a filter bank is used to bandpass fil-
ter the EEG signals. Then, for each filtered EEG band, spatial filters are found using the CSP al-
gorithm discussed earlier. In this study, three filtered EEG bands were generated: 7–15 Hz, 15–
25 Hz, and 25–30 Hz. The FBCSP features selected for classification were the log-variance of
each of the filtered EEG band projected using six different spatial filters.

The third method, logarithmic band power (BP) is a simpler method. The features used for
classification were the log-variance of the bandpass filtered EEG signals from every channel.

Classification
Three classifiers were used to classify the three-class data:

1. Linear Discriminant Analysis (LDA) [56]

2. Logistic Regression (LR) using a fast Bayesian method [57]

3. Support Vector Machine (SVM) with a radial basis function (RBF) kernel [58]

For the SVM with an RBF kernel (K(x,y) = e−γjjx−yjj
2

), two parameters were optimized: a) the
kernel parameter gamma γ and b) the penalty weight c, which acts like a regularization parame-
ter that controls the misclassification rate of the training data. The optimal parameters were
obtained from a grid search with c ranging from 2−5 to 215 and γ ranging from 2−15 to 23[59].

To apply these three machine learning algorithms to a multi-class problem, an one-vs-one
voting strategy was employed. In the one-vs-one voting scheme, K(K−1)/2 binary classifiers for
a K-way multi-class problem are trained. During testing, all the binary classifiers are applied to
an unseen sample and the class that receives the highest number of votes wins [58]. In our case,
K = 3 and for each 3-class classification problem, 3 binary classifiers were set up.

Next, to evaluate the performance of the 3-class BCI system, the 10 × 10 cross-validation
method was employed [58]. The data set was randomized and divided into ten folds. Nine of
the folds were used to set up the classifier and the remaining one fold was used to test the classi-
fier. This procedure was repeated for ten times. Then, the average cross-validation classification
accuracy was computed and used as a performance metric.

In this study, nine combinations of different feature extraction and classification algorithms
listed above were used to discriminate the different classes of EEG signals. For each participant,
the highest cross-validation accuracy obtained from one of the nine algorithms mentioned ear-
lier was reported.

Results

ERD/ERS Analysis
It is known that motor imagery, preparation for movement, or movement is usually accompa-
nied by a decrease in the mu and beta rhythms over the sensorimotor cortex area especially the
contra-lateral region [51, 60]. This decrease is also known as event-related desynchronization
(ERD). A recent EEG and fMRI study suggested that the degree of this decrease might be quan-
titatively associated with an increase in neuronal activity [60]. Besides ERD, an increase in the
beta rhythm also occurs after a motor imagery or a movement is executed. This increase is
known as event-related synchronization (ERS). In this section, the average time course for the
ERD and ERS obtained from the contra-lateral C3 location of all participants are presented.

Classification of Different Imaginary Movements within the Same Limb

PLOSONE | DOI:10.1371/journal.pone.0121896 April 1, 2015 9 / 24



Fig. 4(a) shows the ERD time course for the mu rhythm (8–11 Hz) at the C3 location. Visual
cues were prompted on the computer screen from time 0s to 3s. The ERD time course was ob-
tained by averaging the power changes of the mu rhythm across all trials and all participants.
As shown in the figure, the power of the mu rhythm is attenuated approximately 0.7s after the
onset of MI-GRASP, MI-ELBOW, and MI-ELBOW-GOAL. Also, MI-ELBOW-GOAL pro-
duces greater ERD as compared to MI-ELBOW. As it takes time for the participants to see the
cue, decide which task to perform and then react, the attenuation of the mu rhythm does not
start at the onset of the motor imagery tasks. About 1s after the participants stop imagining,
the ERD recovers to the rest and baseline level. The mu rhythm for MI-ELBOW-GOAL takes
an additional 400ms to recover to the baseline level.

Next, Fig. 4(b) shows the ERD/ERS time course for the beta (14–18 Hz) rhythm at the C3 lo-
cation. The time course was obtained by averaging the power changes of the beta rhythm across
all trials and all participants. As shown in the figure, the beta rhythm also displays an attenua-
tion in its power after the onset of MI-GRASP, MI-ELBOW, and MI-ELBOW-GOAL. In addi-
tion, ERS or a rebound in the beta rhythm is observed after the participants have completed
the motor imagery tasks of MI-GRASP and MI-ELBOW. However, no ERS is observed in the
case of MI-ELBOW-GOAL.

Fig 4. The average time course for ERD and ERS. (a) ERD time course for the mu rhythm (8–11 Hz) at the C3 location; (b) ERD/ERS time course for the
beta (14–18 Hz) rhythm at the C3 location.

doi:10.1371/journal.pone.0121896.g004
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To illustrate the topographical distribution on the scalp of the difference between rest and
imaginary grasp movements, the R2 values for frequency bands ranging from 8 to 24 Hz at
each electrode locations are computed for all participants. R2 measures the difference between
two classes, i.e., the proportion of the single-trial variance that is due to the task [1]. The topo-
graphical map of one of the participants (P06), which demonstrates prominent scalp difference
between rest and imaginary grasp movements, is shown in Fig. 5. In this figure, large R2 values
are observed at electrode locations near the contra-lateral motor cortex area. Such prominent
differences occur as a result of the ERD of the mu and beta rhythms when MI tasks
are executed.

Frequency and Topographical Analysis for Different MIs
We are also interested in the topographical distribution on the scalp for different motor imag-
ery tasks measured by R2 values. Unfortunately, the topographical difference is subject-specific
and no consistent patterns can be observed. Examples are taken from participants PO6 and

Fig 5. R2 values for REST vs MI-GRASP for P06. R2 measures the difference between two classes. In this figure, the R2 values for frequency bands
ranging from 8 to 24 Hz at each electrode locations are computed for all participants. Large R2 values are observed at electrode locations near the contra-
lateral motor cortex area.

doi:10.1371/journal.pone.0121896.g005
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P07 to reflect this difference and their topographical maps are presented in Fig. 6 and Fig. 7 re-
spectively. For the case of MI-GRASP vs MI-ELBOW, larger difference is observed in the con-
tra-lateral of the motor cortex in participant P06 but in the ipsi-lateral of the motor cortex in
participant P07. When comparing MI-ELBOW against MI-ELBOW-GOAL, larger R2 values
are observed in the ipsi-lateral of the motor cortex in participant P06 but in the Pz region for
participant P07. Finally, for MI-GRASP vs MI-ELBOW-GOAL, the difference in terms of
the R2 values is the greatest in the contra-lateral of the motor cortex and the visual cortex (for
the frequency range of 14–18 Hz) in participant P06. Participant P07, on the other hand, has
the greatest difference in the Pz region and the ipsi-lateral of the motor cortex.

2-Class Classification Results
Table 4 shows the classification accuracy achieved for the binary classification of REST against
another type of motor imagery (i.e., MI-GRASP, MI-ELBOW, or MI-ELBOW-GOAL) using
EEG signals. For each participant, the reported classification accuracy is in fact the highest ac-
curacy obtained from the different combinations of feature extraction and classification algo-
rithms described in the previous section. The results obtained are consistent with those
achieved in the literature [8, 9]. The best results are achieved for the binary classification of
REST VS MI-GRASP (80.5%).

To compare the results of the three different binary classifiers, one-way ANOVA is used
since the data are normally distributed as assessed by Shapiro-Wilk Test (p> 0.05) [61]. Be-
sides, the variances of the data are homegeneous according to the Levene’s test for variance
homogeniety (p> 0.05). The analysis shows that the means of the performance of the BCI for
different binary combinations are not statistically significant (p> 0.05).

Table 5 presents the classification accuracy achieved for two different binary classifiers:
MI-GRASP vs MI-ELBOW and MI-GRASP vs MI-ELBOW-GOAL. The data are normally dis-
tributed as assessed by Shapiro-Wilk Test (p> 0.05). Thus, the paired t-test [61] is used to test
the statistical significance of the results. The analysis shows that the means of the performance
of the BCI for different MI combinations are significantly different at a significance level of
0.05.

Table 5 also shows that higher classification accuracies are achieved for the combination
that involves MI-ELBOW-GOAL except participant P01 and P03, whose classification rates for
both cases are about the same. Large accuracy gains when using the goal-oriented strategy are
observed in participants P02, P04, P07, and P09 where the increment ranges from 10.1 to
16.3%.

3-Class Classification Results
Table 6 shows the performance achieved by the BCI when classifying three classes of mental
tasks, i.e., REST vs MI-GRASP vs (MI-ELBOW or MI-ELBOW-GOAL) using EEG signals.
The data are normally distributed as assessed by Shapiro-Wilk Test (p> 0.05). The paired t-
test is used to compare the accuracies for the non goal-oriented and goal-oriented 3-class clas-
sification problems. The analysis shows that the means of the performance of the BCI for dif-
ferent combinations are statistically significant (p< 0.05).

As shown in the table, higher classification accuracies are achieved for the combination that
involve MI-ELBOW-GOAL except participant P6 and P10, whose classification rates for both
cases are about the same. Large accuracy gains when using the goal-oriented strategy are ob-
served in participants P02, P07, and P09 where the increment ranges from 10.1 to 13.6%.
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Fig 6. R2 values for P06 when different MI tasks were performed.

doi:10.1371/journal.pone.0121896.g006
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Fig 7. R2 values for P07 when different MI tasks were performed.

doi:10.1371/journal.pone.0121896.g007
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Discussion
In this paper, we first look into the binary classification of different imaginary movements such
as MI-GRASP, MI-ELBOW, and MI-ELBOW-GOAL. Then, the possibility of designing a
3-class BCI that discriminates rest, imaginary grasp movements, and imaginary elbow move-
ments is investigated. This paper also investigates whether goal-oriented motor imagery out-
performs non-goal-oriented motor imagery when classifying the task against other imaginary

Table 4. Binary classification accuracies for REST and a MI task.

Participant 2-Class Accuracy/%

REST vs MI-GRASP REST vs MI-ELBOW REST vs MI-ELBOW-GOAL

P01 85.0±8.9 83.4±8.3 81.8±9.2

P02 88.4±7.6 87.9±7.2 86.7±8.1

P03 90.1±6.7 86.7±7.1 89.5±7.3

P04 74.6±10.3 74.2±9.9 70.1±11.5

P05 85.9±8.6 82.8±10.0 78.1±10.7

P06 84.2±7.8 75.7±10.0 71.1±11.1

P07 81.1±10.2 69.6±11.3 76.4±9.9

P08 68.4±10.3 62.6±12.7 68.3±11.4

P09 83.6±9.0 73.4±10.4 82.2±8.9

P10 89.3±7.4 91.0±6.2 85.2±8.6

P11 63.1±12.9 59.0±9.2 65.0±12.4

P12 72.3±12.0 67.8±12.1 64.5±11.7

Mean 80.5±8.8 75.1±11.3 76.6±8.7

Binary classification accuracies for REST and a MI task.

doi:10.1371/journal.pone.0121896.t004

Table 5. Binary classification accuracies for two different MI tasks.

Participant 2-Class Accuracy/%

MI-GRASP vs MI-ELBOW MI-GRASP vs MI-ELBOW-GOAL

P01 59.9±12.2 58.8±11.8

P02 58.0±13.4 74.3±10.1

P03 60.9±11.4 59.8±12.1

P04 60.0±12.5 70.1±11.5

P05 58.3±11.7 63.3±10.8

P06 68.1±11.8 72.3±10.4

P07 69.2±11.6 80.6±9.9

P08 58.0±11.2 62.6±10.7

P09 56.9±12.0 70.2±12.2

P10 69.0±11.9 69.8±10.3

P11 50.0±12.7 56.1±11.8

P12 62.6±11.6 64.6±12.2

Mean 60.9±5.6 66.9±7.2

Binary classification accuracies for two different MI tasks.

doi:10.1371/journal.pone.0121896.t005
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task and/or rest. In the following subsections, more details about our claims and results
are provided.

Multi-Class Classification
The main aim of the present study is to investigate the possibility of detecting the motor imag-
ery (MI) of different joint movements within the same limb as well as detecting MI from a rest
state. To the best of our knowledge, this is one of the first study to distinguish both the imagi-
nary grasp movements and imaginary elbow movements from resting states using EEG signals.
Besides, we also investigate whether a goal-oriented motor imagery reaching task using elbow
(a functional movement) produces EEG features that are more prominent when compared to a
non-goal oriented motor imagery elbow flexion and extension.

From Table 4, it has been demonstrated that the binary classifiers achieve an average classi-
fication accuracy of 80.5%, 75.1%, and 76.6% for REST vs MI-GRASP, REST vs MI-ELBOW,
and REST vs MI-ELBOW-GOAL respectively. These results are consistent with the perfor-
mances reported in the literature [8, 9]. The classification of different MI from the same limb is
more challenging. The best classification pair is MI-GRASP vs MI-ELBOW-GOAL with a clas-
sification accuracy of 66.9% (Table 5). This performance is significantly better than the binary
classification pair of MI-GRASP vs MI-ELBOW.

The binary classification problem is then extended to a multi-class classification problem.
For this 3-class classification problem, an average accuracy of 60.7% is achieved and all the par-
ticipants have accuracies well above the random classification level of 33.3%. As expected, the
classification accuracies are lower than those achieved by the binary classifiers. The deteriora-
tion in the accuracy is caused by the difficulty in discriminating MI-GRASP fromMI-ELBOW
or MI-ELBOW-GOAL. It is challenging to discriminate the motor imagery of different move-
ments within the same limb because these motor tasks activate regions that have very close rep-
resentations on the motor cortex area of the brain [16, 17]. As the number of electrodes placed
around the motor cortex area is sparse, we could expect better performance when denser

Table 6. Performance of the 3-Class BCI.

Participant 3-Class Accuracy/%

Simple Goal-Oriented

P01 58.2±9.6 59.4±10.0

P02 62.8±9.3 72.9±10.0

P03 65.9±8.9 66.2±9.1

P04 53.1±8.3 59.1±8.9

P05 58.8±9.0 59.8±9.8

P06 61.1±9.1 61.2±8.6

P07 56.3±8.8 67.4±8.9

P08 47.6±9.6 50.8±9.6

P09 52.5±9.7 66.1±9.8

P10 70.3±9.1 69.4±8.9

P11 40.1±9.7 45.3±11.8

P12 48.3±8.8 50.4±11.0

Mean 56.2±8.5 60.7±8.4

Performance of the 3-Class BCI.

doi:10.1371/journal.pone.0121896.t006
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electrodes are placed over the scalp. Other approaches that can potentially improve the classifi-
cation performance of the BCI system include more BCI training and the use of online feed-
back. Besides, a hybrid BCI that combines EMG and EEG could also potentially improve the
efficiency and practicality of the system.

Simple vs Goal-Oriented Motor Imagery
Based on the ERD/ERS as well as frequency and topographical analysis using R2 values, we
found differences between MI-GRASP and MI-ELBOW or MI-ELBOW-GOAL especially at
the motor cortex area of the brain. Such differences are not consistent across all the partici-
pants. For example, for participant P07, the R2 values for MI-ELBOW vs MI-ELBOW-GOAL
are prominent in the posterior parietal cortex area, which is consistent with [62] in which the
imagined goal reaching task has been shown to activate areas that are posterior and medial in
the parietal cortex area. Moreover, evidence also shows that the parietal cortex is involved in
movement planning [63, 64]. In participant P07, visual areas were also activated probably be-
cause the participant performed visual imagery during the MI-ELBOW-GOAL tasks. The acti-
vations were stronger in the left hemisphere, as the participant in right-handed. For participant
P06, no significant difference in the R2 values for MI-ELBOW vs MI-ELBOW-GOAL is ob-
served. Hence, there was no difference between the classification performance when a simple
or a goal-oriented imaginary elbow movement was involved.

For both binary classification and 3-class classification as shown in Table 5 and Table 6 re-
spectively, higher classification accuracies are achieved for the combinations that involve
MI-ELBOW-GOAL except two participants. From these tables, large accuracy gains when
using the goal-oriented strategy are observed in participants P02, P07, and P09. For the binary
classification of MI-GRASP and MI-ELBOW-GOAL, the gain is 16.3% for participant P02.
The goal-oriented version of the motor imagery, MI-ELBOW-GOAL leads to a significantly
higher accuracy probably because an goal-oriented action activated more regions of the brain.
It could also be due to the fact that the participants were able to focus better in performing a
functional task.

Comparing Different Feature Extraction and Classification Methods
Nine combinations of different feature extraction and classification methods were used to dis-
criminate the different classes of EEG signals in this study. The reported accuracy for each par-
ticipant is the highest cross-validation accuracy obtained from one of the nine algorithms. We
are interested to know which of the feature extraction and classification methods lead to high
performance. Thus, for each of the feature extraction methods, the percentage of cases where it
outperforms other feature extraction methods is computed and shown in Fig. 8 (a). Fig. 8 (b),
on the other hand, shows the percentage of the number of cases where each of the classification
methods outperforms other classification methods.

The feature extraction method that has the highest percentage is the logarithmic band-
power method (41.7%), followed by FBCSP (39.3%) and CSP (19.0%). For the classification
methods, SVM with an RBF kernel is the best classifier where 46.4% of the times, it outper-
forms other classifiers such as LDA (44.1%) and logistic regression (9.5%). Of all the nine com-
binations of the algorithms, FBCSP with SVM and BP with LDA perform the best. They
respectively yield the highest cross-validation accuracy 20.2% of the times respectively. CSP
and SVM, on the other hand, has a percentage of 16.7%.

An understanding of the properties of the features is important when choosing a classifier.
Even though logarithm was applied to all the features in this study, the features do not have a
multivariate normal distribution as assessed by the Mardia’s multivariate normality test
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(p< 0.05) in most cases. Despite the violation of the normality assumption, LDA appears to be
quite robust. 44.1% of the time, LDA outperforms LR and SVM, which makes no assumptions
on the distribution of the data. Fig. 9 and Fig. 10 compare the decision boundaries of the three
classification algorithms for the two-class problem Rest vs MI-GRASP and MI-GRASP vs
MI-ELBOW respectively. For visualization purposes, these decision boundaries are derived
using only two features: logarithmic band power at C3 and C4 using the EEG data collected
from P03. The features are not normally distributed according to the Mardia’s test. For Rest vs
MI-GRASP (Fig. 9), the decision boundary of SVM is almost linear. SVM, as well as both the
linear classifiers (i.e., LDA and LR) produce a high accuracy of approximately 81.0% respec-
tively. For MI-GRASP vs MI-ELBOW (Fig. 10), the classification problem becomes challenging
as the data overlap more in the feature space. Thus, the classification accuracy achieved by
LDA and LR is low, i.e., approximately 53.0%. The decision boundary of SVM is non-linear re-
sulting in a higher accuracy 55.0%. As only two features were employed, the classification accu-
racies achieved in these two examples were smaller than those presented in Table 4 and
Table 5.

The scatter plots in Fig. 11 compare the performance of the three different feature extraction
methods. The comparison between the performance of the three different classification meth-
ods, on the other hand, is illustrated in Fig. 12. The red line in each scatter plot reflects a condi-
tion where the two algorithms under consideration achieve the same accuracy. Points that
deviate from the red line are instances in which one algorithm outperforms the other. The larg-
er the deviation, the performance difference between the two algorithms is greater. As shown
in Fig. 11, the differences between the feature extraction methods are pronounced. The largest

Fig 8. The performance of the feature extraction and classification methods. (a) The percentage of
cases where a feature extraction method outperforms others; (b) The percentage of cases where a
classification method outperforms others.

doi:10.1371/journal.pone.0121896.g008
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differences are a) 20.2% between CSP and BP; b) 17.4% between FBCSP and BP; and c) 12.9%
between FBCSP and CSP. The performance difference between the the classification methods
is smaller (see Fig. 12). The largest performance difference observed between LDA and LR is
7.3%, between SVM and LR is 9.4%, and between SVM and LDA is 7.5%. As the performance
difference between algorithms can be large, it is important to use appropriate feature extraction
and classification algorithms to optimize the BCI performance. The choice of the features,
however, affects the BCI performance more compared to the choice of the classification algo-
rithms used in this study.

Fig 9. The decision boundaries of LDA, LR, and SVMwhen classifying REST against MI-GRASP. The red and black circles represent samples from
REST and MI-GRASP respectively.

doi:10.1371/journal.pone.0121896.g009

Fig 10. The decision boundaries of LDA, LR, and SVMwhen classifying MI-ELBOW against MI-GRASP. The red and black circles represent samples
fromMI-GRASP and MI-ELBOW respectively.

doi:10.1371/journal.pone.0121896.g010
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Potential Applications
The results obtained from this study are promising. The proposed BCI can increase the number
of degree of freedom of the robotic system designed in our lab for stroke rehabilitation or for
assistive purposes. For example, the stroke patients can use imagine elbow movements to ex-
tend the robotic arm when reaching out for a target object (e.g. a cup), and then imagine grasp
movements to activate the FES and close their fingers to grab the object. For rehabilitation pur-
poses, the same strategy could be used to perform task-specific exercises (e.g. picking up a bean
bag and place it on one of the other four locations on the table). Task-specific training refers to
a therapy in which patients practice goal-oriented motor tasks they would use in daily living
such as a drinking task [65]. Studies have shown that task-specific training after stroke results
in better functional outcomes [66]. In addition, task-specific training has been shown to

Fig 11. Scatter plots of the performances of different feature extraction algorithms.

doi:10.1371/journal.pone.0121896.g011

Fig 12. Scatter plots of the performances of different classification algorithms.

doi:10.1371/journal.pone.0121896.g012
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produce long lasting cortical reorganization compared to traditional stroke rehabilitation [65,
67]. In another study, Boyd et al. investigate if target-specific or non-specific use of the hemi-
paretic arm would result in functional reorganization of the contralesional motor cortex after
stroke [68]. It has been reported that task-specific training plays an important role in produc-
ing plasticity in the cortex [68].

Conclusions and Future Work
In summary, we have demonstrated in the present study that same-limb motor imagery classi-
fication is possible. For the binary classification of imaginary grasp and elbow movements, the
average accuracy achieved is 66.9%. On the other hand, the performance achieved when classi-
fying three classes of EEG signals (i.e., rest, imaginary grasp, and imaginary elbow movements)
is 60.7%, which is significantly larger than the random classification of 33.3%. Our results also
show that goal-oriented motor imagery leads to higher classification performance.

In our future work, the proposed three-class BCI system will be integrated with an exoskele-
ton robotic arm and an FES to help stroke patients in performing task-specific exercises during
rehabilitation. Consequently, the efficacy of the system will be evaluated. It would also be inter-
esting to investigate the performance gain achieved when a hybrid BCI system that combines
the BCI with EMG is used to operate the rehabilitation system. This proposed system aims to
promote engagement amongst stroke patient when they are undergoing rehabilitation. More
specifically, the system encourages stroke patients to perform mental rehearsal of a movement
(i.e., engage in motor imagery) and at the same time, attempt to generate muscle movements
that match their intention to move. Subsequently, the robotic exoskeleton would provide feed-
back and assist the patients in performing the desired movements. We believe that such a sys-
tem can potentially lead to better functional outcomes.
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