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Tuberculosis (TB) is one of the world’s deadliest infectious disease killers today, and despite China’s increasing efforts to prevent
and control TB, the TB epidemic is still very serious. In the context of the COVID-19 pandemic, if reliable forecasts of TB
epidemic trends can be made, they can help policymakers with early warning and contribute to the prevention and control of
TB. In this study, we collected monthly reports of pulmonary tuberculosis (PTB) in Guiyang, China, from January 1, 2010 to
December 31, 2020, and monthly meteorological data for the same period, and used LASSO regression to screen four
meteorological factors that had an influence on the monthly reports of PTB in Guiyang, including sunshine hours, relative
humidity, average atmospheric pressure, and annual highest temperature, of which relative humidity (6-month lag) and
average atmospheric pressure (7-month lag) have a lagging effect with the number of TB reports in Guiyang. Based on these
data, we constructed ARIMA, Holt-Winters (additive and multiplicative), ARIMAX (with meteorological factors), LSTM, and
multivariable LSTM (with meteorological factors). We found that the addition of meteorological factors significantly improved
the performance of the time series prediction model, which, after comprehensive consideration, included the ARIMAX (1,1,1)
(0,1,2)12 model with a lag of 7 months at the average atmospheric pressure, outperforms the other models in terms of both fit
(RMSE = 37:570, MAPE = 10:164%, MAE = 28:511) and forecast sensitivity (RMSE = 20:724, MAPE = 6:901%, MAE = 17:306),
so the ARIMAX (1,1,1) (0,1,2)12 model with a lag of 7 months can be used as a predictor tool for predicting the number of
monthly reports of PTB in Guiyang, China.

1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by
Mycobacterium tuberculosis (M.tb), which is spread mainly
through the respiratory tract. M.tb can infect various organs
throughout the body, with lung infections being the most
common, and is the 13th leading cause of death worldwide
[1–3]. It is estimated that about 25% of the world’s population
is infected with M.tb [4], and that their lifetime risk of devel-
oping TB is as high as 5% to 10% [5], which poses a large
threat to human life and health. Despite the tremendous

efforts made by countries around the world to prevent and
control tuberculosis, it will remain a major public health prob-
lem. According to the Global Tuberculosis Report 2021 pub-
lished by the World Health Organization (WHO) [6], the
decline in the global incidence of TB has slowed from previous
years, with approximately 9.9 million new cases of TB in 2020
and an incidence rate of 127 per 100,000. It is worrying that
the incidence of TB in China turns down to be up in 2020,
from 58/100,000 in 2019 to 59/100,000, and becomes the sec-
ond highest burden of this disease in the world [7]. At the
same time, because the COVID-19 pandemic in 2020 has
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had a huge impact on the provision of basic services for TB,
the number of reported TB patients in China has dropped sig-
nificantly, and about 217,000 cases of TB patients have not
been diagnosed or reported to the China Disease Prevention
and Control Information System; so, the prevention and con-
trol situation is very serious and there is an urgent need to take
action to reduce the risk of disease in the population.

PTB is an infectious disease with an incubation period and
the potential for widespread population infection [8], and the
construction of appropriate predictive models to understand
the trend of the epidemic in advance will be of great benefit
to the prevention and treatment of tuberculosis. At present,
many scholars around the world have constructed mathemat-
ical models to be applied in the prediction of infectious disease
epidemic trends [9–13], which can be roughly divided into
two categories, namely, traditional prediction models and
advanced prediction models, and the performance of each
method depends on multiple factors, such as data trends, peri-
odicity and noise, and other environmental and social factors,
of which the construction of infectious disease prediction
models based on time series analysis technology is widely
used. In the field of public health and medicine, time series
analysis focuses on the continuous observation of biomedical
data over time, looking for patterns of change and thus pre-
dicting future trends [14]. The ARIMA (Autoregressive Inte-
grated Moving Average) model [15], the Holt-Winters
model, and the LSTM (long short-term memory) network
model [16] are popular time series models. ARIMA and
Holt-Winters models are traditional forecasting models with
well-established modeling steps and good statistical proper-
ties, but their linear modeling approach suffers from a number
of limitations [17]. LSTM models are a type of deep learning
and have received widespread attention in the field of infec-
tious disease prediction because they can deal well with the
long-term dependence of data and remember the long-term
relationships of data in prediction and show great advantages
in fitting structurally complex infectious disease data [18, 19].
Since TB has certain transmissible properties as an infectious
disease, it is worth discussing whether the LSTMmodel is nec-
essarily superior to the traditional time series model in terms
of prediction.

Since 2020, the COVID-19 epidemic has been raging
around the world, and in order to control the epidemic,
China implemented an unprecedented social intervention
strategy on January 23, 2020 to carry out an emergency
response, requiring the whole society to mobilize and advo-
cate good personal prevention, wearing masks, washing
hands correctly, and maintaining social distancing as routine
measures for the prevention and control of the COVID-19
epidemic. Because COVID-19 and TB are both respiratory
infectious diseases and both have similarities in prevention
and control methods, the conventional prevention and con-
trol strategies implemented during the COVID-19 pandemic
may have played a crucial role in reducing the incidence of
tuberculosis, and this routine measure will continue for a
long time in China. Therefore, in the context of the
COVID-19 epidemic, building some more sensitive time-
series models for the decline in the number of TB cases will
be an interesting question.

Related studies have shown that PTB is a seasonal dis-
ease in mainland China, with the epidemic showing a dis-
tinct “high in the west and low in the east” regional
distribution, with temperate continental, highland, and
mountainous climates dominating the western region, which
is prone to seasonal increases in PTB [20, 21]. Xiao et al. [22]
found that temperature, humidity, wind speed, and sunlight
may influence changes in PTB incidence by analyzing the
relationship between PTB incidence and meteorological fac-
tors in Jinghong, Yunnan Province, southwestern China.
The incidence of tuberculosis in Qinghai Province [23] and
Guangxi Zhuang Autonomous Region [24] also has different
degrees of relationship and lagging effect with some meteo-
rological factors. Therefore, climatic factors play an impor-
tant role in the onset and transmission of tuberculosis and
in predicting the number of tuberculosis cases.

To our knowledge, there are few relevant studies that com-
bine the above time series models with meteorological factors
and then predict the number of PTB cases. In this study, based
on time series analysis techniques, we developed ARIMA,
ARIMAX with meteorological factors, Holt-Winters (additive
andmultiplicative), LSTMwithout meteorological factors, and
LSTM with meteorological factors, respectively, based on the
monthly reported number of TB cases and monthly meteoro-
logical data in Guiyang City, Guizhou Province from 2010 to
2020. The six prediction models were compared using mean
absolute percentage error (MAPE), root mean square error
(RMSE), and mean absolute error (MAE), and the best predic-
tion model was selected.

2. Materials and Methods

2.1. Research Area. Guiyang is the capital of Guizhou Prov-
ince, located in the eastern part of the Yunnan-Guizhou Pla-
teau in southwest China, between 106°07′ and 107°17′ East
longitude and 26°11′ and 26°55′ North latitude, with a total
area of 8,034 km2 and a resident population of 5,987,000.
Guiyang City has a humid and mild subtropical climate with
both plateau and monsoon characteristics. The annual aver-
age temperature is 15.3°C, the annual average relative
humidity is 77%, the annual average total precipitation is
1129.5mm, the annual average sunshine hours is 1148.3
hours, and the ultraviolet intensity is weak.

2.2. Data Scores. Monthly reports of tuberculosis in Guiyang
City from January 1, 2010 to December 31, 2020 were
obtained from the Tuberculosis Management Information
System of the China Disease Prevention and Control Infor-
mation System, which included a total of 38,835 cases of
tuberculosis. Meteorological data for the study period were
obtained from the Guiyang City Statistical Yearbook. Meteo-
rological indicators included average temperature (°C), total
precipitation (mm), average atmospheric pressure (100Pa),
relative humidity (%) sunshine hours (hour), annual highest
temperature (°C), and annual lowest temperature (°C). Data
from 1 January 2010 to 31 December 2019 were defined as
the training set to build and compare the prediction models,
and data from 1 January 2020 to 31 December 2020 were the
number of monthly PTB reports (defined as the test set) in
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Guiyang City after the onset of the COVID-19 to evaluate
the prediction performance of the models.

2.3. Variance Inflation Factor. The variance inflation factor
(VIF) is a measure of the severity of multicollinearity in a
multiple linear regression model. It represents the ratio of
the variance of the estimated regression coefficients to the
variance of the independent variables assuming that there
is no linear correlation between them. The formula is as
follows [25]:

VIF = 1
1 − Ri

2 , ð1Þ

where Ri is the coefficient of determination of the inde-
pendent variable xi on the rest of the independent variables
doing the regression analysis. The larger the VIF, the stron-
ger the collinearity between the independent variables. In
general, if the VIF > 10, it means that the regression model
has severe multicollinearity.

2.4. LASSO Regression. LASSO, known as the least absolute
shrinkage and selection operator, was first proposed by Tib-
shirani [26] in 1996 and is a popular penalty regression
method, which penalizes the absolute value of each regres-
sion coefficient by constructing a penalty function so that
the regression coefficient is compressed even to zero, while
requiring the sum of the absolute values of all regression
coefficients to be less than or equal to the penalty parameter
λ (λ ≥ 0). A more refined model is finally obtained. It retains
the advantages of subset shrinkage and is a kind of biased
estimation for dealing with covariance data and therefore
possesses very good results for the treatment of high-
dimensional data and the selection of variables. The formula
is as follows:

The multiple linear regression equation is assumed to be

y = β0 + β1x1 + β2x2+⋯+βpxp + εε ~N 0, σ2À Á
: ð2Þ

The regression coefficients satisfy

〠
p

j=1
βj

��� ��� ≤ λ: ð3Þ

Minimize the sum of squared residuals under (3):

bβ� �LASSO
= arg min 〠

n

i=1
yi − 〠

p

j=1
βixij

 !2( )
: ð4Þ

In LASSO regression, the Cp (Mallow’s Cp) statistic is
usually used to select the optimal subset, with a smaller Cp

value representing the optimal subset.

2.5. ARIMA Model. The general abbreviation of the ARIMA
model is ARIMA ðp, d, qÞ ðP,D,QÞS [15], of which p repre-
sents the autoregressive order, d represents the difference
order, q represents the moving average order, P represents

the season the order of autoregression, D is the order of sea-
sonal difference, Q is the order of seasonal moving average,
and S is the cycle step. The ARIMAX model is an extension
of the ARIMA model, and when the ARIMA model includes
other time series (meteorological factors) as input variables,
it is called the ARIMAX model. The modeling steps for both
models are roughly as follows: (1) stationarity and white
noise test of the original sequence: use the augmented
Dickey-Fuller (ADF) test to judge whether the original
sequence is stationary, if it is a nonstationary sequence, then
perform sequence transformations, such as logarithmization,
difference (d), and seasonal difference (D), and then use
“Ljung-Box” statistic to perform white noise test on the sta-
tionary sequence to see if it has analytical value; (2) model
identification: the model is automatically identified by the
“auto. arima ()” function in RStudio, and the possibility of
p, q, P, Q, and S is preliminarily determined by combining
the properties of the stationary series sample autocorrelation
coefficient (ACF) and partial autocorrelation coefficient
(PACF); (3) parameter estimation: after the model is identi-
fied, the value of the unknown parameter in the model is
estimated by using the observed value of the sequence. The
method chosen for this paper is conditional least squares
and maximum likelihood estimation hybrid method (CSS-
ML); and (4) model test: the best model is selected by com-
prehensive consideration of AIC (Akaike Information Crite-
rion), and the residual sequence of the model should be a
white noise sequence.

2.6. Holt-Winters Model. The Holt-Winters method [27] is a
time series analysis and forecasting method divided into an
additive model and a multiplicative model. The method is
applicable to nonstationary series containing linear trends
and periodic fluctuations and uses exponential smoothing
(EMA) to allow the model parameters to continuously adapt
to changes in the nonstationary series and to provide short-
term forecasts of future trends.

The Holt-Winters additive model can be expressed as
follows:

xt = a t − 1ð Þ + b tð Þ + c tð Þ: ð5Þ

The recursion formula is as follows:

â tð Þ = α xt − c t −mð Þ½ � + 1 − αð Þ â t − 1ð Þ + b̂ t − 1ð Þ
h i

, ð6Þ

b̂ tð Þ = β â tð Þ − â t − 1ð Þ½ � + 1 − βð Þb̂ t − 1ð Þ, ð7Þ

Table 1: The main parameters of the LSTM model and the
multivariable LSTM model.

Parameters LSTM Multivariable LSTM

Epochs 220 300

Optimization functions ADAM ADAM

Learning rate 0.001 0.001

Batch size 30 120
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ĉ tð Þ = γ xt − â tð Þ½ � + 1 − γð Þc t −mð Þ: ð8Þ
The predicted value for the forward k period is

x̂t+k = â tð Þ + b̂ tð Þk + ĉ t + kð Þ,∀k ≥ 1: ð9Þ

The Holt-Winters multiplicative model can be expressed
as follows:

xt = a t − 1ð Þ + b tð Þ½ �c tð Þ: ð10Þ

The recursion formula is as follows:

â tð Þ = α
xt
c

t −mð Þ
h i

+ 1 − αð Þ â t − 1ð Þ + b̂ t − 1ð Þ
h i

, ð11Þ

b̂ tð Þ = β â tð Þ − â t − 1ð Þ½ � + 1 − βð Þb̂ t − 1ð Þ, ð12Þ

ĉ tð Þ = γ
xt
â tð Þ
� �

+ 1 − γð Þc t −mð Þ: ð13Þ

The predicted value for the forward k period is

x̂t+k = â tð Þ + b̂ tð Þk
h i

ĉ t + kð Þ,∀ ≥ 1: ð14Þ

In the above equation, a ðt − 1Þ is the unbiased estimate
of the sequence intercept term, where the t − 1 moment
eliminates the seasonal effect, b ðtÞ is the unbiased estimate
of the slope of the t-moment b, c ðtÞ is the unbiased estimate
of the t-time seasonal index Sj, xt is the latest observation
obtained at the t-time, and m is the period length of the sea-

sonal effect; α, β, γ are smoothing coefficients that meet the
0 < α, β, γ < 1.

2.7. LSTM Model. The LSTM model, known as the long
short-term memory model, was first proposed in 1997 by
Hochreiter and Schmidhuber [16]. Because of its unique
design structure, it is suitable for handling and predicting
important events with long intervals and delays in time
series. Currently, application areas include text generation
[28], speech recognition [29], machine translation [30],
and infectious disease prediction [31]. LSTM is a special
kind of recurrent neural network (RNN) [32], which com-
bines short-term and long-term memory through gate con-
trol, overcomes the gradient disappearance or gradient
explosion of traditional RNN models, and is better at dealing
with the problem of multiple variables. The individual circu-
latory structures of LSTM (also known as cells) consist of
input gates, forgetting gates, output gates, and unit states.
The output gate determines how much of the input data of
the network needs to be saved to the cell state at the current
moment; the forgetting gate determines how much of the
unit state at the previous moment needs to be retained at
the current moment; an output gate is a control of how
much of the current unit state needs to be output to the cur-
rent output value. Prediction methods that use only a single
piece of data as input belong to univariatable LSTM and
multivariable predictions can be constructed to improve
the accuracy of predictions, taking into account that some
variables exhibit periodic changes. In this paper, a multivar-
iable LSTM prediction model of PTB reporting was estab-
lished using the “torch” package in RStudio, which not
only considered multiple meteorological elements but also
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Figure 1: Decomposition of multiplicative time series of monthly pulmonary tuberculosis registrations in Guiyang from 2010 to 2020.
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the lagging effect of meteorological factors on the incidence
of PTB. Since the LSTM model is sensitive to the input size
of the data, the data should be readjusted to the range of 0 to
1 (also known as standardization), and this study has been
parameterized several times to determine the optimal model
based on the minimum root mean square error (RMSE) of
the test set. The main parameters are shown in Table 1.

2.8. Model Evaluation Index. The performance and predic-
tion accuracy of ARIMA model, ARIMAX model, Holt-
Winters (additive and multiplicative) model, LSTM model,
and multivariable LSTM model were evaluated using mean
absolute percentage error (MAPE), root mean square error
(RMSE), and average absolute error (MAE). The calculation
formula is as follows:

MAPE = 1
n
〠
n

y=1

actual yð Þ − forecast yð Þ
actual yð Þ

����
���� × 100%, ð15Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

y=1 actual yð Þ − forecast yð Þj j2
n

s
, ð16Þ

MAE = 1
n
〠
n

y=1
actual yð Þ − forecast yð Þj j: ð17Þ

y = 1, 2, 3,⋯, n, and n represents the sequence sample
size.

2.9. Data Processing and Analysis. The number of monthly
PTB reports and monthly meteorological indicators in Gui-
yang City from 2010 to 2020 was collated and summarized

through Excel 2010, using the “forecast,” “tseries,” and
“torch” packages in RStudio (https://www.rstudio.com/) to
establish ARIMA models, ARIMAX models, Holt-Winters
(additive and multiplicative) model, LSTM model, and mul-
tivariable LSTM model. The statistical test level is α = 0:05.

3. Results

3.1. Epidemic Situation of Pulmonary Tuberculosis in
Guiyang. From January 1, 2010 to December 31, 2020, a total
of 38,835 cases of PTB were registered in Guiyang City, with
the maximum number of monthly reports being 477 cases
and the minimum number of monthly reports being 189
cases. From the decomposition of multiplicative time series
(Figure 1), there is a long-term trend and a clear seasonality
in the number of monthly reports of PTB in Guiyang. The
long-term trend shows that the number of PTB reports in
Guiyang from 2010 to 2020 shows an overall downward
trend. The seasonality shows that the number of PTB
reported in Guiyang is the lowest level in February and the
high incidence period from March to July and two “small
peaks” in September and November. Random effects showed
that when trend effects and seasonal effects were excluded,
the monthly reports of PTB in Guiyang showed randomness.

3.2. Influence of Meteorological Factors on Pulmonary
Tuberculosis Registration in Guiyang. From 2010 to 2020,
the total precipitation in Guiyang was 99.902mm
(6.300mm~507.100mm), the average temperature was
14.752°C (-1.500°C~24.300°C), the average sunshine hours
was 86.814 hours (2.400 hours~218.600 hours), the relative
humidity was 81.167% (68.000%~92.000%), the average
atmospheric pressure was 877:623 × 100 Pa
(871:100 × 100 Pa ~ 884:300 × 100 Pa), the annual highest
temperature is 26.798°C (8.700°C~34.300°C), and the annual
lowest temperature is 6.833°C (-5.700°C~19.900°C) Table 2.

The results are found in Table 3, where the VIF values of
average temperature (°C) and annual lowest temperature
(°C) are greater than 10, indicating that there is a multicol-
linearity between meteorological factors. To overcome the
problem of collinearity, LASSO regression is used for mete-
orological variables screening and selection, the optimal sub-
set is selected by the Cp (Mallow’s Cp) statistic of the model,
five meteorological factors (Table 3) are screened out when
Cp = 6:149, then linear regression is performed, and there
are four variables that pass the significance test (Table 4):

Table 2: Monthly meteorological conditions of Guiyang from 2010 to 2020.

Meteorological factors Mean Standard deviation Max. Min.

Total precipitation (mm) 99.902 92.549 507.100 6.300

Average temperature (°C) 14.752 6.766 24.300 -1.500

Sunshine hours (hour) 86.814 47.013 218.600 2.400

Relative humidity (%) 81.167 5.188 92.000 68.000

Average atmospheric pressure (100 Pa) 877.623 3.764 884.300 871.100

Annual highest temperature (°C) 26.798 5.323 34.300 8.700

Annual lowest temperature (°C) 6.833 7.483 19.900 -5.700

Table 3: Results of VIF test and LASSO regression analysis of
meteorological factors.

Meteorological factors
VIF
value

Regression
coefficient

Total precipitation (mm) 2.464 0.000

Average temperature (°C) 40.029 0.000

Sunshine hours (hour) 3.166 -0.748

Relative humidity (%) 2.025 -3.060

Average atmospheric pressure
(100 Pa)

3.643 -5.191

Annual highest temperature (°C) 8.044 5.551

Annual lowest temperature (°C) 24.149 -0.889
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sunshine hours, relative humidity, average atmospheric
pressure, and annual highest temperature will have an
impact on the number of monthly PTB reports in Guiyang.

3.3. ARIMA Model. We defined the data from 1 January
2010 to 31 December 2019 as the training set to build the
prediction model. From Figure 1, we know that the number
of monthly PTB reports in Guiyang City has a long-term
trend and seasonality; so, the ARIMA ðp, d, qÞ ðP,D,QÞS
model was chosen for fitting. According to the modeling
steps, the series was transformed to a smooth series
(Dickey − Fuller = −5:855, p < 0:01) after a 1st order 12-
step difference and conformed to the nonwhite noise prop-
erty (p < 0:01), so that d = 1, D = 1, and S = 12. The parame-
ters p, q, P, and Q were estimated by the “auto.arima ()”
function was automatically fitted in combination with man-
ual observation of ACF and PACF plots to estimate the
parameters p, q, P, and Q. The “auto.arima()” function
selected ARIMA (1,0,1) (0,1,1)12 as the best model, which
clearly did not fit the actual situation and required further
observation of the ACF and PACF plot (Figure 2), initially
identified as p = 0 or 1 and q = 0 or 1.

The identification of P and Q is more difficult, but in
general, it does not exceed order 2; so, we took 0, 1, and 2
from low to high order, respectively, and tried them one by
one (Table 5). After considering the fitting effect of each
ARIMA model in the training set and the sensitivity of pre-
dicting the number of PTB incidence from January 1 to
December 31, 2020, we chose the ARIMA (1, 1, 1) (0, 1, 2)

12 model as the relatively optimal model, which has a white
noise series of residuals (p = 0:863) and AIC = 1124:440,
which is a good fit, see Figure 3.

3.4. ARIMAX Model. In order to evaluate the correlation
between meteorological factors and the number of PTB reg-
istrations in Guiyang with different lags, we developed
ARIMA models for sunshine hours, relative humidity, aver-
age atmospheric pressure, and annual highest temperature
(Table 6) to obtain the residual series of meteorological
factors.

The ARIMA (1, 1, 1) (0, 1, 2)12 model for the number of
PTB cases in Guiyang City from 1 January 2010 to 1 Decem-
ber 2019 was analyzed using the crosscorrelation function
(CCF) with the lag time of the meteorological factor for
the same period (Figure 4), and it can be seen from the figure
RH (6-month lag) and AAP (7-month lag). Based on this, we
combined the RH (6-month lag) and AAP (7-month lag)
with the ARIMA (1, 1, 1) (0, 1, 2)12 model in turn to con-
struct the ARIMAX model (Table 7). After considering the
fitting effect of each ARIMAX model in the training set
and the sensitivity of predicting the number of PTB inci-
dences from January 1 to December 31, 2020, we selected
the AAP (7-month lag) +ARIMAX (1, 1, 1) (0, 1, 2)12 model
as the relatively optimal model, which had a white noise
series of residuals (p = 0:973) and AIC = 998:980, which is
a good fit (Figure 5).

3.5. Holt-Winters (Additive and Multiplicative) Model. The
Holt-Winters (additive) model and Holt-Winters (multipli-
cative) model were constructed using the Holt-Winters ()
function in RStudio to automatically fit the data based on
the principle of optimality of fit, as the original series has a
certain long-term trend and periodicity. The results show
that the Holt-Winters (additive) model outperforms the
Holt-Winters (multiplicative) model in terms of fitting and
prediction sensitivity see Table 8 and Figure 6.

Table 4: Regressor selection results for LASSO.

Parameter Estimate Std. error t value p value

Intercept 5492.277 2022.397 2.716 0.008

Sunshine hours (hour) -0.799 0.173 -4.613 <0.001
Relative humidity (%) -3.323 1.222 -2.720 0.007

Average atmospheric pressure (100 Pa) -5.713 2.273 -2.513 0.013

Annual highest temperature (°C) 6.123 1.796 3.409 <0.001
Annual lowest temperature (°C) -1.352 1.274 -1.062 0.290
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Figure 2: Guiyang PTB monthly registrations after dealing with the 12 step and 1 order difference sequence of ACF and PACF.
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3.6. LSTM and Multivariable LSTM Models. Based on the
previous analysis, the LSTM model and multivariable
LSTM+RH (6-month lag) +AAP (7-month lag) model were
constructed according to the model parameters’ set in this
study. From Figure 7 and Table 9, the multivariable LSTM
+RH (6-month lag) +AAP (7-month lag) model outper-
forms the LSTM in terms of training set fitting and predic-
tion sensitivity.

3.7. Comparison of Time Series Model. In this paper, MAPE,
RMSE, and MAE were used to assess the fit and predictive
sensitivity of the forecasting models (Table 10), and predic-

tive sensitivity (MAPE = 6:901%, RMSE = 20:724, MAE =
17:306) than the ARIMA (1, 1, 1) (0, 1, 12)12, Holt-
Winters (additive), and multivariable LSTM+RH (lag
6) +APP (lag 7) models performed well. Therefore, the ARI-
MAX (1, 1, 1) (0, 1, 2)12 +AAP (lag 7) model was the best
prediction model for predicting the prevalence of TB in Gui-
yang after the COVID-19.

4. Discussion

In recent years, due to the increase in global climate change
and extreme weather events, the spread of infectious diseases

Forecasts from ARIMA (1,1,1) (0,1,2) (12)
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Figure 3: Fitting effect and prediction graph of ARIMA (1, 1, 1) (0, 1, 2)12 models.

Table 5: Verification of alternative ARIMA models.

ARIMA models
Training set Test set

AIC
Box-Ljung test

MAPE (%) RMSE MAE MAPE (%) RMSE MAE X-squared p value

ARIMA (1, 0, 1) (0, 1, 1)12 11.102 39.983 31.659 12.436 32.012 29.046 1131.050 0.301 0.584

ARIMA (0, 1, 1) (0, 1, 0)12 12.726 48.733 36.806 13.187 44.787 32.290 1152.190 0.101 0.750

ARIMA (1, 1, 1) (0, 1, 0)12 12.712 48.660 36.901 13.665 46.234 33.447 1153.830 0.005 0.942

ARIMA (0, 1, 1) (0, 1, 1)12 10.549 39.956 30.731 7.733 26.653 20.055 1122.370 0.105 0.746

ARIMA (1, 1, 0) (0, 1, 1)12 11.012 42.498 32.325 7.226 28.546 19.206 1132.510 0.779 0.378

ARIMA (1, 1, 1) (0, 1, 1)12 10.462 39.535 30.411 9.936 27.894 24.205 1123.800 0.092 0.762

ARIMA (1, 1, 1) (1, 1, 1)12 10.319 38.826 29.973 8.034 26.612 20.406 1124.940 0.048 0.826

ARIMA (0, 1, 1) (0, 1, 2)12 10.271 38.819 29.906 7.229 27.913 19.165 1122.680 0.044 0.833

ARIMA (0, 1, 1) (1, 1, 2)12 10.307 39.062 30.015 7.179 27.852 19.075 1124.440 0.055 0.814

ARIMA (0, 1, 1) (2, 1, 2)12 8.399 32.532 24.309 14.232 41.408 34.847 1115.750 0.001 0.979

ARIMA (1, 1, 1) (0, 1, 2)12 10.184 38.375 29.578 7.081 26.771 18.601 1124.440 0.030 0.863

ARIMA (1, 1, 1) (1, 1, 2)12 10.277 38.692 29.817 7.302 26.625 19.071 1126.150 0.036 0.849

Note: ARIMA (1, 0, 1) (0, 1, 1)12 is the autorecognition model of auto.arima() function.
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has been seriously affected, and the existing health problems
of human beings have multiplied [33]. In southwest China,
the weather usually changes rapidly, with more extreme
weather and more susceptibility to meteorological factors.
Therefore, it is of great significance to consider the influence
of meteorological factors on the occurrence and spread of
infectious diseases while constructing mathematical models
to predict the epidemic trend of infectious diseases, which

will help optimize the prevention strategy of infectious
diseases.

In this study, we found that meteorological factors were
correlated with the number of PTB reports in Guiyang City
from 2010 to 2020 based on monthly PTB reports and mete-
orological data for the same period, and that there was a
lagged effect, with each model significantly improving per-
formance when meteorological factors were included. At
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Figure 4: Graph of crosscorrelation functions: (a) sunshine hours, (b) relative humidity, (c) average atmospheric pressure, and (d) annual
highest temperature.

Table 7: Verification of alternative ARIMAX models.

ARIMAX models
Training set Test set

AIC
Box-Ljung test

MAPE (%) RMSE MAE MAPE (%) RMSE MAE X-squared p value

RH (lag6) +ARIMAX (1, 1, 1) (0, 1, 2)12 10.220 38.076 28.915 10.343 29.498 25.662 995.280 <0.001 0.983

AAP (lag7) +ARIMAX (1, 1, 1) (0, 1, 2)12 10.164 37.570 28.511 6.901 20.724 17.306 998.980 0.001 0.973

RH (lag6) +AAP (lag7) +ARIMAX
(1, 1, 1) (0, 1, 2)12

9.837 36.661 27.819 8.202 24.736 20.429 991.790 0.030 0.862

Table 6: ARIMA model for each meteorological factors.

Meteorological factors ARIMA models AIC
Box-Ljung test

X-squared p value

Sunshine hours (SH) ARIMA (1, 0, 0) (1, 1, 1)12 1088.210 0.007 0.932

Relative humidity (RH) ARIMA (0, 0, 1) 737.420 <0.001 0.998

Average atmospheric pressure (AAP) ARIMA (0, 0, 0) (0, 1, 1)12 364.720 0.379 0.538

Annual highest temperature (AHT) ARIMA (1, 0, 0) (2, 1, 1)12 509.200 0.185 0.667
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the same time, after the decomposition of the multiplicative
time series, we found that the number of monthly PTB
reports in Guiyang city has the characteristics of seasonality
and long-term trend; so. it is a good choice to use the time
series analysis technique to construct a prediction model.
We chose the classical ARIMA/ARIAMX, Holt-Winters
(additive and multiplicative) models and the advanced
LSTM/multivariable LSTM models to evaluate the perfor-
mance of the six models on training set and prediction sen-
sitivity by including or not including meteorological factors.
The results of this study showed that the ARIMAX (1, 1, 1)
(0, 1, 2)12 +AAP (lag 7) model with the inclusion of meteo-
rological factors showed the best performance and was suit-
able for predicting the epidemic trend of tuberculosis in
Guiyang after the occurrence of a COVID-19, and accurately
predicting the epidemic trend of tuberculosis could help the
local government to formulate appropriate prevention and
control measures.

ARIMA and Holt-Winters (additive and multiplicative)
models are traditional statistical models for time series pre-
diction, both of which reveal the patterns of historical data
over time and are suitable for short-term prediction. They
are widely used for predicting the epidemic trends of infec-

tious diseases such as hand, foot, and mouth disease [34],
tuberculosis [9], and COVID-19 [35, 36] because of their
advantages of easy and fast modeling approach and high
prediction accuracy. In this study, the ARIMA model and
Holt-Winters (additive and multiplicative) model were gen-
erally good predictors and fits for the number of monthly
PTB registrations in Guiyang from 2010 to 2020, but the
ARIMA model was superior to the Holt-Winters model.
The reason for this may be that the ARIMA model con-
stantly adjusts the parameters during the modeling process,
taking into account the developmental characteristics of
the series, especially for series with complex interactions
between long-term trends, periodicity, and stochastic fluctu-
ations. The Holt-Winters model, on the other hand, decom-
poses the variation pattern of the series by means of
exponential smoothing, which is suitable for analyzing data
with little variation over time, and its modeling process is
simpler than that of the ARIMA model, but the Holt-
Winters model wastes serious information on the stochastic
fluctuations in the series, which leads to a less than ideal
model fitting accuracy.

It is well known that environmental and natural factors
largely influence the incidence and transmission of PTB.

Forecasts from regression with ARIMA (1,1,1) (0,1,2) (12) errors
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Figure 5: Fitting effect and prediction graph of AAP (7-month lag) +ARIMA (1, 1, 1) (0, 1, 2)12 models.

Table 8: Evaluation of fitting and prediction effect of Holt-Winters (additive and multiplicative) models.

Models
Parameter Training set Test set

α β γ MAPE (%) RMSE MAE MAPE (%) RMSE MAE

Holt-Winters (additive) 0.220 0.000 0.480 11.930 42.732 34.438 8.101 28.689 21.003

Holt-Winters (multiplicative) 0.073 0.000 0.396 12.177 43.649 35.323 10.726 29.348 26.041
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Forecasts form holtwinters (additive)
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Figure 6: Fitting effect and prediction graph of Holt-Winters (additive and multiplicative) model.
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Using a single time series model may not reflect the chang-
ing pattern of PTB incidence; so, it is necessary to develop
prediction models containing multiple input variables, while
some studies have confirmed that time series prediction
models containing influencing factors perform better than
single prediction models [37–39]. In a comparison of the
ARIMA model with the ARIMAX model, we found that
the ARIMAX model with the inclusion of meteorological
factors outperformed the single ARIMA model because the
ARIMAX model could handle multivariate time series data
that included other time series associated with the number

of TB reports, so as to improving the predictive accuracy
of the model. However, it was also found in our study that
the inclusion of more meteorological factors did not imply
higher model accuracy, a result similar to that of a time
series analysis of PTB conducted in three cities in Jiangsu
Province, China [40].

Considering that both the ARIMA and ARIMAX models
are linear regression models, we also used a deep learning
based LSTM model. The LSTM model captures nonlinear
dependencies and performs better on volatile time series with
unstable components than the traditional linear ARIMA
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Figure 7: Fitting effect and prediction graph of LSTM and multivariable LSTM+RH (6-month lag) +AAP (7-month lag) models.
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model and is able to maintain long-term storage of informa-
tion, thus allowing accurate modelling of data where short-
term or long-term dependencies exist [41]. Based on this,
one might think that the LSTM model would outperform
the ARIMA/ARIMAX and Holt-Winters models in training
and prediction, but the univariate LSTM model was found to
be the worst performer in our study. The LSTM model is an
advanced recurrent neural network, which improves the accu-
racy of the model prediction results with a larger number of
data sets [42]. We then further constructed the multivariable
LSTM model, i.e., adding meteorological factors with lagged
effects to the LSTM model, and the results obtained showed
that the meteorological factors could improve the perfor-
mance of the LSTM model, but it was still worse than the
ARIMA/ARIMAX model and Holt-Winters model. The
LSTMmodel is a complex neural network that requires a large
amount of data for training, and too few training samples can
lead to overfitting [43]. In this study, we are constructing a
time series forecasting model based on monthly data from
2010 to 2019, with a small sample size and strong linear
dependence between series; so, the ARIMA/ARIMAX model
and Holt-Winters model will perform better when they have
a clear trend in the series.

This study compared the predictive performance of
ARIMA, ARIMAX, Holt-Winters, LSTM, and multivariable
LSTM models with and without meteorological factors using
time series analysis techniques, with the aim of finding a
suitable model for predicting the trend of tuberculosis epi-
demic in Guiyang, China. Of course, there are still some
shortcomings in this study; firstly, we only considered mete-
orological factors in our modeling process. In future work,
we will incorporate social and economic influences into the
prediction model and continuously update the PTB data to
obtain more accurate results. Secondly, the monthly TB data
we collected did not distinguish between the mobile popula-
tion and drug-resistant PTB reports, and some of the data
were difficult to obtain; so, further research is necessary to
predict trends in the mobile population and drug-resistant
PTB reports in Guiyang. Finally, we need to further delineate
different time scales in future studies to explore the perfor-
mance of different time series prediction models.

5. Conclusions

In this study, we constructed six time series models with and
without meteorological factors using monthly PTB reports
and meteorological data for the same period from 2010 to
2020 in Guiyang City, China, of which the ARIMAX (1, 1, 1)
(0, 1, 2)12+AAP (lag 7) model performed best in the training
and validation sets. It shows that the addition of meteorologi-
cal factors can improve the accuracy of the prediction model,
which can be applied to the prediction of the trend of tubercu-
losis epidemic in Guiyang City, thus helping the local govern-
ment to formulate effective intervention measures and
prevention and control strategies, which is of practical signifi-
cance and value for the comprehensive prevention and control
of TB, and also provide methodological reference for the trend
prediction of other infectious diseases.
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Table 9: The fitting and prediction of LSTM and multivariable LSTM models.

Models
Training set Test set

MAPE (%) RMSE MAE MAPE (%) RMSE MAE

LSTM 13.191 44.516 36.250 18.124 44.585 39.176

Multivariable LSTM+RH (lag 6) +AAP (lag 7) 10.105 34.615 28.961 12.758 35.167 28.562

Table 10: Evaluation of fitting and prediction effect of time series models.

Models
Training set Test set

MAPE (%) RMSE MAE MAPE (%) RMSE MAE

ARIMA (1, 1, 1) (0, 1, 2)12 10.184 38.375 29.578 7.081 26.771 18.601

ARIMAX (1, 1, 1) (0, 1, 2)12 +AAP (lag 7) 10.164 37.570 28.511 6.901 20.724 17.306

Holt-Winters (additive) 11.930 42.732 34.438 8.101 28.689 21.003

Multivariable LSTM+RH (lag 6) +APP (lag 7) 10.105 34.615 28.961 12.758 35.167 28.562
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