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Abstract

Rationale

Stem cells have been identified in the human lung; however, their role in lung disease is not

clear. We aimed to isolate mesenchymal stem cells (MSC) from human lung tissue and to

study their in vitro properties.

Methods

MSC were cultured from lung tissue obtained from patients with fibrotic lung diseases (n =

17), from emphysema (n = 12), and normal lungs (n = 3). Immunofluorescence stainings

were used to characterize MSC. The effect of MSC-conditioned media (MSC-CM) on fibro-

blast proliferation and on lung epithelial wound repair was studied.

Results

Expression of CD44, CD90, and CD105 characterized the cells as MSC. Moreover, the cells

stained positive for the pluripotency markers Oct3/4 and Nanog. Positive co-stainings of

chemokine receptor type 4 (CXCR4) with CD44, CD90 or CD105 indicated the cells are of

bone marrow origin. MSC-CM significantly inhibited the proliferation of lung fibroblasts by

29% (p = 0.0001). Lung epithelial repair was markedly increased in the presence of MSC-

CM (+ 32%). Significantly more MSC were obtained from fibrotic lungs than from emphy-

sema or control lungs.

Conclusions

Our study demonstrates enhanced numbers of MSC in fibrotic lung tissue as compared to

emphysema and normal lung. The cells inhibit the proliferation of fibroblasts and enhance

epithelial repair in vitro. Further in vivo studies are needed to elucidate their potential role in

the treatment of lung fibrosis.
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Introduction

Interstitial lung diseases (ILD) are a heterogeneous group of disorders and pulmonary fibrosis

is the common end stage of many ILDs. They are characterized by an excessive deposition of

extracellular matrix (ECM) by fibroblasts leading to the destruction of the lung architecture [1,

2]. The most common and aggressive form of ILD is idiopathic pulmonary fibrosis (IPF) hav-

ing a 5-year survival of only 20% [2]. The pathomechanisms of IPF are incompletely under-

stood but repetitive micro-injuries to alveolar epithelial cells and dysregulated alveolar wound

repair with impaired re-epithelialization are regarded as the initial processes [3, 4]. Data show-

ing the induction of pulmonary fibrosis by targeted injury of alveolar epithelial cells support

this concept [3]. While previous therapeutic approaches mainly targeted fibroblast prolifera-

tion and ECM deposition, newer strategies are aimed at replacing damaged epithelial cells and

restoring normal repair processes [2]. Accordingly, the use of stem cells to improve regenera-

tion and reduce fibrosis has been reported in animal models of lung fibrosis [5–9]. Very

recently, three phase 1 clinical trials demonstrated the feasibility and safety of administered

mesenchymal stromal/stem cells in IPF patients [10–12]. We have demonstrated previously

the presence of bone marrow derived, hepatocyte growth factor (HGF) -secreting, stem cells in

human lung tissue from patients with usual interstitial pneumonia [13]. Furthermore, HGF-

expressing bone marrow derived stromal cells (BMSC) attenuated bleomycin induced pulmo-

nary fibrosis in the rat lung [13], suggesting that these cells have anti-fibrotic properties.

Endogenous stem/progenitor cells have been reported in the human lungs and are thought

to help in repair and regeneration [14]. However, no comparative study has been performed to

isolate and characterize these endogenous stem/progenitor cells from different lung diseases.

We therefore aimed at isolating endogenous stem/progenitor cells from healthy, emphysema-

tous and fibrotic lungs and to ascertain their phenotype, origin and possible biological role

specifically in fibrotic lungs.

In the present study, we demonstrate the presence of potential mesenchymal stem cells

(MSC) in fibrotic human lung, and provide evidence for their anti-fibrotic properties in vitro.

Materials and methods

Ethical approval

The Human Ethics Committee of the University of Basel approved the study (EKBB 05/06).

Human lung tissue was obtained with approval of the Human Ethics Committee of the Uni-

versity of Basel (EKBB 05/06) and written informed consent was obtained from all patients

who underwent lung biopsy.

Patients

Between November 2011 and April 2014 cell cultures of primary lung cells were established

from lung tissue obtained from 32 patients undergoing video-assisted thoracoscopic surgery

(VATS) performed at the Division of Thoracic Surgery, or undergoing flexible bronchoscopy

with transbronchial biopsy at the Clinics of Respiratory Medicine, University Hospital Basel,

Switzerland. Patient characteristics with clinical diagnosis are summarized in Table 1. In

patients with lung tumors, lung tissue for cell culture was obtained from the macroscopically

normal part away from the tumor. A complete set of pulmonary function tests (PFT) within 2

weeks prior to lung biopsy was available from all patients. PFTs were performed by using body

plethysmography and the carbon monoxide diffusion capacity (Jaeger, Wuerzburg, Germany).

Tests were performed according to the European Respiratory Society standards [15, 16]. High

Stem cells in lung fibrosis
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resolution computed tomography (CT) scans of the lungs were performed in all patients prior

to VATS/bronchoscopy.

Cell culture

Lung tissue was cut into small pieces and placed into cell culture flasks. MSC were grown

under standard conditions (37˚C, 21% O2, 5% CO2) in RPMI medium supplemented with

10% fetal calf serum (FCS), 20 U/L penicillin, 20 μg/ml streptomycin and 2.5 μg/ml amphoteri-

cin B was used. Cultures were controlled five times a week for outgrowth of cells by sprouting.

MSC-growth was considered as “positive” when cells formed a confluent cell layer around the

biopsy. If there was no growth of MSC within fourteen days after start of cell culture the biopsy

was rated as “negative”. To obtain conditioned medium (CM) from cells, fresh cell culture

medium was added to non-passaged MSC and incubated for 24 hours (37˚C, 5% CO2). The

CM was collected, centrifuged (2000 x g, 5 minutes) to remove any cell debris, split into ali-

quots and stored at– 20˚C. CM derived from the same cell line was pooled. Fibroblasts were

cultured as described earlier [17]. For the culture of primary human alveolar epithelial type II

cells pieces of lung tissue were placed into cell culture flasks for cell sprouting containing sup-

plemented epithelial growth medium (Cnt-17) (CELLnTEC Advanced Cell System AB; Bern,

Switzerland). Complete epithelial culture medium was replaced every fourth day.

Paraffin embedded lung slices

Lung tissue sections from selected patients diagnosed with IPF/usual interstitial pneumonia

(UIP) or chronic hypersensitivity pneumonitis were studied. Sections with normal lung served

as controls.

Immunofluorescence stainings and immunohistochemistry in cultured

cells and lung tissue sections

Immunofluorescence analysis of confluent, non-passaged cells was performed as previously

described [17]: confluent, non-passaged cells were fixed with 4% formalin (10 minutes), and

permeabilized with methanol/acetic acid (3:1, ice-cold, 10 minutes). Cells were then blocked

with 5% BSA (1 hour), and incubated with antibody against fibronectin (SantaCruz, LabForce

AG; Nunningen, Switzerland), α-smooth muscle actin (α-SMA) (Epitomics, LabForce AG), or

E-cadherin (Santa Cruz, LabForce AG) for 1 hour. The primary antibodies were detected by

addition of fluorescein-conjugated donkey anti-goat (Southern Biotech, BioConcept; Allsch-

wil, Switzerland) or cy3-conjugated goat anti-rabbit antibody (Invitrogen; Lucerne, Switzer-

land) for 1 hr. To visualise the nuclei 4,6-diamido-2-phenylindole (Sigma) was added (5 min)

and cells were subsequently examined on a fluorescence microscope. For Nanog (R&D sys-

tems) and Oct3/4 (Abcam, USA) stainings cells were fixed as described above, and incubated

with primary antibodies over night at 4˚C. Next day the cells were treated with appropriate

secondary antibodies and visualized using Leica DMI 4000 B. The different fluorescent labelled

antibodies used were FITC (for Oct3/4) and Alexa Fluor 594 (for Nanog) (ThermoFisher Sci-

entific, Life Technologies Europe; Zug, Switzerland). Immunofluorescence stainings for CD90,

CD105, CXCR4 and immunohistochemistry for CD44 and CXCR4 were performed as

described previously [13].

Real-time RT-PCR

Total RNA was extracted with a Quick-RNA MiniPrep Kit (ZymoResearch, Orange, CA).

RNA levels were determined by real-time PCR using an E-Cadherin (Hs01023894), Oct3/4

Stem cells in lung fibrosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0181946 August 21, 2017 5 / 22

https://doi.org/10.1371/journal.pone.0181946


(Hs01895061_u1), NANOG (Hs02387400_g1) or GAPDH (Hs03929097_g1) TaqMan1 Gene

Expression Assay (both Applied Biosystems, Foster City, CA). Samples were run at 50˚C for 2

min, 1 cycle; 95˚C for 10 min, 1 cycle; 95˚C for 15 s, 60˚C for 1 min, 40 cycle and quantified by

the ΔΔCt calculation method.

Assay for mesenchymal differentiation

Cells were stimulated with specific differentiation media Stem Pro differentiation kits (Life

technologies, USA) following manufactures protocol. For myogenic differentiation two differ-

ent media were prepared, cells were grown in DMEM media with 2% horse serum (Life tech-

nologies, USA) and 1% l-glutamin (Life technologies, USA) for 3 days and then changed to

DMEM with 2% horse serum, 1%l-glutamin 1ng/ml bFGF (Peprotech, USA) and 0.4μg/ml

dexamethasone (Sigma Aldrich, USA). Adipogenic differentiation was assessed with Red oil O

(Sigma Aldrich, USA) staining for fat vacuoles; Myogenic differentiation was assessed using

staining for α-SMA; Osteogenic differentiation was demonstrated by assessing alkaline phos-

photase activity (BCIP/NBT, Thermo Scientific, USA); Chondrogenic differentiation was dem-

onstrated via staining for Toluidine Blue (Sigma Aldrich, USA).

Fibroblast proliferation

Cells were seeded (104 cells/ml) in 24-well plates, grown until 80% confluence, and serum-

deprived for 24 hours (0.1% FCS). Fibroblasts were incubated with MSC-CM for 48 hours

before being automatically counted (Coulter, particle counter).

Hepatocyte growth factor analysis

HGF-levels in MSC-CM were quantified by enzyme-linked immunoabsorbent assay (ELISA)

kit as instructed (R&D systems, UK).

In vitro alveolar epithelial wound repair assay

Wound repair assay was performed as reported previously [18]: human alveolar epithelial-like

cells A549 (American Type Culture Collection [ACCT]; Rockville, MD, United States of

America) were cultured to confluence in six-well plates in RPMI supplemented with 10% FCS.

The cell layer was mechanically wounded using a pipette tip, and CM obtained from mesen-

chymal stem cells with and without different concentrations of HGF-neutralizing antibodies

(0.1, 0.4, 0.8 ng/ml) was added to the wounded cells. Images of the wound surface were cap-

tured at time 0 and after 24 hours using a microscope (Leitz Diavert, Wetzlar, Germany) con-

nected to a digital camera (Nikon Coolpix). Image J software (NIH, USA) was applied to

analyze the wound surface and wound repair was expressed as percentage of lung epithelial

wound closure after 24 hours.

Statistical analysis

Statistical comparisons were made by using Student’s t-test. p-values� 0.05 were considered

significant. Where applicable, data are shown as mean ± standard error of the mean (SEM)

from at least three independent experiments.
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Results and discussion

Culture and characterization of undifferentiated cells from adult human

lungs

Cell cultures were established from lung tissue obtained from 32 patients. The characteristics

of these patients are shown in Table 1. Indication for lung biopsy was lung volume resection

surgery (LVRS) due to emphysema/bullectomy in 8/32 (25%) patients, lung resection due to

benign or malign lung tumor in 6/32 (19%) patients, diagnostic biopsy due to chronic cough

of unknown origin in one patient (3%), and in 17/32 (53%) patients lung biopsy was part of a

diagnostic work-up due to non-classified fibrotic lung disease. Two to eight days after the start

of culture (using supplemented RPMI) distinct cells started to sprout and grow out of the

biopsy pieces and reached confluence around the biopsy after eight to ten days. As shown in

Fig 1A, these cells exhibited neither the typical spindle-shape morphology of fibroblasts (Fig

1B), nor the typical cobble-stone morphology of alveolar epithelial type II cells (Fig 1C). In

contrast, the cells showed an intermediate morphology with heterogeneity in shape. Therefore,

we termed them intermediate cells until final characterization. In contrast to primary human

lung fibroblasts (Fig 2D and 2H), immunofluorescence studies in these intermediate cells dem-

onstrated only weak stainings for the mesenchymal markers α-SMA (Fig 2B) and fibronectin

(Fig 2F). Likewise, compared to primary human alveolar epithelial type II cells (Fig 2L), inter-

mediate cells showed only weak E-cadherin staining (Fig 2J). When culture medium of conflu-

ent intermediate cells was changed from RPMI containing 10% FCS to an epithelial growth

medium (Cnt-17, CELLnTEC Advanced Cell System AB), cells started to change their shape

into a cobble-stone morphology and after approximately 72 hours the cells were morphologi-

cally consistent with alveolar epithelial cells (Fig 3A). The differentiation into epithelial cells

was demonstrated by positive immunofluorescence staining for E-cadherin (Fig 3B) and con-

firmed by real time RT-PCR showing significantly enhanced E-cadherin mRNA expression

after epithelial differentiation as compared to a low E-cadherin mRNA expression in interme-

diate cells (Fig 3C).

Undifferentiated cells are stem cells and originate from the bone marrow

To further characterize these cells the presence of the pluripotency markers, Oct3/4 and

Nanog, was determined. Immunofluorescence staining for Oct3/4 and Nanog was positive in

the cells (Fig 4A and 4B) indicating that these cells are possibly pluripotent. As a control, Oct3/

4 staining was performed in primary human lung fibroblasts, but no positive signal could be

observed (S1 Fig). Additional real time RT-PCR data confirmed the expression of Oct3/4 and

Nanog mRNA in intermediate cells as compared to a low expression in fibroblasts (Fig 4C and

4D). To further investigate the allocation of these cells in vivo, lung tissue sections from

patients with histologically confirmed IPF/UIP and chronic fibrotic hypersensitivity pneumo-

nitis were used for further immunofluorescence/immunohistochemistry studies. Distinct cells

with positive staining for the MSC markers CD90 (Fig 4E), CD44 (Fig 4F) and CD105 (Fig

4G–4I) were observed in close proximity to the alveolar epithelium, identifying the cells of

interest as MSC. The bone marrow as the origin of the cells was suggested in the lung tissue

sections by positive co-staining for C-X-C-chemokine receptor type 4 (CXCR4) (Fig 4E, 4F

and 4G). Additional staining data have been published previously [13].

Stem cells have the ability for mesenchymal differentiation in vitro

To further characterize the differentiation potential of the stem cells adipogenic, osteogenic,

myogenic, and chondrogenic differentiation was induced in these cells. As demonstrated in

Stem cells in lung fibrosis
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Fig 5A, the cells were able to undergo adipogenic differentiation demonstrated by positive red

oil O stains for fat vacuoles. The myogenic differentiation was shown by positive staining for

Fig 1. Morphology of mesenchymal stem cells. Phase contrast pictures of primary human mesenchymal

stem cells (A), fibroblasts (B), and alveolar epithelial type II cells (C). Magnification x 20.

https://doi.org/10.1371/journal.pone.0181946.g001
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Fig 2. Characterization of mesenchymal stem cells. Primary human mesenchymal stem cells (A, B, E, F,

I, J), fibroblasts (C, D, G, H), and alveolar epithelial cells (K, L) immunostained for α-smooth muscle actin (B,

D), fibronectin (F, H), and E-cadherin (J, L). Corresponding phase contrast pictures are shown in panels A, C,

E, G, I, and K. Cells were grown to confluence in normal growth medium, were then fixed, and permeabilized.

Primary antibodies were detected by addition of fluorescein-labelled (green) or Cy3-labelled (red) secondary

antibodies. Visualization by fluorescence microscopy. Magnification x 20.

https://doi.org/10.1371/journal.pone.0181946.g002
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α-SMA (Fig 5B), and the positive staining for alkaline phosphatase demonstrated the osteo-

genic differentiation (Fig 5C). The chondrogenic differentiation was proven by positive stain-

ing for toluidine blue (Fig 5D). Control experiments for osteogenic, chondrogenic, and

adipogenic differentiation potential were performed using primary human lung fibroblasts,

but no specific differentiation was observed (S2 Fig).

Fig 3. Epithelial differentiation of mesenchymal stem cells. Primary human mesenchymal stem cells were cultured in an

epithelial growth medium (Cnt-17, CellnTEC Advanced Cell System AB) for 3–4 days, cells were fixed, and permeabilized.

Cells were immunostained for E-cadherin (B). The primary antibody was detected by addition of a fluorescein-labelled (green)

secondary antibody. (A) Corresponding phase contrast picture. Visualisation by fluorescence microscopy. Magnification x 20.

(C) E-cadherin RNA expression in mesenchymal stem cells before (grey bar) and after (black bar) epithelial differentiation.

RNA expression was assessed by quantitative real time RT-PCR. Data are presented as mean ±SEM of independent

experiments performed in three different cell lines.

https://doi.org/10.1371/journal.pone.0181946.g003
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Fig 4. Characterization of mesenchymal stem cells. Primary human mesenchymal stem cells immunostained for Oct3/4

(A), and Nanog (B). Cells were fixed and permeabilized. Primary antibodies were detected by addition of fluorescein-labelled

(FITC) (green) and Alexa Fluor 594-labelled (red) secondary antibodies. E, G-I: Double immunofluorescence staining for

CD90 (E), CD105 (G, H, I) and C-X-C-chemokine receptor type 4 (CXCR4) (panels E, G, H, I) in lung tissue sections from

patients with histologically confirmed IPF/UIP and chronic fibrotic hypersensitivity pneumonitis. Primary antibodies were
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Mesenchymal stem cells express hepatocyte growth factor

Biologically relevant levels of anti-fibrotic HGF (2124.9 ± 118 pg/ml) were measured in

MSC-CM.

Effect of mesenchymal stem cells conditioned media on cell proliferation

and wound healing

To assess possible anti-fibrotic properties of MSC, the effect of MSC-CM on fibroblast prolifer-

ation and on lung epithelial wound repair was studied. As demonstrated in Fig 6A, MSC-CM

detected by addition of secondary antibodies labelled with fluorescein FITC (green) for CD105 and CXCR4 detection or

Cy3-labelled (red) for CD90 and CXCR4 detection. Magnification x40. Images were acquired using LSM 510 confocal

microscope. Panel H and I is a 3D reconstruction to show more clear co stainings on the same cell. F: Co-staining with CD44

(pink) and CXCR4 (dark red) (Scale bar 2μm, Magnification x100 (oil)). (C, D) Oct3/4 (C) and Nanog (D) mRNA expression in

mesenchymal stem cells (black bars) and in fibroblasts (grey bars). RNA expression was assessed by quantitative real time

RT-PCR. Data are presented as mean ± SEM of independent experiments performed in three different cell lines.

https://doi.org/10.1371/journal.pone.0181946.g004

Fig 5. Mesenchymal differentiation of mesenchymal stem cells. Differentiation of stem cells into adipocytes (A), myofibroblasts (B), osteoblasts

(C), and chondroblasts (D). Adipogenic differentiation was assessed with Red oil O staining for fat vacuoles (A); Myogenic differentiation was assessed

via α-SMA-staining (B); Osteogenic differentiation was demonstrated by activity of alkaline phosphotase (C); Chondrogenic differentiation was

demonstrated via Toluidine Blue-staining (D).

https://doi.org/10.1371/journal.pone.0181946.g005
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Fig 6. In vitro effects of mesenchymal stem cells. (A) Effect of conditioned medium derived from mesen-

chymal stem cells (MSC) (black bar) on fibroblast proliferation compared to control medium (open bar). Normal

primary human lung fibroblasts (n = 2) were stimulated with MSC-derived conditioned medium from 8 different

subjects. Data are presented as mean ±SEM of independent experiments. (B) Effect of MSC-derived condit-

ioned medium (black bar) on epithelial wound closure after mechanical injury and dose-dependent effect of anti-

hepatocyte growth factor (HGF) antibodies (grey bars). Bars represent means ±SEM expressed as percentage

change from control medium.

https://doi.org/10.1371/journal.pone.0181946.g006
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(n = 8) significantly inhibited primary human lung fibroblast proliferation (29% growth inhi-

bition, p = 0.0001). The epithelial wound repair capacity of wounded A549 epithelial cells incu-

bated with MSC-CM was analyzed and compared to wounded A549 cells incubated with

control medium. Compared to control medium (= 0% wound closure), alveolar epithelial

wound closure was increased in the presence of MSC-CM at 24 hours (+ 32.4% wound closure,

Fig 6B). This positive repair effect was abolished in the presence of 0.8 ng/ml neutralizing anti-

HGF-antibodies (p = 0.006, Fig 6B). Control experiments for epithelial wound closure using

conditioned medium derived from primary human lung fibroblasts were performed (S3 Fig).

Increased numbers of mesenchymal stem cells in adult human lung

tissue derived from patients with fibrotic lung diseases compared to non-

fibrotic control lungs

Cell culture for MSC was set up from 32 different lung specimens obtained from 32 patients

undergoing lung biopsy for different reasons (Table 1). In 12 (37.5%) of those 32 patients the

final histological diagnosis of the lung tissue used for cell culture was lung emphysema and in

three patients (9%) normal lung tissue was used for cell culture (Table 2). Pulmonal graft-versus-

host disease (GvHD) after hematopoietic stem cell transplantation (HSCT) with constrictive/

obliterative or lymphocytic bronchiolitis was found in six (19%), usual interstitial pneumonia

(UIP) in four (12.5%) and organizing pneumonia (OP) in two (6%) patients (Table 2). In 5

patients (16%) with connective tissue diseases (CTD) various fibrotic changes were found on his-

tology. Table 2 summarizes the histological and chest computed tomography findings of all 32

patients. In total 95 biopsy-pieces were set up from the 17 patients with fibrotic lung diseases

and 111 biopsy-pieces from the 15 patients with emphysema or normal lung. Analysis of positive

MSC out-growth revealed that in 85% of set up biopsies derived from fibrotic lung tissue there

was spontaneous out-growth of MSCs which was significantly more (p<0.001) as compared to

26% from emphysema and normal lung tissue (Fig 7A). When further dissecting the results

according to histological diagnosis it showed that there was no MSC growth in normal lung,

whereas in the emphysema growth of MSC was observed in 33% of set up biopsies (Fig 7B). In

lungs derived from patients with pulmonal GvHD after HSCT MSC outgrowth was positive in

78% of set-up biopsies, in lung tissue obtained from patients with CTD-associated interstitial

lung diseases in 80%, and in lung tissue derived from patients with idiopathic interstitial lung

diseases (OP, UIP/IPF) a MSC growth-rate of 95% was observed (Fig 7B). Importantly, the lack

of MSC growth from normal control lung was confirmed by absence of immunofluorescence

stainings for CD44, CD90, and CD105 in paraffin embedded lung slices derived from normal

lung tissue (S4 Fig).

In this study we provide evidence that fibrotic adult human lung contains stem/progenitor

cells. The identified cells express markers of mesenchymal origin and are able to differentiate

towards a mesenchymal phenotype, thus we defined them as mesenchymal stem cells (MSC).

The secretome obtained (MSC-CM) inhibits the proliferation of fibroblasts and enhances

HGF-mediated lung epithelium wound repair in vitro. Furthermore, significantly enhanced

numbers of MSC were grown from lung tissue obtained from patients with fibrotic lung dis-

eases as compared to lung tissue obtained from patients with emphysema or with normal lung.

Presence of stem/progenitor cells in the lung and their role in health and disease has been

discussed [19, 20]; the nomenclature or classification of these cells has been a matter of debate

and is still not fully agreed [21–23].

As generally accepted, MSC are self-renewing cells characterized by i) plastic adherence, ii)

expression of CD44, CD73, CD90 and CD105, iii) lack of expression of hematopoietic mark-

ers, and iv) their ability to differentiate into multiple cell types such as adipocytes, osteocytes
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and chondrocytes [24]. In accordance with previous reports for the characterization of MSC

[25, 26], the cells of interest isolated from the lung stained positive for the mesenchymal

Fig 7. Outgrowth-rate of mesenchymal stem cells from biopsies derived from human lung tissue. (A)

Percentage of biopsies with growth of mesenchymal stem cells (MSC) in lung tissue derived from fibrotic

lungs (black bar) as compared to emphysema/normal lung (grey bar). (B) Percentage of biopsies with growth

of MSC subdivided according to histological diagnosis. Bars represent means ± SEM expressed as [number

of biopsies with growth of MSC / total number of biopsies set up]. GvHD: graft-versus-host disease; CTD:

connective tissue disease; ILD: interstitial lung disease.

https://doi.org/10.1371/journal.pone.0181946.g007
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markers CD44, CD90, CD105. Additionally, the cells had the capacity to differentiate into adi-

pocytes, osteocytes and chondrocytes, identifying them as MSC.

Intriguingly, we found that lung-derived MSC also express markers of pluripotency OCT3/

4 and Nanog and they also have the ability to differentiate into epithelial cells which is in agree-

ment with previous studies [6, 27, 28]. Based on our findings we speculate that MSC play a piv-

otal role in injury and repair mechanisms of the lung by replacing damaged epithelium. Our

hypothesis is supported by earlier data showing engraftment of MSC at sites of lung injury and

differentiation into epithelial cells [6, 29].

Complementary to the in vitro data from isolated cells we were able to detect MSC in lung

tissue sections derived from patients with IPF and chronic hypersensitivity pneumonitis, local-

ized in the interstitium close to the alveolar epithelium. Co-staining for CXCR4 with CD44,

CD90 or CD105 suggested the origin of these cells from the bone marrow and supports previ-

ous studies showing that bone marrow-derived MSC actively migrated to damaged tissue [30,

31].

The exact role of MSC in the lung is still debated, yet evidence suggests towards their pivotal

role in repair mechanisms [32]. Several studies have shown a significant benefit of MSC

administration in different organs such as bone, heart, and ischemic brain [33–35]. Similarly,

for lung diseases various animal models demonstrated beneficial effects of exogenously admin-

istrated stem cells after lung injury, such as reduction of collagen deposition and improvement

of lung repair [5, 7–9, 13, 36]. In contrast, an increased expression of α-SMA and collagen I by

MSC isolated from BAL of patients with bronchiolitis obliterans syndrome has been demon-

strated, possibly representing a pro-fibrotic phenotype which contributes to fibrogenesis [37].

However, these in vitro data lack further proof of functional pro-fibrotic effects and are in con-

trast to a considerable number of in vivo data demonstrating a beneficial effect of stem cells

with regard to tissue fibrosis. Furthermore, direct comparisons between the aforementioned

study and our own should be done with caution, as Walker et al isolated their MSC from BAL

fluid, whereas we cultured our cells from biopsies. In our study MSC-CM increased lung epi-

thelial wound repair, which was mediated by hepatocyte growth factor (HGF). Moreover,

MSC-CM significantly inhibited the proliferation of primary human lung fibroblasts. Thus, we

demonstrate a significant anti-fibrotic effect of the MSC-secretome in vitro. This is in line with

our previous report where HGF-expressing BMSC cells attenuated bleomycin-induced pulmo-

nary fibrosis in a rat model by increasing alveolar epithelial cell proliferation and reduction of

myofibroblasts [13].

Analysis of MSC-outgrowth from lung tissue revealed that significantly more multipotent

MSC grew from biopsies derived from patients with fibrotic lung diseases, mainly IPF, OP,

and BO, as compared to emphysema or normal lung tissue. Interestingly, there was no MSC-

growth observed in the normal lung tissue, whereas in emphysema lungs MSC-outgrowth was

detected in 33% of all biopsies set up. Our in vitro findings were further supported by the

absence of MSC in lung tissue slices obtained from normal lung tissue, even though further

studies with more extensive tissue sampling will be needed to consolidate our findings in nor-

mal lung tissue. Our data is in agreement with Horwitz E et al. who stated that there is little evi-

dence for the homing of MSC to healthy tissue [38]. In contrast to our study Sinclair et al.

recently showed that MSC with a surface marker expression profile similar to the one of the

cells we isolated in this study can be readily isolated from healthy lung tissue and from BAL of

lung transplant recipients [39]. Interestingly, MSC isolated from BAL, despite of expressing

similar surface markers, showed different gene expression and differentiation potential as

compared to MSC isolated from lung tissue [39]. This supports the notion that several unique

MSC populations with a similar phenotype exist within the lung. MSCs described in our study

are suggested to originate from the bone marrow and are located in the interstitial area and
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may therefore represent a not yet described population of MSC within the lung. Our observa-

tion of increased numbers of MSC in adult human lung from patients with fibrotic lung dis-

eases as compared to non-fibrotic lung tissue supports prior animal studies by Rojas et al.

using the bleomycin-model [5]. Based on our findings, we hypothesize that bone marrow-

derived MSC are attracted to areas of tissue injury where they exert anti-fibrotic effects by inhi-

bition of fibroblast proliferation and inducing alveolar wound repair capacity in a paracrine

manner via HGF. To prove this hypothesis, additional in vivo animal models will be indispens-

able. Inevitable the question arises why—in the presence of enhanced numbers of potentially

anti-fibrotic MSC—patients still develop fibrotic lung diseases. The recent study by Tashiro

et al. might provide an explanation, as they have demonstrated that old MSC lose their anti-

fibrotic properties [7]. However, whether the here-described anti-fibrotic effects of MSC are

age-dependent or due to altered microenvironment in in-vitro culture remains to be studied.

We acknowledge that the present study has some limitations. The lung tissue used for cul-

ture of MSC derived from a mixed population of patients with fibrotic lung diseases. It might

have been more concise to study e.g. only lung tissue from patients with IPF, however, due to

the new evidence-based guidelines for diagnosis of IPF where patients with a classical UIP pat-

tern on CT scan do not need surgical lung biopsy, access to IPF lung tissue becomes challeng-

ing [40]. In contrast, the source of our data strengthens our hypothesis that MSC might

support a disease-independent, general injury-repair process.

Conclusions

In summary, our study demonstrates enhanced numbers of multipotent MSC in fibrotic lung

tissue as compared to emphysema and normal lung. The cells’ anti-fibrotic properties in vitro
makes them an interesting candidate to be tested as a novel therapeutic approach for patients

with IPF and further in vivo studies are needed to consolidate such an approach.

Supporting information

S1 Fig. Oct3/4 staining in fibroblasts. Negative immunofluorescence staining for Oct3/4 and

corresponding phase contrast picture in primary human lung fibroblasts. Cells were fixed and

permeabilized. Primary antibody was detected by addition of fluorescein-labelled (FITC)

(green) secondary antibody. Magnification x 20.

(DOCX)

S2 Fig. Mesenchymal differentiation assay in fibroblasts. Negative differentiation assays of

primary human lung fibroblasts into adipocytes (A), chondroblasts (B), and osteoblasts (C).

Adipogenic differentiation was assessed with Red oil O staining for fat vacuoles (A); Chondro-

genic differentiation was demonstrated via Toluidine Blue-staining (B). Osteogenic differenti-

ation was demonstrated by activity of alkaline phosphotase (C).

(DOCX)

S3 Fig. Effect of conditioned medium derived from fibroblasts on epithelial wound closure

after mechanical injury. Epithelial wound repair capacity of wounded A549 epithelial cells

incubated with fibroblast-derived conditioned medium was assessed and compared to wou-

nded A549 cells incubated with control medium. Effect of control medium = 0% wound clo-

sure. Bar represent means ± SEM expressed as percentage change from control medium.

(DOCX)

S4 Fig. CD44, CD90, and CD105 staining in normal human lung tissue. Negative immuno-

fluorescence stainings for CD44 (A), CD90 (B), and CD105 (C) in lung tissue sections from

patients with histologically normal lung tissue. Formalin-fixed and paraffin-embedded lung
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tissue was used. Primary antibodies were detected by addition of secondary antibodies labelled

with FITC (green) CD 44 and CD 105 or Cy3-labelled (red) for CD 90. The images were

acquired using the LSM 510 confocal microscope. Magnification x20.

(DOCX)
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