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ABSTRACT Biomolecular recognition between proteins follows complex mechanisms, the understanding of which can sub-
stantially advance drug discovery efforts. Here, we track each step of the binding process in atomistic detail with molecular dy-
namics simulations using trypsin and its inhibitor bovine pancreatic trypsin inhibitor (BPTI) as a model system. We use umbrella
sampling to cover a range of unbinding pathways. Starting from these simulations, we subsequently seed classical simulations
at different stages of the process and combine them to a Markov state model. We clearly identify three kinetically separated
states (an unbound state, an encounter state, and the final complex) and describe the mechanisms that dominate the binding
process. From our model, we propose the following sequence of events. The initial formation of the encounter complex is driven
by long-range interactions because opposite charges in trypsin and BPTI draw them together. The encounter complex features
the prealigned binding partners with binding sites still partially surrounded by solvation shells. Further approaching leads to des-
olvation and increases the importance of van der Waals interactions. The native binding pose is adopted by maximizing short-
range interactions. Thereby side-chain rearrangements ensure optimal shape complementarity. In particular, BPTI’s P1 residue
adapts to the S1 pocket and prime site residues reorient to optimize interactions. After the paradigm of conformation selection,
binding-competent conformations of BPTI and trypsin are already present in the apo ensembles and their probabilities increase
during this proposed two-step association process. This detailed characterization of the molecular forces driving the binding pro-
cess includes numerous aspects that have been discussed as central to the binding of trypsin and BPTI and protein complex
formation in general. In this study, we combine all these aspects into one comprehensive model of protein recognition. We
thereby contribute to enhance our general understanding of this fundamental mechanism, which is particularly critical as the
development of biopharmaceuticals continuously gains significance.

SIGNIFICANCE Protein-protein association determines the recognition of ligands, substrates, and inhibitors and thus
controls manifold biological processes. The mechanisms involved in the binding processes are therefore of greatest
interest and subject of numerous studies. Here, we detail the binding pathway of the protease trypsin and its inhibitor BPTI
on atomistic level. We describe a two-step mechanism of binding, involving an intermediate encounter complex. In this
encounter complex, the binding partners prealign their binding interface, which then enables further approaching. We
describe the interactions and mechanisms that drive the initial association and the formation of the native complex. This
study adapts a variety of fundamental concepts and combines them to form a comprehensive model for the binding
partners trypsin and BPTI.

INTRODUCTION

The growing relevance of biopharmaceuticals (1) renders a
comprehensive understanding of the fundamental mecha-
nisms of protein-protein association, recognition, and bind-
ing of utmost importance. Initially, the recognition process

between proteins was believed to resemble that between a
lock and its key (2). Later theories acknowledge the signif-
icance of dynamics in the binding process. The induced fit
model suggests that a reshaping of the active site takes place
because of the interactions with the binding partner, leading
to the formation of binding-competent conformations (3).
Contrarily, the conformational selection theory claims that
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all protein conformations pre-exist within the dynamic apo
ensemble, including the conformation of the bound state,
although possibly only as a high-energy state. As the
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substrate recognizes and binds to this conformation, the
removal of the stable complex from the apo equilibrium
leads to a shift of the populations toward the binding-
competent conformation (4—6). Motivated by cases in which
an interplay of induced fit and conformational selection
seems to guide protein binding (7), Csermely et al. (8) incor-
porate the induced fit mechanism into an extended confor-
mational selection model, describing shifts of the energy
landscapes as part of an adjustment process caused by
mutual interactions (7-9).

The binding process takes place in different stages. In a
first step diffusion leads to the association of the binding
partners and formation of the metastable encounter complex
(9,10), which is still mostly solvated (11). The association
and alignment of the binding partners can be promoted
by electrostatic steering, especially for charged proteins
(11-18). In this context, Dagliyan et al. (18) investigate pep-
tide-protein association with molecular dynamics (MD)
simulations and find that omitting electrostatic interactions
in most cases results in a decreased ratio between native-
like encounter poses and transient encounter configurations.
Electrostatic interactions shape a funnel-like energy land-
scape that directs the binding, pulling the interface together
(19,20). Likely during this step, electrostatic interactions
also contribute strongly to the discrimination between
possible binding partners as described for the substrate
recognition of serine proteases (20,21). After the formation
of the encounter complex, a free energy barrier hinders a
fast transition to the native complex (10,22). It is caused
by the search for matching conformations and the desolva-
tion of charged residues.

Using ensemble docking, Griinberg et al. (9) characterize
the step after the association of the encounter complex as
free conformer selection. Thereby, multiple different con-
formers can select their matching binding partners. This
leads to a second intermediate form, which Griinberg
et al. call the recognition complexes. They are similar to
the native complex and feature a largely desolvated inter-
face. In the last step, the near-native complexes can reorga-
nize and refold to build the final, native complex (9,10). This
process is characterized by a refinement of short-range van
der Waals interactions, for which an optimal shape comple-
mentarity of the binding partners is essential. Hence, local
side-chain dynamics play a decisive role in this final adjust-
ment (18,23).

However, on detailed examination, a strictly stepwise
description of the binding is likely an oversimplification
of a far more convoluted process. The association can be
described by a variety of possible binding pathways, con-
sisting of weakly associated, transient encounter complexes
(16,24,25), misbound configurations and a variety of inter-
mediates (26,27).

Depending on the system, desolvation plays an important
role in protein recognition processes (28). Desolvation of
hydrophobic patches promote the binding, whereas desolva-
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tion of charged and polar residues slows it down (10). Ca-
macho et al. scan rotational and translational space of
ligands around receptors and evaluate the contributions of
electrostatic interactions and of desolvation (12). They
find that, especially for uncharged interaction partners, des-
olvation is a driving force in the binding process and can
guide the formation of the complex. Thus, the differentia-
tion between hydrophilic and hydrophobic surface regions
can direct protein recognition and contribute to selectivity
(29).

To investigate protein-protein association and recognition
in atomistic detail, a number of different computational
methods have been applied. Docking methods can be used
to generate encounter complex poses (12,30-32). For
example, Kozakov et al. (30) studied protein recognition
via docking poses of a variety of systems. Interpreting
them as intermediate states, they describe a reduction of
accessible movement dimensions during association. Within
the remaining dimensions, the encounter complexes are
largely allowed free movement without high-energy bar-
riers, which then facilitates the formation of the native
complex.

Furthermore, Brownian dynamics simulations have been
used to study association and encounters of proteins
(13,33-35). A key advantage of this method is that the
assumed approximations generally promote a highly effi-
cient sampling. However, it oversimplifies or even neglects
important effects of protein-protein interactions, like
conformational dynamics and solvent effects, which most
likely limits the achieved accuracy.

MD simulations provide a possibility to study protein-
protein recognition in atomistic detail (36—40). However,
for larger systems, the required timescale to observe the
complete pathway between unbound proteins and complex
conformations cannot be covered routinely because of the
high number of degrees of freedom connected to the binding
process (41,42). Enhanced sampling techniques that accel-
erate the sampling or restrict the sampled conformational
space can provide the necessary speed up and a sound
approximation of the underlying physics. Steered MD
(43), restrained MD (26,44), and multiscale enhanced sam-
pling (45) have been used to investigate association and
dissociation of barnase and its inhibitor barstar, a well-stud-
ied model system of protein-protein recognition. For the
same system, Plattner et al. (27) built a hidden Markov state
model (MSM) of the complete branched pathway from asso-
ciation to native binding and calculated the kinetics of the
respective transitions. Coarse-grained Monte Carlo simula-
tions have been able to characterize transient encounter
complex poses (46) that have been measured in paramag-
netic relaxation enhancement studies (16,24). Here, we
use umbrella sampling (US) (47) to overcome the sampling
problem and to observe the dissociation of the serine prote-
ase trypsin and bovine pancreatic trypsin inhibitor (BPTT)
(Fig. 1).
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FIGURE 1 Complex between trypsin and BPTI. As depicted in the struc-
ture PDB: 30TJ (66), trypsin (white), and BPTI (magenta) form a tight com-
plex. Thereby, the substrate binding site of trypsin is occupied by BPTI,
explaining the inhibitory effect. The top panel features a view from the prime
site direction. The bottom panel depicts a frontal view, featuring a horizontal
binding site of trypsin, extending from the nonprime site on the left to the
prime site on the right. To see this figure in color, go online.

Trypsin is a serine protease of the chymotrypsin family
and catalyzes the hydrolysis of consumed proteins as well
as the activation of protease proenzymes as part of the diges-
tive system (48). It is highly specific toward cleavage of pep-
tide bonds after positively charged residues, i.e., lysine or
arginine at the P1 position, but does not show strong sub-
strate preferences at other subsites (49). Protease substrate
amino acid positions are named with P1...Pn on the N-ter-
minal side of the cleavage position and P1’...Pn’ on the
C-terminal side. The binding subpockets of the protease
are named accordingly Sn...S1|S1’...Sn’ (50). Computa-
tional studies of trypsin investigated the binding process
of a small-molecule inhibitor and of the associated confor-
mational changes (51,52). Here, we investigate the binding
of trypsin to BPTI, a 58-residue Kunitz-type serine prote-
ases inhibitor. Like trypsin, BPTI is a well-studied system.
Its structure is one of the first resolved by x-ray crystallog-
raphy (53) and it has been thoroughly studied with NMR ex-
periments (54,55) and MD simulations (56). Association
constants and binding free energies of the trypsin-BPTI
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complex have been measured experimentally (57-59) and
estimated with MD-based methods (60,61).

As the subject of this article, we are investigating the for-
mation of the complex between trypsin and BPTI. From US
simulations we generate an ensemble of conformations that
are highly diverse with respect to the relative orientation of
BPTI and trypsin. We use structures along the dissociation
pathway to seed unbiased simulations and build an MSM
(27,51,52,62-65). It facilitates a kinetically grounded defi-
nition of the steps in the protein-protein recognition process
from the prealignment of the encounter complex to the for-
mation of the native complex. Along the different binding
stages, we analyze conformational changes and protein-pro-
tein interactions, reporting on the driving forces and mech-
anisms of binding. We thereby provide a comprehensive and
clear model of biomolecular recognition based on a well-
studied model system.

MATERIALS AND METHODS

A schematic overview of the workflow of this study is depicted in Fig. S1.

Structure preparation

The trypsin-BPTI complex structure (Protein Data Bank, PDB: 30TJ) (66)
was used as basis for umbrella sampling simulations, the trypsin structure
PDB: 3PTB (67), and the BPTT structure PDB: 5PTI (54) for the apo sim-
ulations. The structures were prepared with Molecular Operating Environ-
ment (MOE) (68), deleting cosolvents and ligands, keeping crystal waters,
and adding missing hydrogen atoms with the Protonate3D tool (69). Solvent
boxes of the TIP3P water model (70) were added with the LEaP application
of AmberTools (71). A minimal wall distance of 12 A was used for the apo
simulations and one of 20 A for the complex, ensuring sufficient space for
the dissociation. The systems were minimized and equilibrated with
Amberl8 (71), following a thorough protocol previously developed in
our group (72).

General simulation setup

All-atom MD simulations were performed with pmemd (73) in Amber18
(71) with the Amber14SB force field (74). The Particle Mesh Ewald (75)
approach was used to calculate long-range interactions. The nonbonded
cutoff was set to 10 A. A uniform plasma was used to neutralize the charges.
In the NpT ensemble, the temperature was kept constant at 300 K by a Lan-
gevin thermostat (76) with a collision frequency of 2 ps~' and the pressure
at 1 bar by a Berendsen barostat (77) with a relaxation time of 2 ps. The
SHAKE algorithm (78) was used to restrain all bonds involving hydrogen
atoms. The time step for the integration was set to 2 fs. Every 10,000th
frame (every 20 ps) was saved for later analyses. For the apo simulations
of trypsin and BPTI, 1 us of production run was performed, respectively.

Implementation and analysis of US simulations

To separate BPTI from trypsin, US simulations starting from the equili-
brated complex were performed. As collective variable (CV), the center
of mass (COM) distance between the Ca-atoms of BPTI and of trypsin
was used. The COM distance was chosen because it guarantees a minimum
of local artifacts of the US sampling process, which are likely to occur for
more locally defined CVs. Starting from the equilibrated structure, the um-
brella windows extended between a COM distance of 24.0 and 43.5 A with



a step size of 0.5 A. The force constant of the harmonic spring potential was
chosen to be 15.0 kcal/(molu&z). Each window was run for 50 ns. After
10 ns of simulation time, the current conformation was extracted and
used as starting structures for the next umbrella window. This procedure
permits for an equilibration period at the previous distance and at the
same time accelerates the sampling process by allowing partially parallel
runs of the windows. Equilibration and US procedure were repeated 20
times to cover different possible pathways.

The WHAM (79) implementation of the PYEMMA (80) python package
was used to reweight the US trajectories. The bin width was chosen to be
0.1 A. The last 30 ns of each window were used for the analyses. The result
for each of the 20 runs and the combined trajectories was visualized. To test
the convergence of the single US runs, we performed trajectory splitting for
all windows and calculated the potential of mean forces (PMFs) of all the
segments. This allows an assessment on whether longer sampling of the
US windows would lead to an improvement on the result. Additionally,
we estimated the error of the 20 US runs by randomly combining the US
runs to build bootstrapping resamples.

Seeding of cMDs

To allow an unbiased view at the mechanisms involved in protein-protein
recognition and binding, the US runs were used to seed a large number
of classical MD (cMD) simulations. Umbrella windows of the different
runs that have the same target-value of the CV were combined and clustered
to extract starting structures for the cMD simulations. The root mean-square
deviations (RMSD) values of the BPTI atoms after alignment of the com-
plex on trypsin were used as input for the clustering. With the hierarchical
average-linkage clustering algorithm (81) of cpptraj (71) using a sieve of
every 10th frame (for a faster processing), five clusters were generated
for windows between 25.0 and 36.0 A. The representative structures of
the clusters, which consequently feature a large spread in BPTI orientations,
were used as starting points for the unbiased simulations. From each of the
115 representative structures, cMD simulations of a length of 100 ns were
produced. The Ca-COM regime over the course of these simulations and
the distributions of the COM distances were visualized.

Analysis of cMD simulations and construction of
a Markov state model

Time-lagged independent component analysis (82,83) (TICA) was per-
formed with the PYEMMA package (80) using a lag time of 20 ns. As input
features the inverse distances between native contacts (contacts between
BPTI and trypsin atoms within 3.8 A in the structure PDB: 30TJ) were de-
ployed. These features cover both, the large-scale unbinding movement and
smaller side-chain rearrangements in the binding interface. The inverse dis-
tances thereby emphasize changes at small distances and filter out changes
that take place at large distances (e.g., the movement of free BPTI). TICA
finds the coordinates in which slow movements take place.

Based on the three time-lagged independent components (TICs) with the
largest eigenvalues, we clustered the trajectories with the k-means clustering
algorithm into 300 clusters to get discretized trajectories. They have been
used to build a Bayesian MSM with a lag time of 20 ns. MSM construction
and analysis have been performed with PYEMMA (80). The choice to use
three time-independent coordinates is based on the distribution of values
within the TICs (Fig. S2). The first three exhibit distinct maxima and minima
suggesting high significance for the segregation of states that is less pro-
nounced in the subsequent TICs. The number of clusters and the lag time
were chosen based on implied lag time plots (Fig. S3; (84,85)). A lag time
of 20 ns was chosen as the estimated slowest timescales are approximately
independent of the lag time at that point. To simplify the MSM, PCCA++
(86) was performed, resulting in a three-state model. Although the slowest
transition in the system is clearly that between the complex state (including
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the encounter state) and the free proteins, the gap between the second slowest
and the third slowest timescale is still large, resulting in the three metastable
states presented. With a Chapman-Kolmogorov test (84,87), the MSM has
been evaluated (Fig. S3). Based on the MSM, the stationary probabilities
and the dissociations constant have been estimated. With 10 bootstrapping
samples (randomly combining the 115 cMD simulations), the confidence in-
terval of the dissociation constant has been calculated.

For the visualization of BPTI positions, which have a small COM dis-
tance but are not typical native complex structures, we extracted frames
with a COM distance lower than 25 A and identified two representative
structures with the hierarchical average-linkage algorithm of cpptraj (71).
We used the RMSD of BPTI after alignment on the Ca-atoms of trypsin
as clustering criterion.

To identify representative structures of the complex, encounter, and un-
bound state, we wrote out 10,000 frames according to the probability distri-
bution of the microstates to be in each metastable state. These
conformations were clustered structurally with the hierarchical average-
linkage algorithm of cpptraj (71). Again, as input the RMSD values of
BPTI, after alignment on trypsin were used. For the figure in the main
text, one representative structure for each metastable state (complex,
encounter, unbound) was extracted. For the supporting figure, to visualize
the diversity of the states, 25 output clusters were generated and the repre-
sentative structures of the three most populated clusters shown. All visual-
izations of structures were rendered with pymol (88).

The distribution of COM distances and RMSD values (again RMSD of
BPTI after alignment on trypsin) in the TIC space and in the metastable
states was determined to check the reasonability of the projection and state
definition from the PCCA+-+ method. This state definition provides a fuzzy
clustering and therefore probabilities of these states to be in each one of the
microstates/k-means cluster and not a unique assignment. These probabil-
ities were used to weigh the properties that have been determined by anal-
ysis of the trajectories when shown separately for the three states
throughout the article. For visualization purposes, to avoid overcrowding
in the TICA plot, cMD frames were extracted every 1 ns (in total 11,500
frames). Analogically the plots and distributions that characterize the bind-
ing process (described in the next paragraphs) have been prepared.

For quantitative analyses of the binding process, the electrostatic and van
der Waals interaction were calculated with the lie command of cpptraj (71)
with a distance cutoff value of 20 A. To focus the analysis on the binding
interface, only atoms that are within 3.8 A of the other binding partner in
the structure PDB: 30TJ were included in the calculation. The results
were projected on the TIC space. The probability distributions of the
MSM has been used to weigh the average values and the standard deviations
for the separated states. The ABPS plugin (89) of pymol (88) was used to
visualize the electrostatics of the proteins. Similarly, the numbers of water
molecules within the first (cutoff of 3.4 A) and the second solvation shell (be-
tween 3.4 and 5.0 A) of the binding interface (atoms within 3.8 A of the other
binding partner in the structure PDB: 30TJ) were calculated. These values
are the default settings for the calculation of watershells in cpptraj. The divi-
sion between the solvent shells at 3.4 A corresponds to a local minimum in
the radial distribution function of water for the O-H distance, making it a
reasonable value for this separation, also when looking at protein distances
(including all atoms in the calculation). The angle between the binding sites
was obtained by calculating the principal axes of the binding interface atoms
with the “principal” command in cpptraj (71). The principal axes associated
with the smallest eigenvalues point along the binding cleft of trypsin and the
binding sequence of BPTI respectively. The angle between the vectors is
small in the native complex as the binding partners are aligned. Histograms
that show the distribution of angles within the metastable states according to
the MSM have been plotted with a bin width of 1.8°.

Contact time series between the trypsin and BPTI residues were deter-
mined with cpptraj (71) with a distance cutoff of 3.8 A. The contacts
have been weighted with the probability distributions in the metastable
MSM states and separate occupancies for the complex, encounter, and un-
bound states have been calculated. The occupancies and differences in
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occupancies were visualized in contact maps and for an easier structural
interpretation plotted on protein structures. The 20 most populated contacts
for each cluster were listed in Table S1.

We clustered the cMD trajectories together with the apo simulations
(frame offset of 1 ns for all simulations) with focus on structural differences
within trypsin and BPTI. The apo simulation have been included as a con-
trol for the unbound state. For the purpose of this clustering that focuses on
the internal conformational changes, we used the RMSD after alignment on
the Ca-atoms of the respective protein. With the hierarchical average-link-
age algorithm of cpptraj (71), 10 clusters were produced for each binding
partner. For the complex, encounter, and unbound states, the occupancies
were reweighted with the MSM. Representative structures of the three
most populated clusters were displayed.

Residue-wise root mean-square fluctuation (RMSF) values were calculated
based on the 10,000 frames that have been extracted for the complex,
encounter, and unbound states as described above. The RMSF values have
been determined after alignment on Ca-atoms of the respective protein
(trypsin/BPTI). They consider the fluctuations of all atoms and characterize
internal conformational flexibilities. The differences of the encounter and un-
bound clusters to the complex cluster were plotted on the structures of BPTI
and trypsin to show differences in the conformational diversity of the states.

To extract solvent free energy data along the binding pathway, the grid
inhomogeneous solvation theory (GIST) (29,90,91) was applied. For this
purpose, we set up MD simulations with positional restraints of
1,000 kcal/(m01~1°\2), starting at representative structures of the US (clus-
tering of US as previously descripted, but with one single-output cluster)
at seven different COM distances in an interval of 2.5 A. After 50 ns of
simulation time, we applied the GPU implementation of GIST (29) (GI-
GIST) in cpptraj (71) on 10,000 equally spaced frames (corresponding to
a frame interval of 5 ps) with a grid spacing of 0.5 A. For further analyses,
we only considered voxels within 6.0 A of binding interface atoms of
trypsin. We limit the analysis to voxels with the same or higher water den-
sity as can be found in the bulk. According to the distribution of free energy
values of the voxels, we visualize favorable (low free energy) and unfavor-
able (high free energy) water positions.

RESULTS
Sampling of the unbinding process

To investigate the factors involved in binding and unbinding
processes, we chose the interaction partners trypsin and its
inhibitor BPTI as model system. Starting at an x-ray struc-
ture that depicts the complex, US simulations were used
to pull protease and inhibitor gradually apart. We used the
distance between the COM of both proteins’ Ca-atoms as
a CV, ensuring a minimal disturbance of the binding inter-
face itself. By performing 20 separate runs, different
possible unbinding pathways were covered (compare to
Figs. S4, S5, and S6). The runs are reweighted with the
weighted histogram analysis method WHAM (79). The re-
sulting PMF is shown in Fig. S4, together with an evaluation
of simulation convergence and error estimation. Video S|
shows the unbinding process of one of the US runs.

To allow an unbiased view at the mechanisms involved in
protein-protein recognition and binding, the US runs are
used to seed a large number of cMD simulations, similar
to other approaches used previously (65,92-94). Fig. S7
shows the COM distance in the unrestrained cMD simula-
tions. All simulations that are started from complexes with
small COM distances between trypsin and BPTI (COM
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distance < 27 A) stay stably bound during the 100 ns simu-
lation time. Also, simulations with COM distances between
27 and 29 A converge to smaller COM distances very fast
and build a close complex. Simulations with larger starting
COM distances (COM distance > 30 A) either converge at
COM distances between 30 and 33 A or change the COM
distance without occupying any particularly stable position.
In the latter case, BPTI is no longer strongly influenced by
interactions with trypsin and can diffuse freely. Taken all
simulations together, a COM distance of ~26.5 Ais clearly
preferred. Although the simulations avoid COM distances of
around 28 A, a distance between 30 and 33 A is again
favored.

Once BPTT has left its binding position and can change its
orientation freely, it can also adopt a flat position at the sur-
face of trypsin (Fig. S8). This can lead to COM distances
that are smaller than the distance in the native complex.
Because the COM distance is not able to distinguish native
binding poses and these transient configurations, it is unsuit-
able as the sole descriptor of the binding process.

Defining states via kinetics

To identify stable states along the binding process, we apply
TICA (82,83) on the inverse distances of the native contacts.
The inverse distances are well suited to identify small differ-
ences between conformations where trypsin and BPTI are
close (i.e., the distances are small and the inverse distances
are large), while not emphasizing differences in unbound
conformations (where the inverse distances are small).
TICA then retrieves the coordinates that contribute to the
slowest changes in these original coordinates.

Fig. 2 shows several distinct density maxima in the TIC
space. The highest maximum, on the left side of the TICA
plot at TIC1 = —1.0 and TIC2 = —0.6, corresponds to
bound conformations. For comparison, the projection of
an equilibrated structure lies at TICl = —0.94 and
TIC2 = —0.36. The density maximum at TIC1 = 1.5 and
TIC2 = —1.0 (right side of the plot) contains conformations
in which BPTI is distant from the native binding site. Mov-
ing from this unbound conformations toward the maximum
at TIC1 = —0.1 and TIC2 = 2.0 corresponds to an align-
ment of BPTI with the binding site of trypsin. TIC1 corre-
lates with the general progress of the binding process.
Fig. S9 shows COM distances and RMSD projected on
the TICA space. By comparison, TIC2 is rather associated
with a rotating motion of BPTI, leading to correlations
with different signs for the prime and the nonprime sites
at the binding interface (Fig. S10).

We build an MSM (84,85) based on the first three TICs
(Fig. S2) and use PCCA++ (86) to simplify the MSM to
three metastable states along the binding pathway. They
correspond to the observed major density maxima of the
cMD simulations. We denote them as “complex,”
“encounter,” and  “unbound,” supported by the
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conformations that can be attributed to the states (Figs. 2
and S11). In the complex state, the orientations of BPTI
are very similar to each other and also to experimentally
determined complex. In the encounter complex, they are
quite various and not so well aligned with the binding cavity
of trypsin. Conformations in the unbound state are even
more misaligned and there BPTI can also leave the binding
site completely and diffuse into the solvent (Fig. S11).

The calculated stationary probabilities of the MSM states
are 9.99984 x 107! for the complex, 1.2 x 107 for the
encounter, and 3 X 10~° for the unbound state. From these
values, a dissociation constant of 2 X 107 M (lower and
upper bounds of confidence interval estimated from boot-
strapping: 1 x 1077 M, 1 x 107'? M, 95%) arises. Thereby,
both the complex and the encounter states are considered to
constitute the associated form as the slowest transition sep-
arates them from the dissociated, unbound state. The depth
of the energy minimum of the complex is also clearly visible
in the projection of the free energy surface calculated from
the MSM and shown in Fig. S12. Video S2 displays an
exemplary binding and unbinding event resampled with
the MSM and tracks it in the TICA space.

Electrostatic and van der Waals interactions
promote different binding steps

To investigate the driving forces in the binding process, we
calculate the contributions of electrostatic interactions and
van der Waals interactions between the binding interface
of trypsin and BPTI (Fig. 3; for a two-dimensional histo-
gram of the interactions see Fig. S13). For an equilibrated
x-ray structure, the value of the electrostatic interactions is

ray structure after equilibration. The right panel dis-
plays an assignment of the simulation frames to the
metastable state they have the largest likelihood to
be part of (violet, complex; orange, encounter;
green, unbound). Below, representative structures
of these resulting states are shown. To see this figure
in color, go online.

—212.8 kcal/mol and the value of the van der Waals interac-
tions —48.8 kcal/mol.

The electrostatic interactions contribute significantly
stronger to the binding than van der Waals interactions.
This is expected considering that the binding interface of
BPTI is lined with positively charged residues, whereas
trypsin’s binding cleft is charged negatively. Particularly
noteworthy is the salt bridge between the P1 residue of
BPTI, K15, and residue D189 in the S1 pocket of trypsin,
which is present in the native complex.

In the unbound state, the electrostatic interactions be-
tween BPTI and trypsin are comparably weak. However,
the values within the state vary a lot, as it includes configu-
rations in which the proteins are relatively close as well as
configurations in which they are far apart and rotated
(Figs. 3 and S11). As the encounter complex forms, the elec-
trostatic interactions strongly increase.

Van der Waals interactions at the protein interface play a
minor role in the transition from the unbound state to the
encounter complex. They significantly gain relevance as the
encounter complex stabilizes to form the native complex.

Solvation of the binding interface continuously
decreases during binding

The water molecules near the binding interface are counted
to characterize the desolvation of the two binding partners
(Fig. 4). Two different distance cutoff values are used to
describe the first two solvation shells separately. For an
equilibrated x-ray structure, the first solvation shell of the
binding interface contains 67 water molecules and the sec-
ond solvation shell 57 water molecules.
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As the binding partners approach, water molecules are
displaced from the interface between the proteins. The num-
ber of water molecules decreases rather uniformly during
each binding step, i.e., in the transition between unbound
and encounter states as well as in the transition between
encounter and native complex. Arguably, in the step from
unbound proteins to encounter complex, the second solva-
tion shell is more impacted by the water displacement
than the first solvation shell, whereas for the formation of
the native complex, the first solvation shell has to be dis-
banded in the binding interface. In each of the clusters (com-
plex, encounter, and to a lesser extent in the unbound state),
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the number of surrounding water molecules is relatively
constant. This suggests that the states can be distinguished
based on the solvation of the respective conformations and
that the contributions of the solvation play an important
role during the binding process.

Prealignment of the binding interface precedes
complex formation

To enable binding, BPTI and trypsin must align so that
their binding interfaces face toward each other. We deter-
mine the principal axis with the smallest eigenvalue of
the binding interface atoms for both proteins and calculate
the angle between these vectors to quantify the relative
orientation of the proteins. The binding cleft of trypsin
has the typical shape known from the chymotrypsin family,
consisting of a series of pockets that recognize the peptidic
substrates (95). BPTI, accordingly, binds to it with a
sequence of residues. Consequently, both proteins’ binding
interfaces have a well-defined, elongated form. In the com-
plex, this results in a nearly parallel orientation of their
principal axes, associated with the smallest eigenvalues.
Thus, the angle between the principal axes in the structure
PDB: 30TJ is 0.40°.



Fig. 5 shows that in the complex only a narrow range of an-
gles close to 0° occurs. In the encounter complex, the range of
angles is restricted as well, although not as strongly as in the
native complex. There, the most probable angles are around
36°. The encounter complex rarely shows angles as are pre-
dominant in the native complex. In the unbound state, a
wide range of angles is possible because trypsin and BPTI
are almost randomly oriented.

Conformational changes during the binding
process

To find whether conformational changes within the proteins
occur during the binding process, we clustered the confor-
mations of trypsin and BPTI separately based on their
RMSD, together with simulations of the apo forms of
trypsin and BPTI. The apo simulations are included as con-
trol, in which the possibilities of interaction between the
proteins and of artifacts from starting the sampling at the
complex structure are eliminated. The comparison with
apo simulations also allow the interpretation of the result
in terms of the dominant binding model, i.e., induced fit
or conformational selection. At the same time, the classifi-

2.5 180
2.01 5
150 @
1.5 °
120 o
1.0 S
LN_) >
= 051 90 §
E
0.0 1 =
60 ¢
—0.5 I %
complex 30 £
—-1.0 1 <
-1.5 r . T T T T 0
-1.0 -05 0.0 0.5 1.0 1.5
TIC1
o 0.2 complex
[ =
<
=
5 0.0
()
% encounter
&< 0.05 1
k)
£0.00
3 unbound
2 0.02 1
o
o
0.00 -

0 30 60 90 120 150 180
Angle between vectors / deg

FIGURE 5 Angles between the binding cleft of trypsin and binding inter-
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Protein-Protein Binding in Two Steps

cation into the complex, encounter, and unbound states en-
ables a stepwise allocation of the events.

Fig. 6 displays the result of the clustering for trypsin. The
three largest clusters are present during the entire binding
process. However, a detailed look at the distributions
(Fig. 6 b) shows that the most populated cluster is accumu-
lated in the native complex, while being present also, but
to a lesser extent, in the encounter complex, in the unbound
form, and in the apo simulation of trypsin. The second cluster
(vellow in Fig. 6) is the most populated cluster in the un-
bound state and loses importance during the binding process,
i.e., in the encounter complex and the native complex.

Structurally, the main difference between the clusters is
observed for residue Y39, which builds the upper part of
the prime site of trypsin’s binding cleft. The position of its
bulky side-chain dominates the clustering. In x-ray struc-
tures and the preferred conformation of the complex cluster,
the side-chain is directed toward the S1° pocket. In other
conformations, it points in the direction of more remote
areas of the prime site or toward the solvent.

Fig. 7 shows the result of the clustering for BPTI. Only
one cluster allows the formation of the complex between
trypsin and BPTI. This conformation is also preferred for
the formation of the encounter complex and present in the
apo form.

The conformations of the residues K15 (P1) and R17
(P2") show the largest structural variance. They are thus
decisive for the clustering. Both side-chains are long and
flexible and can take a variety of conformations. However,
to bind to trypsin, both have to adopt a specific orientation
so that they can fit into the S1 pocket and the prime site
respectively. These conformations are already present in
the apo form as part of a wider ensemble, but native binding
is only possible when the side-chains match to trypsin con-
formations and do not cause clashes and, therefore, repul-
sion between the proteins.

DISCUSSION

As basis for nearly all physiological functions, proteins have
to selectively recognize specific binding partners. Especially
for drug design efforts, a thorough understanding of the
mechanisms promoting protein-protein recognition is para-
mount, e.g., to create inhibitors and antibodies with high af-
finity, but also to hinder unwanted association causing
agglomeration or severe side-effects. As a model system,
we investigate the binding process between trypsin and its in-
hibitor BPTI and aim to understand the fundamental factors
that contribute to recognition and binding in atomic detail.
With unbiased MD simulations, sampling of binding and
unbinding could take hundreds of microseconds to seconds,
which exceeds routinely viable simulation times by far. To
enhance the efficiency of the sampling, we use US simula-
tions to cover conformations along the path between com-
plex and dissociated proteins and then construct an MSM
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line.

based on these simulations. Similar approaches have been
used previously (92-94), also with different enhanced sam-
pling methods. Thereby, the choice of enhanced sampling
method is rather incidental, as long as the extracted starting
structures for the unbiased simulations are well distributed
on the conformational space of interest and feature also
high-energy structures near transition states allowing for
transition between metastable states. Here, we chose US
sampling for this purpose because it seems to be the obvious
pick for the unbinding process, but it stands to reason that
for example metadynamics simulations could have fared
equally well. We perform 20 US runs to cover different
possible association pathways. Figs. S4 and S6 show that
the resulting pathways are indeed quite diverse, with
different local minima and maxima occurring. The PMFs
seldom follow the same regime. Trajectory splitting shows
that after a certain equilibration period, the PMFs do not
change strongly anymore (Fig. S4). Still, a convergence of
the US simulation runs cannot be assumed within the
50 ns of simulation time per window and it is to assume
that far longer simulations would lead to more equalized
PMFs. However, comparing these results to the various
US runs, which differ more strongly, we can assume that
starting more runs is a more efficient way to cover possible
transition pathways than extending window length in a sin-
gle run. Poor convergence could also explain the lacking
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agreement between the free energy difference of unbinding
calculated from the US (26.1 kcal/mol, confidence interval
from bootstrapping: 25.2 kcal/mol, 27.7 kcal/mol, 95%),
compared to the experimentally determined value
(17.85 kecal/mol) (57), alongside with differences in experi-
mental and calculation setup. Regardless of how sampling
has been accomplished, the full convergence of the US is
not essential for this work because the method is foremost
used to seed cMD simulations and not to make quantitative
statements. The regime of the PMF of many US runs follows
the same as described by Hoefling and Gottschalk (26) for
the unbinding of the barnase-barstar complex. They
describe a steering region where the binding partners
approach, followed by a local minimum, a transition state
and finally the global minimum corresponding to the native
complex. This trend is also mirrored in the distribution of
the subsequently performed cMD simulations (Fig. S7).
As the local minima and maxima occur in the US runs at
different COM distances, they are less distinct in the com-
bined PMF.

Although we simulate different configurations of BPTI
and trypsin along the binding pathway, we do not capture
very slow conformational changes within these proteins.
For both, BPTI (56) and trypsin (52), long-timescale simu-
lations have shown large conformational rearrangements,
e.g., isomerization of disulfide bridges and large-loop
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rearrangements. These motions can take hundreds of micro-
seconds and are not covered by our simulations. The
enhanced sampling technique and, in consequence, the
cMD simulations focus on sampling different unbinding
pathways and do not accelerate the conformational sam-
pling within each binding partner.

We perform TICA on the cMD simulations to filter out
fast transitions and focus only on the slow ones. An MSM
provides a classification in states that is based on the kinetics
of the system. The calculated dissociation constant, Ky =
2 x 107" M, is in good agreement with experimental mea-
surements of Ky = 6 x 107 M(57) (K4 = 5 x 107
M(58)). However, the kinetics of the unbinding could not
be reproduced, which is not overly surprising, considering
that the half-life of the complex is ~8 months (58). Despite
this issue, the slow eigenvectors of the transition matrix
often remain meaningful despite errors in the estimation
of the absolute timescales (96). Therefore, the classification
into the metastable states, complex, encounter, and unbound
is also kinetically grounded. In the literature, the definition
of the encounter complex varies, but usually, it describes an
intermediate along the binding pathway. We clearly find the
presence of such an encounter complex ensemble within our
state definition. We want to emphasize that rather than one
clearly defined structure, the encounter complex is a diverse
ensemble of conformations. This ensemble that we call

encounter complex does not include transient encounter
complexes, which are short lived and associate remote
from the native binding site (16,24) but only prealigned con-
formations near to it. We do not discriminate between the
transient encounter complexes and the unbound states but
focus on later stages of the binding process, which are
divided by major free energy barriers. We find that, by far,
the slowest transition in the binding process is the associa-
tion of the encounter, whereas the building of the native
complex is faster.

The driving forces for the initial association and binding
of trypsin and BPTI are clearly electrostatic interactions
(Fig. 3). Especially in the association from the unbound pro-
teins to the encounter complex, they strongly increase, cor-
responding to the frequently described electrostatic steering
(12,14,15,26). The binding cleft of trypsin is negatively
charged, and the binding interface of BPTI is positively
charged (Fig. 8). Even at long distances, the binding inter-
faces can be pulled together. Thereby, the interaction be-
tween the P1 residue of BPTI, a lysine, and the S1 pocket
of trypsin assumes a central role. Comparable to the associ-
ation of barnase and barstar where charged and polar resi-
dues are the first to make contact (26), for BPTI, the P1
residue serves as anchor residue (97,98) that binds early in
the binding process to the S1 pocket. It forms an ionic inter-
action with residue D189 at the bottom of the S1 pocket (for
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FIGURE 8 Electrostatics for trypsin and BPTI. The binding cleft of
trypsin (left) shows negative electrostatics (red coloring). The binding inter-
face of BPTI (right) is positively charged (blue). To see this figure in color,
go online.

a contact map, see Fig. S14). As anchor residues hold the
encounter complex in place, the rest of the binding interface
has time to adjust without dissociating again. This is also in
line with studies that show the effect of mutations to alanine
at the binding interface of BPTI (58). Generally, these mu-
tations increase the dissociation rate, likely by destabilizing
the complex. The mutation K15A additionally lowers the as-
sociation rate, which also agrees with the here presented
model, as the electrostatically driven association cannot
take place and the formation of an encounter complex fea-
tures a higher kinetic barrier. Comparing the contacts in
the encounter complex and in the native complex (Figs.
S14 and S15), especially contacts of the prime site, are
not yet present in the encounter complex. The formation
of nonnative salt bridges, which stabilize the encounter
complex as observed in binding to a PDZ domain (39),
does not take place in the binding of BPTI to trypsin. Con-
tacts that are formed in the encounter complex and are not
present in the native complex include trypsin residues in
the surrounding area of the binding site and can be
explained by a sliding movement of BPTI along the surface
(e.g., K15(P1)-G219, K15(P1)—C220, R17(P2")-G148,
R17(P2")-T149, P13(P3)-Q175). The unbound state has
considerably fewer, more transient contacts, many of which
include nonprime site residues (for a list of the most
frequently formed contacts refer to Table S1).

We observe that the encounter complex has already lost
some of the rotational freedom of the unbound ensemble
(Fig. 5). However, prime and nonprime sites are not yet opti-
mally aligned, but still rather free to move and largely sol-
vated. A partial loss of rotational freedom is also observed
by Kozakov et al. (30) They compare the shape of the energy
surface during association to a canyon because the move-
ment possibilities are reduced to a two-dimensional sub-
space without large barriers, where the binding partners
can slide into place. This description also matches the tilting
movement that we see in Fig. 5, observable by the increas-
ingly restricted angles between the binding sites. Although
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the encounter complex is structurally still rather diverse
(Fig. 5), its energetics (Fig. 3) and particularly the number
of water molecules surrounding the binding interface
(Fig. 4) are well defined.

Both the transition from the unbound ensemble to the
encounter complex and the transition from the encounter
complex to the native complex are associated with the loss
of a specific number of water molecules from the solvation
shells of the binding interface. The expulsion of water mol-
ecules seems to be a critical factor that causes barriers in the
binding process (28). However, especially at the last stage of
the binding process, water molecules are displaced from hy-
drophobic areas at the binding interface (Fig. S16). As the
proteins approach, they can essentially trap water molecules
between them, whose displacement could give a negative
free energy contribution and promote the last binding step.

The displacement of the water molecules allows a further
approaching of the binding partners and the formation of
additional and stronger interactions. In the transition to the
native ensemble short-range interactions, especially van
der Waals interactions (Fig. 3), increase, whereas the shape
complementarity between the binding partners is essential
for the perfect fit. Notably, BPTI residue R17, at the P2’ po-
sition, has to rearrange and find a conformation that fits into
the prime site of trypsin. This extended horizontal confor-
mation of R17 is imperative for the formation of the native
complex. Kimura et al. (97) compare the function of R17 to
a latch, which holds the proteins together in the complex.
Additionally, the P1 residue, K15, has to adopt an extended
conformation and an orientation to exactly fit into the S1
pocket. We find that this conformation is already present
in the apo form and becomes more favorable over the course
of the binding process (Fig. 7). A similar picture results for
trypsin. For the protease, a conformation in which prime site
residue Y39 builds the top of the S1’ pocket is preferred to a
conformation where it extends toward peripheral regions of
the prime site or toward the solvent in the complex. As for
BPTI, the native conformation gains relevance on the way
from the unbound state to the encounter complex and
from the encounter complex to the native complex
(Fig. 6). This observation strongly suggests conformational
selection, as the binding-competent conformations are
already present in the apo forms. The population shift can
be directly observed in the probabilities of the clusters,
which change as the binding partners approach and unsuit-
able, clashing conformations cannot be assumed anymore.
Thereby, the conformational selection seems to take place
in a stepwise manner, as the likelihood for the native confor-
mation increases in each phase (99). During the binding, the
flexibility of the binding sites and therefore the conforma-
tional entropy decreases (Fig. S17; (7,100)), as the mobility
becomes more restricted.

Overall, the binding mechanism that we observe is similar
to the concepts that Griinberg et al. (9) describe and is in line
with our previously proposed hypothesis (20). However, in



this study, we provide a substantially more exhaustive
approach, in which we explicitly trace the recognition
pathway in atomistic detail. In summary, we report that
the association phase is largely driven by long-ranging elec-
trostatic interactions and ends in an encounter complex. In
this stage, the binding sites are already prealigned but
mostly still solvated. In the next step, water molecules are
displaced from the binding interface, and the complex can
form from shape-complementary conformations. Griinberg
et al. characterize an additional step in which these recogni-
tion complexes refold to build the native complex. Possibly
due to a low free energy barrier connected to this step, we
only see one conformationally and energetically uniform
recognition complex, which corresponds to the native com-
plex. We derive this proposed two-step mechanism (sche-
matic representation in Fig. 9) using trypsin-BPTI binding
as well-studied model systems. However, our model is in
line with previous findings for a broad range of protein com-
plexes indicating a certain generalizability. We presume that
the fundamental insights on protein-protein complex forma-
tion discussed in this study, will broadly benefit the design
and optimization of novel biopharmaceuticals.

CONCLUSIONS

In this study, we suggest a two-step binding mechanism
following the paradigm of conformational selection with a
population shift. In the first step, long-range electrostatic in-
teractions promote loose association and steer the binding
partner into an advantageous orientation. The salt bridge be-
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FIGURE 9 Schematic representation of the binding pathway. Electro-
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molecules have to be displaced to allow the optimal shape complementarity
in the native complex. To see this figure in color, go online.
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tween BPTT’s P1 residue (K15) and D189 at the S1 pocket
anchors the proteins and hinders them from drifting apart.
In this preoriented encounter complex, the binding partners
can adjust the alignment of their binding interface and select
matching conformations. By displacing the solvent and
assuming optimal shape complementarity, the short-range
interactions are maximized, and the stable native complex
can be formed. During the binding process, especially prime
site residues of both trypsin and BPTI can assume a variety
of conformations. In accordance with the conformational se-
lection mechanism, the binding-competent conformations
of both proteins are already present in their dynamic apo en-
sembles and increase in probability along the binding
pathway.

A detailed understanding of protein-protein recognition is
of great benefit for drug discovery efforts in the design and
improvement of therapeutic biologics. Here, we provide a
description of the stages of protein recognition in atomic
detail. The formation of encounter complexes along binding
pathways is often guided by electrostatic interactions and
prearrangements of the binding partners. For the formation
of the native complex, the displacement of water molecules,
shape complementary, adaptability, and optimization to the
interactions are vital and have strong effects on the affinity.
These insights on the association pathway can be utilized to
improve protein-protein docking search algorithms and
scoring functions.

SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
2020.06.032.
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