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Chronic pain is associated with long term plasticity of nociceptive pathways in

the central nervous system. Astrocytes can profoundly affect synaptic function and

increasing evidence has highlighted how altered astrocyte activity may contribute

to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a

shift in form and function known as reactive astrogliosis, which affects their release

of cytokines and gliotransmitters. These neuromodulatory substances have been

implicated in driving the persistent changes in central nociceptive activity. Astrocytes

also release lactate which neurons can use to produce energy during synaptic plasticity.

Furthermore, recent research has provided insight into lactate’s emerging role as a

signaling molecule in the central nervous system, which may be involved in directly

modulating neuronal and astrocytic activity. In this review, we present evidence for the

involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity,

in addition to research suggesting the potential involvement of gliotransmitters D-serine

and adenosine-5′-triphosphate. We also discuss work implicating astrocyte-neuron

metabolic coupling, and the possible role of lactate, which has been sparsely

studied in the context of chronic pain, in supporting pathological changes in central

nociceptive activity.
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INTRODUCTION

Chronic pain is associated with long lasting structural and functional reorganization of nociceptive
circuits in the spinal cord and brain (1, 2). Historically considered supportive cells, mounting
evidence indicates that astrocytes are dynamic players in neuroplasticity, and astrocytes have
become increasingly recognized as active players in synaptic changes associated with chronic
pain states. Pathologies of the central nervous system (CNS) often involve reactive astrogliosis, a
process whereby astrocytes undergo a shift in morphology and function (3, 4). Reactive astrogliosis
is associated with astrocyte hypertrophy, upregulated expression of glial fibrillary acidic protein
(GFAP), and altered gene expression (5). Repeatedly, studies utilizing various rodent models of
chronic pain show that GFAP is upregulated in the spinal cord (6–11) and brain areas involved in
processing the sensory and affective components of pain, including the anterior cingulate cortex
(ACC) (12–16), somatosensory cortex (17), amygdala (18, 19), thalamus (20), and ventrolateral
periaqueductal gray (21–24). Notably, inhibiting astrocyte activity in the spinal cord (25–27) and
primary somatosensory cortex (17) has been shown to reduce pain hypersensitivity. Chronic pain
is also often associated with depression and elevated anxiety, and astrocyte inhibitors administered
into the ACC have been shown to alleviate anxiety and depression-related symptoms in rodents
(13, 15). Moreover, recent research has provided evidence for glial activation in the spinal cord and
brain of patients with various chronic pain syndromes (28–31), and enhanced astrocyte activation
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has been observed in the spinal dorsal horn of HIV patients
with chronic pain (32). Given the consistent theme of astrocyte
activation, recent research has focused on investigating the role
of reactive astrocytes in the pathogenesis of chronic pain. This
brief review will cover recent literature identifying astrocyte-
derived cytokines, gliotransmission, and altered astrocyte-
neuron metabolic coupling as potential contributors to the
persistently altered synaptic activity observed in chronic
pain states.

CYTOKINES

Cytokines are important regulators of inflammatory responses,
and the activity of several pro-inflammatory and anti-
inflammatory cytokines within the peripheral and central
nervous systems (PNS and CNS, respectively) have been found
to correspond with chronic pain states (33). Astrocytes and
microglia release and respond to cytokines and play a significant
role in immune responses of the CNS. Substantial research
has uncovered microglia-mediated cytokine activity in chronic
pain states. For example, spinal microglia are activated in
inflammatory and neuropathic pain models (34, 35), and are
associated with the production of pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNFα), interleukin-1
beta (IL-1β), IL-6, and interferon gamma (IFNγ) (34, 36).
Additionally, specific microglia inhibitors can attenuate pain-
related behaviors while significantly inhibiting the upregulation
of pro-inflammatory cytokines (37, 38). But while microglia
contribute to the pro-inflammatory phenotype in concert with
astrocytic activity, the present review will focus specifically
on astrocytes [for excellent reviews regarding microglia in
chronic pain, see references (39) and (40)]. Numerous in-vitro
observations show that stimuli ranging from lipopolysaccharide,
metabolic and mechanical stress, and neurotropic viruses,
stimulate astrocytic production and release of cytokines
(41–45). These include, but are not limited to, TNFα, IL-1α,
IL-1β, IL-6, IFNα, IFN-β, and IFNγ (41–45). Work done in
post-mortem tissue from chronic pain patients has associated
spinal astrocyte activation with production of inflammatory
cytokines such as IL-1β and TNFα (32), while an in vivo pain
model has shown that inhibiting astrocytes with the toxin
L-α-aminoadipate can reduce IL-1β expression and mechanical
allodynia (46). Notably, elevated levels of pro-inflammatory
cytokines have been observed in the blood and cerebral spinal
fluid of patients with chronic pain, and have been shown to
positively correlate with subjective ratings of pain intensity
(47, 48).

TNFα DIRECTLY MODULATES
NOCICEPTIVE NEURONAL ACTIVITY

TNFα’s pathogenicity is well-documented in the peripheral
nervous system. Direct injection of TNFα into the sciatic
nerve or acute application to the L4 dorsal root ganglion
(DRG) induces signs of mechanical allodynia and thermal
hyperalgesia, however symptoms appear to be short-lived with

recovery occurring within a couple days (49–51). Chronic
application of a pad soaked in TNFα to the L5 nerve root
or chronic perfusion of the DRG resulted in symptoms
persisting beyond 7 days (52, 53), suggesting a requirement
for extended exposure in the periphery to initiate long
lasting pain. TNFα perfusion at the DRG is also able to
enhance pain symptoms associated with compression of the
DRG (53).

In the central nervous system, chronic pain induction elevates
TNFα levels in the dorsal horn of the spinal cord, which
either coincide with or are temporally close to the onset
of mechanical and thermal hypersensitivity (54–58). In the
brain, the time course of TNFα elevations in chronic pain
models varies between different regions. For example, TNFα
levels are elevated in the locus coeruleus prior to the onset
of chronic constriction injury induced thermal hyperalgesia,
while rises and falls in hippocampal TNFα approximately
correspond to symptom onset and dissipation, respectively
(58, 59). In the ACC, TNFα expression increases shortly
after the onset of spared nerve injury-induced mechanical
allodynia (60).

Research has shown that TNFα is able to modulate synaptic
activity by acting directly on neurons via tumor necrosis factor
receptor 1 (TNFR1) (61, 62) (Figure 1). Notably, astrocyte
derived TNFα increases AMPA receptor and decreases GABAA

receptor surface expression in cultured hippocampal neurons
leading to increases in frequency and amplitude of mini
excitatory postsynaptic currents (mEPSCs), and decreases in
amplitude of mini inhibitory postsynaptic currents (61–63).
Similar observations have been made in slices from the ACC,
where TNFα increases the amplitude of evoked EPSCs and
mEPSC frequency (64). TNFα can also increase the probability of
presynaptic neurotransmitter release (64), through mechanisms
that may involve the cation channel TRPV1 (65, 66). This TNFα
mediated increase in neuronal excitability may participate in
homeostatic synaptic scaling resulting from depressed synaptic
activity, a process which is reliant on astrocytic rather than
neuronal production of TNFα (67). Later work in neuronal
cultures argues that rather than simply shifting neurons toward
increased excitation, TNFα may act to permit rather than
drive synaptic plasticity (68). Indeed, bidirectional effects have
been observed, whereby high concentrations of TNFα (1
ug/mL) has been shown to impair the induction of long-term
potentiation (LTP), while low concentrations (1 ng/mL) facilitate
LTP (69). Studies assessing cytokine concentrations in chronic
pain patients have found TNFα levels ranging from a few pg/mL
or less in cerebrospinal fluid (47, 70), up to approximately
50 pg/mL in blood (48, 71, 72). As these concentrations are
far below the level at which TNFα was found to impair LTP,
TNFα release from reactive astrocytes may be more likely
to instead facilitate synaptic potentiation. Accordingly, animal
models of chronic inflammatory pain have also shown persistent
1–3 pg/mg increases in TNFα above baseline in the ACC and
basolateral amygdala, which were associated with enhanced
synaptic transmission in these regions, suggesting a possible
role of astrocyte-derived TNFα in pain-induced hyperactivity
(64, 73).
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FIGURE 1 | Potential astrocyte-neuron signaling pathways in modulating pain-related synaptic transmission. (1) TNFα acts on neuronal TNFR1 resulting in rapid

trafficking of GluR2-lacking AMPA receptors to the postsynaptic membrane and internalization of postsynaptic GABAA receptors. (2) TNFα increases presynaptic

glutamate release, potentially by activating or increasing the expression of transient receptor potential subtype V1. (3) TNFα acts on astrocytic TNFR1, inducing

phosphorylation of JNK. JNK phosphorylates c-Jun, which dimerizes with c-Fos to form the AP-1 transcription factor, leading to transcription of target genes such as

MCP-1 and MMP-2. (4) MCP-1 is released from astrocytes where it can act on neurons via CCR2, modulating their excitability. (5) ATP released from astrocytes may

act on pre-synaptic neuronal P2X3 and P2X7 receptors, stimulating glutamate release.

TNFα ACTIVATES THE JNK SIGNALING
PATHWAY IN ASTROCYTES

Astrocyte-microglia crosstalk via cytokine signaling is emerging
as an important mechanism in the development of chronic
pain. Microglial release of IL-18 has been associated with
astrocyte activation, while astrocytic CXCL12 has been reported
to influence microglia, contributing to the development of
mechanical allodynia in neuropathic and migraine pain models
(74–76). Like neurons, both astrocytes and microglia express
TNFR1 (77, 78) and are able to respond to TNFα (Figure 1).
Recent cell culture studies have reported that activated microglia
may induce reactive astrogliosis through the release of TNFα
amongst other cytokines (79, 80). Additionally, astrocytic TNFα
has been reported to exert autocrine effects in culture (81).
A series of experiments by Yong Jing Gao and colleagues
found evidence for a signaling pathway by which TNFα-
induced astrocyte activation could contribute to persistent pain
hypersensitivity. They showed in primary astrocyte cultures that
TNFα induces transient TNFR1-dependent phosphorylation of
c-Jun N-terminal kinase 1 (pJNK1) (82), a mitogen-activated
protein kinase (MAPK). pJNK1 phosphorylates and activates c-
Jun, which is part of the activator protein 1 transcription factor,
leading to gene transcription (83). Activation of these astrocytes
led to JNK1-dependent production and release of monocyte
chemoattractant protein 1 (MCP-1) amongst other chemokines
(82). Using in vivo approaches, they showed that TNFα injection
into the mouse spinal cord induced JNK-dependent mechanical
allodynia and thermal hyperalgesia at 3 h with a concomitant
increase inMCP-1 expression in astrocytes (82, 84). Additionally,
intrathecal injection of astrocytes incubated with TNFα were
sufficient to induce MCP-1 dependent mechanical allodynia (84).

These results are paralleled with their observations in a spinal
nerve ligation model of neuropathic pain, where astrocytic MCP-
1 is upregulated, and that pain hypersensitivity is significantly
reduced by JNK inhibition and to a lesser degree by MCP-1
inhibition (82).

MCP-1 signaling via CC chemokine receptor type 2 (CCR2)
modulates neuronal excitability. In culture, MCP-1 significantly
reduces the responsiveness of neurons to GABA, as shown
by a decrease in GABA-induced inward currents mediated by
GABAA receptors (85). MCP-1 also causes significant increases
in parameters indicating neuronal hyper-excitability, including
decreased action potential current and voltage thresholds, as
well as an increase in number of evoked action potentials
(86). In spinal cord slice preparations, MCP-1 bath application
dose-dependently enhances the frequency and amplitude of
spontaneous EPSCs while enhancing inward AMPA and N-
methyl-D-aspartate (NMDA) induced currents (82). Given these
findings, persistent elevation of MCP-1 by TNFα provides
a mechanism by which nociceptive sensitization may be
maintained, as a constant shift toward excitation may reduce the
threshold for initiating neuronal activity.

In addition to the induction of MCP-1, CCR2, which
is constitutively expressed in the spinal dorsal horn (85),
is upregulated in chronic pain states further amplifying the
effects of MCP-1. In the peripheral nervous system, chronic
compression injury to DRG neurons elevates CCR2 expression,
increasing their likelihood to depolarize in response to MCP-
1 in vivo and in dissociated neuronal cultures (86, 87). In
bone cancer and trigeminal neuropathic pain models, CCR2
protein expression increases significantly in neurons of the
ipsilateral superficial dorsal horn and medullary dorsal horn
respectively, coinciding with onset of pain hypersensitivity (88,
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89). CCR2 is also elevated in the nucleus accumbens shell where
it modulates both depressive and pain-related symptoms (90),
and the periaqueductal gray and rostral ventromedial medulla
(24) which are involved in modulation of spinal nociceptive
pathways (91).

It is likely that MCP-1 is not solely responsible for the
nociceptive effects of JNK signaling, as MCP-1 inhibition only
partially reduces pain hypersensitivity when compared to JNK
inhibition (82). Matrix metalloproteinase-2 (MMP-2) and MMP-
9, enzymes involved in degradation of the extracellular matrix
[reviewed by Murphy, Nagase (92)], are also regulated by JNK
signaling and secreted from astrocytes (93–95), and have been
implicated in chronic pain. Work done in the hippocampus,
classically associated with learning and memory rather than
pain, has found that MMP-9 proteolytic activity contributes to
maintenance but not induction of LTP (96), and MMP-9 alone
is sufficient to enhance excitatory postsynaptic potentials and
dendritic spine volume in CA1 neurons (97). In chronic pain
however, while MMP-9 is upregulated in the peripheral nervous
system, its expression in the CNS is minimal (98) and appears to
be derived from DRG neurons rather than from astrocytes (99).

In contrast to MMP-9, delayed upregulation of MMP-2 is
observed in spinal astrocytes following spinal nerve ligation,
reaching significance 10 days after surgery (99). MMP-2 is
sufficient to induce mechanical allodynia and is associated with
cleavage of IL-1β, a major pro-inflammatory cytokine involved
in neuroinflammation which works synergistically with TNFα.
IL-1β can stimulate additional release of MMP-2 by activating
extracellular signal-regulated kinase (ERK) 1/2 in astrocytes (99).
Later work has identified the induction of neuronal MMP-2 at
an earlier time point, coinciding approximately with symptom
onset in a chronic post-ischemia pain model (100). Inhibiting
MMP-2 reduces spinal GFAP levels along with decreased
phosphorylation of JNK1/2 following induction of chronic pain
(100). Thus, elevated neuronal MMP-2 may initially contribute
to the induction of astrogliosis in the spinal cord, resulting
in the phosphorylation of JNK in astrocytes, and release of
both MMP-2 and MCP-1 during the chronic phase of pain. In
line with this potential chain of events, there is some evidence
suggesting a delay between onset of behavioral symptoms and
elevated phosphorylation of JNK1. In two models of neuropathic
pain, whereas behavioral symptoms manifested in under a day,
increases in pJNK1 levels in the spinal dorsal horn were not
observed until day 3 in a spinal nerve ligation model (101)
or day 7 in a spared nerve injury model (102), suggesting a
potential role for JNK1 in the transition from acute to chronic
pain. Accordingly, in a CFA model of chronic inflammatory
pain, whereas chronic intrathecal infusion of the JNK1 inhibitor
D-JNKI-1 failed to reduce mechanical allodynia during the
induction phase, tested at 6 h post CFA injection, it significantly
reduced allodynia during the maintenance phase tested days 1–
4 post CFA injection (103). In contrast, a study employing a
mouse model of chronic post-ischemia pain observed elevations
in pJNK1 at the same time as the development of behavioral
symptoms (100), and JNK inhibition produced a significant
analgesic effect at pain onset, indicating mechanistic differences
in chronic pain development resulting from different injuries.

GLIOTRANSMISSION IN CHRONIC PAIN

Beyond their role in inflammatory signaling, astrocytes can
detect neuronal activity through a variety of membrane
receptors, inducing intracellular Ca2+ responses (104, 105)
and subsequent release of neuromodulatory substances, known
as gliotransmitters (106–108); these include glutamate, GABA,
adenosine-5’-triphosphate (ATP), and D-serine, which bind to an
array of pre- and post-synaptic neuronal receptors and influence
synaptic transmission (109). The relevance of gliotransmission
in chronic pain is currently under debate (110, 111), however
emerging evidence indicates a potential role in chronic pain,
including findings that gliotransmission is enhanced in reactive
astrocytes (112–116) and modulated by inflammatory mediators
(117, 118).

D-serine is a potent co-agonist which binds to the glycine
site of NMDA receptors (119). It is synthesized by the enzyme
serine racemase, which catalyzes the conversion of L-serine to
D-serine (120). While serine racemase is primarily expressed in
neurons (121), recent evidence shows that reactive astrocytes
in traumatic brain injury, Alzheimer’s disease, and pain models
express the enzyme (115, 116, 122). D-serine released by reactive
astrocytes is implicated in the expression of dynamic mechanical
allodynia in chronic and acute models of orofacial pain, as
well as static allodynia in chronic neuropathic pain (122–125).
In these models, degradation of D-serine by D-amino acid
oxidase or inhibition of serine racemase by L-serine O-sulfate
can prevent the induction of mechanical allodynia, or reduce
mechanical allodynia after onset (122–125). Despite neurons
being capable of releasing D-serine (126), the finding that
astrocyte inhibition reduces mechanical allodynia, which can
be reversed by exogenous D-serine further suggests the specific
requirement for astrocytes as a source of D-serine (124).

Another gliotransmitter that has been identified as a potential
player in chronic pain is ATP. ATP acts primarily through
the ionotropic P2X and metabotropic P2Y purinergic receptor
families, which are expressed on many cell types in the CNS
including neurons, astrocytes, and microglia [for a review see
Burnstock (127)]. P2X receptor activation facilitates synaptic
transmission by increasing presynaptic glutamate release (128,
129) and inducing EPSCs (130–132), while P2Y receptors
primarily mediate inhibitory effects by reducing presynaptic
glutamate release (129, 133). However, its functions at excitatory
synapses are increasingly observed to be quite complex.

Work by Zhang et al. (134, 135) has provided evidence for
the involvement of purinergic signaling on neurons in rats with
chronic visceral hypersensitivity, showing that P2X7 and P2X3

are both upregulated and colocalize with the presynaptic marker
synaptophysin in the insular cortex (134, 135). Additionally,
inhibitors for either P2X7 or P2X3 reduced glutamatergic
synaptic activity and pain-like symptoms, whereas agonists
for either receptor had the opposite effect, elevating synaptic
activity and inducing visceral hypersensitivity. Although the
cellular source of ATP and whether it was enhanced was
not tested in this model, studies by two separate groups
in neuropathic pain models have found evidence suggesting
that astrocytic ATP release in the spinal cord contributes
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to pain hypersensitivity. One study by Cui et al. (136)
found that inhibiting the mammalian target of rapamycin
signaling pathway could reduce ATP release from cultured
astrocytes and inhibit neuropathic pain-induced ATP elevation
in cerebral spinal fluid. They associated this finding with the
analgesic effect of rapamycin (136). Koyanagi et al. (137)
investigated diurnal fluctuations in glucocorticoids and its effects
on mechanical allodynia and observed that oscillations of
plasma corticosterone levels corresponded to the oscillations of
spinal ATP and mechanical allodynia. Intrathecal corticosterone
injection induced mechanical allodynia which was dependent on
microglial P2Y12 and also induced ATP release from cultured
astrocytes via serum/glucocorticoid regulated kinase 1 signaling
(137). Here again like cytokine signaling, ATP signaling involves
both astrocytes andmicroglia and represents another mechanism
by which they can interact. Mixed glial culture studies have
shown that activation of microglial P2 receptors by either
exogenous or astrocyte-derived ATP induces the release of
extracellular vesicles, which can in turn modify astrocyte activity
(138, 139). Additionally, microglia can release ATP, which has
been shown to indirectly modulate excitatory neuronal activity
through binding to astrocytic P2Y1 receptors in hippocampal
slices (113). These findings provide a functional basis which may
translate to pain-associated areas in the CNS. Indeed, studies
in neuropathic pain models have associated the induction and
activity of spinal microglia P2 receptors with the development
of mechanical hypersensitivity (140, 141) [for a more in-depth
discussion see review by Trang et al. (142)]. Given the variety of
cells that can both release and respond to ATP, there is insufficient
data to determine whether direct astrocyte to neuron purinergic
signaling in the CNS is involved in chronic pain. However, due
to the evidence for purinergic signaling in modulating synaptic
activity, it remains a possible pathway by which astrocytes
can influence maladaptive plasticity in nociceptive circuits of
the CNS.

ALTERED GLUTAMATE-GLUTAMINE
CYCLING IN CHRONIC PAIN

In addition to the release of neuromodulatory substances,
astrocytes are metabolically coupled to neurons. They participate
in glutamate clearance by taking up glutamate present at the
synaptic cleft, which can then be converted to glutamine via
glutamine synthetase (GS) and exported in a process known
as the glutamate-glutamine cycle (143). Mounting human and
animal data suggest that the development of chronic pain may
also involve changes in glutamate-glutamine homeostasis. For
example, in healthy human subjects, glutamate and glutamine
levels positively correlate with subjective evoked pain ratings in
pain-associated areas such as the ACC, mid-cingulate cortex,
insula, dorsolateral prefrontal cortex, and thalamus (144, 145).
Moreover, elevated combined levels of glutamate and glutamine
have been observed in the ACC of patients with a range
of chronic pain conditions (146), the thalamus of migraine
patients (147), and in the right amygdala of female fibromyalgia
patients (148). Notably, glutamate uptake by astrocytes, which

is mediated via the glutamate transporters GLT-1 and GLAST
(149), appears to show biphasic alterations in rodent models of
neuropathic pain. Specifically, within the first 5 days following
nerve injury, astrocytic expression of both in GLT-1 and GLAST
is upregulated in the ipsilateral spinal dorsal horn (150, 151),
which is followed by a prominent decrease in expression
below baseline at 7 days post-injury and beyond (150–153).
Critically, changes in glutamate uptake may play a causal role
in chronic pain development, as inhibiting glutamate transporter
upregulation enhances the onset and magnitude of pain-related
behaviors (151), whereas transgenic upregulation of spinal GLT-
1 can disrupt the induction of, and partially reverse, mechanical
and thermal hypersensitivity in neuropathic and inflammatory
pain models (154, 155). Interestingly, upregulation of GLT-
1 was associated with a decreased number of dorsal horn
neurons expressing the immediate early gene 1FosB, indicating
a reduction in neuronal activity (155). Additionally, acute
inhibition of spinal GS has also been found to transiently reduce
mechanical allodynia in a rat model of chronic pulpitis (156).
This was accompanied by a reduction in the enhanced response
of wide dynamic range neurons, located in the medullary
dorsal horn, to mechanical stimulation (156). There are some
discrepancies in the literature, as it has been found for example
that intracisternal injection of DL-threo-β-benzyloxyaspartate,
an inhibitor of GLT-1, GLAST, and the neuronal glutamate
transporter EAAC1, can reduce rather than enhance CFA-
induced orofacial heat hyperalgesia (157). Despite this, the
evidence suggests that glutamate-glutamine cycling is altered
in chronic pain states. It should be noted however, that
while GLT-1 and GLAST are predominantly expressed on
astrocytes, microglia in the spinal cord and brainstem have been
shown to express both transporters following peripheral nerve
injury (152, 158) and likely participate in mediating aberrant
glutamate dynamics.

THE ASTROCYTE-NEURON LACTATE
SHUTTLE

Astrocyte-neuronal metabolic coupling may also play a
critical role in the development of chronic pain. Pain-induced
neuroplasticity within spinal and brain regions is believed to
promote the transition from acute to chronic pain, andmounting
evidence indicates that astrocytes provide neurons with energy
in an activity-dependent manner. In particular, astrocytes are
the primary sites of glycogen storage in the CNS (159). In
response to neuronal activity, astrocytes can rapidly metabolize
glycogen to lactate (160) and export it to neurons, where it is
converted to pyruvate, and metabolized to ATP via the citric
acid cycle and oxidative phosphorylation to serve as a source
of energy (161–163). L-lactate derived from astrocytes has been
investigated as an energy source for neurons, and altered lactate
metabolism is associated with diseases such as Alzheimer’s
(164–166), epilepsy (167), multiple sclerosis (168, 169), and
depression (170). Astrocyte metabolism can also be significantly
modified by a variety of cytokines (171). Therefore, it is of
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FIGURE 2 | Potential mechanisms through which astrocyte-neuronal metabolic coupling and lactate release can mediate pain-related neuronal activity. (1) Lactate

taken up by neurons via MCT2 is converted to pyruvate, where it can be used to generate ATP through oxidative phosphorylation. (2) Neurons express HCAR1, a

Gi-protein coupled receptor which inhibits adenylyl cyclase and reduces intracellular cAMP. Neurons also appear to express an unidentified lactate receptor which

activates adenylyl cyclase and increases cAMP. (3) Similarly, astrocytes have been found to express HCAR1, however recent findings also suggest the presence of a

lactate receptor which exerts opposite effects and activates rather than inhibits adenylyl cyclase. (4) Lactate binding to HCAR1 was recently associated with a

non-Gi-protein mechanism, acting through β-arrestin2-MAPK-signaling. The β-arrestin2-MAPK pathway has been associated with induction of astrocyte proliferation.

(5) Glutamate released into the synaptic cleft is taken up by astrocytes via GLT-1 and GLAST. Astrocytic GS converts glutamate to glutamine, which is exported and

taken up by neurons. Altered GLT-1/GLAST expression may affect synaptic transmission through dysregulation of extracellular glutamate concentrations.

interest whether altered astrocytic lactate dynamics are involved
in the development and maintenance of chronic pain.

Due to their close association with both neurons and blood
vessels in the CNS, astrocytes are in a prime position to
mediate energy supply to neurons (Figure 2). Astrocyte end
feed processes make contact with blood vessels (172), allowing
them to take up glucose from the blood via glucose transporter
1 (GLUT1) (173). Early culture studies demonstrated that
astrocytes are able to accumulate glycogen in the presence
of glucose (160). While both neurons and astrocytes express
glycogen synthase (174, 175), a critical enzyme in glycogenesis,
brain glycogen is predominantly localized to astrocytes rather
than neurons (159). Astrocytes can break down glycogen to
produce lactate (160), the majority of which is exported to
the extracellular space rather than being consumed for energy
(161, 162). In addition to findings that astrocytes can store
glucose and export lactate, mechanisms by which lactate release
is coupled to neuronal activity have been identified. Seminal
work by Pellerin and Magistretti showed that glutamate uptake
by astrocytes stimulates glucose uptake, glycolysis and lactate
release, an effect dependent on extracellular Na+ and glutamate
co-transport (176, 177). Further work identifying the expression
of monocarboxylate transporters (MCT) in the brain, localization
of different isoforms of lactate dehydrogenase in neurons and
astrocytes, and that lactate was an efficient substrate for oxidative
metabolism led to the proposal of the astrocyte neuron-lactate
shuttle (178). This theory proposed that neuronal activity
stimulates glycogenolysis and conversion of glucose to lactate,

followed by its subsequent release from astrocytes and uptake by
neurons to produce ATP during elevated activity (178).

Much of the work examining the consequences of lactate
shuttling have been in the context of learning, memory, and
reward associated learning in the brain. The formation of
long-term memories has been shown to require hippocampal
astrocytic lactate release during the initial acquisition period
(179, 180). Indeed, training in an inhibitory avoidance task is
accompanied by a rapid and sustained increase in extracellular
lactate in the hippocampus (179), whereas inhibiting glycogen
phosphorylase, the rate limiting enzyme in glycogenolysis, using
1,4-dideoxy-1,4,-imino-D-arabinitol 15min prior to training
abolishes the lactate rise, impairs LTP, and results in memory
deficits (179, 180). In addition, inhibiting astrocytic lactate
export by reducing MCT1 or MCT4 expression, or blocking
neuronal lactate uptake by reducing MCT2 expression both
result in memory impairments (179–181). The former can
be rescued by lactate and its energetic equivalent pyruvate,
but not by glucose (179, 180). Similar findings have been
observed in drug-related memories involving the amygdala.
In a conditioned place preference (CPP) paradigm, inhibiting
glycogenolysis in the basolateral amygdala can prevent the
acquisition of cocaine-induced place preference, transiently
inhibit established CPP, and impair CPP following retrieval (182,
183). In both the hippocampus and amygdala, the induction
of plasticity-related phosphorylation of cAMP response-element
binding protein (CREB), cofilin, and ERK, is dependent on
astrocytic glycogenolysis and L-lactate (179, 182). Notably, CREB
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is activated in the spinal cord and forebrain following tissue
injury (184, 185), and transgenic over-expression of CREB in the
forebrain enhances behavioral responses to the formalin model
of temporary pain, and correspond with potentiated and more
rapid development of pain hypersensitivity induced by nerve
injury (186). Given that long termmemory and chronic pain both
involve persistent changes in synaptic activity, it is of interest
whether astrocyte-neuronal lactate shuttling is involved in the
pathogenesis of chronic pain.

INITIAL RESEARCH ON ASTROCYTE
LACTATE EXPORT IN CHRONIC PAIN

Very few studies have directly examined the involvement of
astrocyte-derived lactate in the context of pain. However, there
is some evidence associating chronic pain with altered lactate
dynamics in the CNS. One study found that MCT1 protein
expression is elevated in the spinal dorsal horn 7 days after
induction of chronic inflammatory pain by CFA (187), an
observation that was also made in the hippocampus following
inhibitory avoidance training (179). Another study in rats
with chronic visceral hypersensitivity observed blunted activity-
dependent lactate release in the ACC along with impaired
decision making and synaptic plasticity (16). Additionally,
molecular changes associated with long-term potentiation, such
as the upregulation of pCREB or pERK in the spinal dorsal
horn and the spinothalamic tract (10, 188–192), as well as in
supraspinal regions such as the amygdala and anterior cingulate
cortex (193–195) are also observed in chronic pain states. These
parallels with memory-related synaptic plasticity suggest the
possibility of other commonmechanisms such as lactate shuttling
in chronic pain. Recent work by Miyamoto et al. (196) showed
that activating spinal astrocytes in mice using designer receptors
exclusively activated by designer drugs (DREADDs) rapidly
induces mechanical allodynia lasting for 10 h, accompanied
by an increase in extracellular lactate levels. Accordingly,
the broad MCT inhibitor α-Cyano-4-hydroxycinnamic acid
(4-CIN) fully reversed this induced allodynia (196). They
also found that intrathecal injections of 4-CIN could reduce
mechanical allodynia, although not fully, in a partial sciatic nerve
ligation model of neuropathic pain (196). At the time of drug
administration, behavioral symptoms have already developed
suggesting that inhibiting lactate shuttling can reduce pain
hypersensitivity during the chronic phase. A study by a separate
group also found that 4-CIN could partially alleviate mechanical
allodynia during the chronic phase of a spinal-nerve ligation
pain model (197). Hence, this initial evidence points to a
possible role of spinal astrocytic lactate in maintaining pain
hypersensitivity. This is a departure from findings in long term
memory, where disrupting lactate beyond a certain window of
time following either memory acquisition or retrieval has no
effect on subsequent task performance (179, 182).

In addition to the work above, there have been studies which
investigated pyruvate kinase M2 (PKM2), a glycolytic enzyme
that catalyzes the dephosphorylation of phosphoenolpyruvate to
pyruvate. Expression of PKM2 is elevated in the spinal dorsal

horn along with lactate in both neuropathic and inflammatory
pain models (198, 199). Inhibiting PKM2 reduces lactate
elevations and partially alleviates mechanical allodynia and
thermal hyperalgesia (198, 199). However, these studies also
noted that inhibiting PKM2 prevented the enhanced expression
of GFAP, TNFα, IL-1β, and phosphorylation of STAT3 amongst
other proteins (198, 199). Indeed, PKM2 has been implicated to
have functions beyond glycolysis, including activity as a protein
kinase [see review by Dong et al. (200)]. But these effects may also
relate to possible lactate signaling which will be discussed below.
It is however, difficult to isolate the PKM2-mediated rise in lactate
to astrocytes in these studies, as PKM2 expression was elevated in
neurons and microglia as well (199).

LACTATE SIGNALING ON NEURONAL
EXCITABILITY AND PLASTICITY

Beyond acting as a metabolic substrate for ATP production,
evidence for a signaling role of lactate complicates its effects in the
CNS (Figure 2). The production of NADH by lactate in neurons
has been shown to induce the expression of the plasticity-related
immediate early genes Arc, c-Fos and Zif268 (201). Additionally,
neurons in the brain express the extracellular hydroxycarboxylic
acid receptor 1 (HCAR1), a Gi-protein coupled receptor which
inhibits adenylyl cyclase and reduces intracellular cAMP (202,
203). L-lactate has been found to decrease the firing frequency of
CA1 pyramidal cells in hippocampal slices, as well as in primary
cortical neuron cultures via activation of HCAR1 (203, 204).
Conversely, L-lactate can potentiate EPSCs, firing frequency,
and spike probability of pyramidal cells in the CA3 region of
hippocampal slices (205), and similarly increase firing frequency
and neurotransmitter release in locus coeruleus slices (206) via
a lactate receptor that has yet to be characterized (205–207).
These effects are suggested to be metabolism-independent and
mediated by extracellular signaling due to insensitivity to 4-CIN
(204–206). These findings raise the possibility that population
differences in the effects of extracellular lactate signaling may
result in differential regulation of synaptic activity at various
points along nociceptive signaling pathways.

LACTATE SIGNALING IMPLICATED IN
ALTERING ASTROCYTE FUNCTION

Astrocytes may also respond to lactate (Figure 2), as they
express HCAR1 (202, 208), which was recently associated
with reducing glutamate-induced calcium influx via β-arrestin2-
MAPK signaling (209). Kappa-opioid receptor activation of the
β-arrestin2-ERK1/2 pathway induces astrocyte proliferation in
vitro (210), and kappa-opioid receptor activation of p38-MAPK,
which is also regulated by β-arrestin2 (211), has been implicated
in astrocyte proliferation following sciatic nerve ligation in
mice (212). Thus, lactate may promote astrocyte proliferation
via a common intracellular signaling pathway, contributing to
reactive astrogliosis. Recent findings have also identified that
lactate can induce rises in intracellular cAMP and lactate via
activation of adenylyl cyclase, suggesting the presence of another
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uncharacterized lactate receptor (213). cAMP is involved in a
variety of signaling pathways and can modulate inducible nitric-
oxide synthase activity (214, 215), cytokine release (216, 217), and
astrocyte morphology (218).

Astrocytes in primary astroglial cultures incubated with
25mM lactate show a significant increase in release of TNFα
and IL-6 (219). Recent research in diabetic mice found that
pyruvate dehydrogenase 2 (PDK2) expression was enhanced in
hypothalamic astrocytes and contributed to inflammation (220).
PDK2 phosphorylates and deactivates pyruvate dehydrogenase
(221), shifting pyruvate metabolism to form lactate rather
than enter the citric acid cycle. Genetically knocking out
PDK2 reduced diabetes-induced elevation of lactate and
induction of TNFα, IL-1β and IL-6, providing additional albeit
indirect evidence for lactate-induced cytokine release (220).
Furthermore, lactate uptake through MCT1 in oxygen and
glucose deprived astrocyte cultures can upregulate expression
of GFAP and phosphorylation of Akt and STAT3 (222); STAT3
is involved in reactive astrogliosis (223). These findings raise
the possibility that aberrant lactate dynamics may facilitate
astrocyte activation and their subsequent inflammatory cytokine
profiles. However, given the expression of potentially two
lactate receptors with opposing effects on adenylyl cyclase-cAMP
signaling, the net effect of lactate on astrocytes in chronic
pain is unclear.

Recent work by Bingul et al. (224) has provided interesting
insight into long term lactate dynamics in vivo following LTP in
the dentate gyrus of rats, with implications for lactate both as an
energy substrate but also as a signaling molecule. Extracellular
lactate levels change within seconds in response to acute
electrical stimulation of the medial perforant pathway (224).
The response is characterized by an initial dip in extracellular
lactate followed by a larger overshoot, before returning to
baseline (224). LTP induction causes a significant increase in
the magnitude of the lactate dips and overshoots, starting at
24 h after potentiation, and induces an average chronic elevation
of lactate concentrations that persists for 72 h (224). Whether
these findings, in addition to lactate signaling described earlier,
translates to CNS areas associated with mediating persistent
pain has yet to be investigated, but they give rise to interesting
possibilities. In the context of chronic pain, potentiated synaptic
activity in the central nervous system may maintain persistently

elevated extracellular lactate levels via activity-dependent release
from astrocytes. Lactate, in addition to its metabolic role,
is therefore in a position to mediate persistent effects on
both astrocytes and neurons via extracellular receptor binding.
However, lactate’s functions as a signaling molecule in the
CNS both under healthy and pathological conditions is poorly
understood, requiring further research on how it may contribute
to pathology.

CONCLUSION

Astrocytes release a variety of metabolites and cytokines which
have profound effects on neuronal activity. Pathology of the
CNS is often associated with reactive astrogliosis, which is
accompanied by altered release of these neuromodulatory
substances. The findings presented here provide evidence for
the involvement of altered astrocytic cytokine release in long
term synaptic plasticity of central nociceptive pathways under
chronic pain states. Gliotransmitters have also been implicated
but given that microglia are involved in ATP and D-serine
signaling, whether direct astrocyte-neuronal communication via
altered gliotransmission contributes to the pathology of chronic
pain is unclear. Lastly, the role of lactate derived from astrocytes
as a neuronal energy substrate, and more recently as a signaling
molecule in the CNS, has evolved significantly. However, very
few studies have examined the involvement of lactate in the
development and maintenance of chronic pain, presenting an
exciting pathway for further research.
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