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Summary
Background Early prediction of treatment response to neoadjuvant chemotherapy (NACT) in patients with human
epidermal growth factor receptor 2 (HER2)-positive breast cancer can facilitate timely adjustment of treatment regi-
mens. We aimed to develop and validate a Siamese multi-task network (SMTN) for predicting pathological complete
response (pCR) based on longitudinal ultrasound images at the early stage of NACT.

Methods In this multicentre, retrospective cohort study, a total of 393 patients with biopsy-proven HER2-positive
breast cancer were retrospectively enrolled from three hospitals in china between December 16, 2013 and March 05,
2021, and allocated into a training cohort and two external validation cohorts. Patients receiving full cycles of NACT
and with surgical pathological results available were eligible for inclusion. The key exclusion criteria were missing
ultrasound images and/or clinicopathological characteristics. The proposed SMTN consists of two subnetworks that
could be joined at multiple layers, which allowed for the integration of multi-scale features and extraction of dynamic
information from longitudinal ultrasound images before and after the first /second cycles of NACT. We constructed
Abbreviations: pCR, pathological complete response; NACT, neoadjuvant chemotherapy; HER2, human epidermal growth factor

receptor 2; SMTN, Siamese multi-task network; AUC, area under the receiver operating characteristic curve; CI, confidence interval
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the clinical model as a baseline using multivariable logistic regression analysis. Then the performance of SMTN was
evaluated and compared with the clinical model.

Findings The training cohort, comprising 215 patients, were selected from Yunnan Cancer Hospital. The two inde-
pendent external validation cohorts, comprising 95 and 83 patients, were selected from Guangdong Provincial Peo-
ple’s Hospital, and Shanxi Cancer Hospital, respectively. The SMTN yielded an area under the receiver operating
characteristic curve (AUC) values of 0.986 (95% CI: 0.977−0.995), 0.902 (95%CI: 0.856−0.948), and 0.957
(95%CI: 0.924−0.990) in the training cohort and two external validation cohorts, respectively, which were signifi-
cantly higher than that those of the clinical model (AUC: 0.524−0.588, Pall < 0.05). The AUCs values of the SMTN
within the anti-HER2 therapy subgroups were 0.833-0.972 in the two external validation cohorts. Moreover, 272 of
279 (97.5%) non-pCR patients (159 of 160 (99.4%), 53 of 54 (98.1%), and 60 of 65 (92.3%) in the training and two
external validation cohorts, respectively) were successfully identified by the SMTN, suggesting that they could benefit
from regime adjustment at the early-stage of NACT.

Interpretation The SMTN was able to predict pCR in the early-stage of NACT for HER2-positive breast cancer
patients, which could guide clinicians in adjusting treatment regimes.
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Research in context

Evidence before this study

We searched the observational studies through PubMed
with the terms “(breast cancer OR HER2-positive breast
cancer) AND (response) AND (neoadjuvant chemother-
apy) AND (early OR early prediction) AND (radiomics OR
deep learning)” published from database inception up to
07 April 2022 with no language restrictions. We found
that previous studies were mainly based on imaging
with magnetic resonance imaging (MRI). Only three stud-
ies about artificial intelligence-based early response pre-
diction using ultrasound images were published from
March 2021 to February 2022. However, these single-cen-
tre studies did not consider the therapy-induced changes
and effectively extract dynamic information from longitu-
dinal images. As the biological biomarker of each tumor
can be changed during neoadjuvant chemotherapy, and
an early prediction of pathological complete response
(pCR) to neoadjuvant chemotherapy can assist clinicians
in adjusting therapy to increase rates of pCR and avoid
toxic side effects in patients with human epidermal
growth factor receptor 2 (HER2)-positive breast cancer. It
is crucial to capture dynamic information from longitudi-
nal images for early pCR prediction.
Added value of this study

In this multicentre study, we developed and validated a
Siamese multi-task network for early pCR prediction in
patients with HER2-positive breast cancer. The Siamese
multi-task network was constructed by the dynamic
information from longitudinal ultrasound images at the
early stage of neoadjuvant chemotherapy. The pro-
posed strategy outperformed the clinical model and the
multi-task network trained with before or after the first/
second cycle of neoadjuvant chemotherapy ultrasound
images.

Implications of all the available evidence

Our findings showed that pCR to neoadjuvant chemother-
apy could be predicted non-invasively by the proposed
Siamese multi-task network in the early stage of neoadju-
vant chemotherapy for HER2-positive breast cancer. In
clinical practice, the Siamese multi-task network has the
potential to guide individual therapy for HER2-positive
breast cancer. For patients with the potential not to
achieve a pCR, it is crucial to modify the treatment regi-
mens to increase the rates of pCR. Comparatively, patients
with the potential to achieve a pCR may benefit from
breast-conserving surgery.
www.thelancet.com Vol 52 Month , 2022
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Human epidermal growth factor receptor 2 (HER2)-pos-
Introduction

itive accounts for 15-20% of breast cancer cases.1,2 Neo-
adjuvant chemotherapy (NACT) is the standard
therapeutic option for patients with HER2-positive
breast cancer.2,3 Pathological complete response (pCR)
to NACT serves as a surrogate marker for long-term sur-
vival.4 However, HER2-positive breast cancer is hetero-
geneous with variable responses to NACT, with a pCR
rate ranging from 20% to 80%.3 Early assessment of
responder to NACT can assist clinicians in adjusting
therapy to avoid toxic side effects, increase rates of
pCR, and improve disease-free survival and overall
survival.5−7 Thus, early prediction of pCR to NACT is of
great clinical significance.

Previous efforts have been made to explore imaging
features based on a single time point to predict pCR in
the early stage of NACT.8,9 However, the biomarkers of
tumors can be changed during neoadjuvant chemother-
apy.10 Longitudinal monitoring of the dynamic changes
is crucial for early pCR prediction. Mammography and
magnetic resonance imaging (MRI) have been used to
monitor tumor response to NACT.11,12 However, mam-
mography has side effects of radiation, and performing
multiple repeated MRI examinations in the short-term
is difficult. In contrast, ultrasound is widely utilized to
evaluate the treatment response in breast cancer
because of its convenience and radiation-free features.
However, the conventional ultrasound method is not
accurate enough.13 No clinically accepted biomarkers
are available for early pCR prediction. Surgical speci-
mens remain the gold standard for pCR assessment.
There is an urgent need for more broadly accessible,
cost-efficient tools to facilitate early prediction of treat-
ment response.

Machine learning has been extensively applied to the
diagnosis, therapeutic evaluation, and prognosis predic-
tion in various types of cancer.14−16 This promising
technology has the potential to reveal tumor characteris-
tics that failed to be detected by naked eyes.17 Neverthe-
less, previous researches have mainly concentrated on
hand-crafted features. With the development of artificial
intelligence, deep learning algorithms can automatically
extract imaging features,18 which has demonstrated
higher efficiency and reproducibility than hand-crafted
features.19 Previous studies have evaluated tumor
response in breast cancer based on before and mid-treat-
ment ultrasound images using the deep learning
method.20−22 However, these single-centre studies did
not consider the therapy-induced changes and effec-
tively extract dynamic information from longitudinal
images. Siamese multi-task network (SMTN) was intro-
duced to capturing dynamic information from longitu-
dinal image.23 Furthermore, multi-task network could
achieve positive feedbacks among related tasks to
improve the performance of the overall model.24 There-
fore, we, in the present study, developed SMTN that
www.thelancet.com Vol 52 Month , 2022
combined tumor segmentation and pCR prediction
using dynamic change information from ultrasound
images before and after the first/second cycle of NACT
for HER2-positive breast cancer.

The present study aimed to develop and validate
SMTN to predict early treatment response for HER2-
positive breast cancer. Using the proposed SMTN, early
adjusted therapy can be performed for non-pCR
patients to increase rates of pCR and avoid toxic side
effects.
Methods

Study design
The overall design of this study is shown in Figure 1. In
the present multicentre, retrospective cohort study, we
analysed clinicopathological characteristics and ultrasound
imaging data of HER2-positive breast cancer patients who
received NACT from three institutions. This study was
approved by the ethics committees of Yunnan Cancer
Hospital (YNCH), Guangdong Provincial People’s Hospi-
tal (GPPH), and Shanxi Cancer Hospital (SCH), and was
conducted according to the Declaration of Helsinki. A
waiver of informed consent was granted due to the retro-
spective nature of the study. All patient-relevant informa-
tion was anonymous and de-identified. We conducted the
study following the Standards for Reporting of Diagnostic
Accuracy (STARD) guidelines.
Patients
Data of patients with HER2-positive breast cancer who
received NACT between December 16, 2013, and March
05, 2021, were collected from three hospitals in differ-
ent regions of China. Patients enrolled from YNCH
were used as the training cohort (TC), while others
recruited from GPPH (external validation cohort 1,
EVC1) and SCH (external validation cohort 2, EVC2)
were used as two independent external validation
cohorts (Supplementary Figure S1). Details of inclusion
and exclusion criteria were shown in the Supplementary
materials.
Conventional ultrasound protocol
Ultrasound examinations were performed by one of ten
sonographers in the TC, one of three sonographers in
the EVC1, and one of five sonographers in the EVC2.
Each of whom had over 10 years of experience in breast
ultrasound. The collected breast B-mode ultrasound
images were converted into digital imaging and com-
munications in medicine (DICOM) format in the TC
and EVC 2, while those were converted into joint photo-
graphic experts group (JPEG) format in the EVC 1.
Ultrasound examinations were conducted before (T0)
and after the first/second cycle of NACT (T1). The breast
ultrasound images were acquired by twelve different
devices (Supplementary Table S1).
3



Figure 1. The overall design of the study. (A) Early prediction of pCR in breast cancer can assist clinicians in adjusting therapy. (B)
We constructed a deep learning-based model for early prediction of pCR combined clinical characteristics and longitudinal ultra-
sound images features. (C) Patients enrolled from YNCH were used as the training cohort, while others recruited from GPPH and
SCH were used as two independent external validation cohorts. (D) Model performance was assessed using AUC and calibration
curve. Abbreviations: pCR: pathological complete response; NACT: Neoadjuvant chemotherapy; T0: before neoadjuvant chemother-
apy; T1: after the first/second cycle of neoadjuvant chemotherapy; AI: artificial intelligence; YNCH: Yunnan Cancer Hospital; GPPH:
Guangdong Provincial People’s Hospital; SCH: Shanxi Cancer Hospital; TC: training cohort; EVC: external validation cohort; AUC: area
under the curve.
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Image processing
In this study, per-image for per-lesion at T0 and T1 was
used for analysis. To improve the learning efficiency of
the SMTN, it is necessary to define a rectangular region
of interest (ROI) by the coordinates in the ultrasound
images to eliminate the interference caused by irrele-
vant data, such as text and icons. The X and Y coordi-
nates in the ITK-SNAP (www.itksnap.org) were used to
label the ROI with a rectangular bounding box. After
that, the ROIs were cropped with the target lesion and
the surrounding tissues (Supplementary Figure S2). All
the images were addressed by data augmentation and
normalization to reduce differences caused by different
imaging protocols and intra/inter-operator variability.
Data augmentation process was applied for improving
the robustness (Supplementary materials).
Histopathology analysis
Ultrasound-guided needle biopsies were performed
using 12- to 18-gauge needles for the diagnosis of the
target breast tumor within 2 weeks before NACT. The
status of estrogen receptor (ER), progesterone receptor
(PR), HER2, and Ki-67 index was determined by immu-
nohistochemistry (IHC). The cut-off level of Ki-67 was
30%.25 The status of ER and PR was regarded as positive
if the tumor showed at least 1% of positive cells on
nuclear staining.26 HER2-positive was defined as
IHC 3+ or IHC 2+ and amplified by fluorescence in situ
hybridization (FISH). HER2-negative was defined as
IHC 0 or IHC 1+ or IHC 2+ and FISH-negative.2 The
molecular subtypes were classified as hormone receptor
(HR)-positive and HR-negative.

The status of pCR for each target tumor was deter-
mined by surgical-pathological results within 1 month
after NACT. pCR was defined as a complete absence of
invasive tumor cells both in the breast and axillary
lymph nodes regardless of the presence of residual duc-
tal carcinoma in situ (ypT0/isypN0).27
Clinicopathological data
Clinicopathological data were obtained from patient’s
medical records. Clinical data included age, menopausal
status, clinical T stage, NACT regimen, and NACT
cycles. Histopathological results of the breast cancer
included tumor type, ER status, PR status, HER2 status,
Ki-67 proliferation index, and pCR status.
Development of the deep learning-based model
To simultaneously annotate tumor and capture dynam-
ics imaging data from T0 and T1, we proposed a SMTN
for breast tumor segmentation and pCR prediction. The
SMTN was composed of two subnetworks (Figure 2):
tumor segmentation networks and pCR prediction net-
works. The tumor segmentation network consists of
www.thelancet.com Vol 52 Month , 2022
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Figure 2. Details of the SMTN architecture. Our proposed SMTN contains two subnetworks: one for tumor segmentation consists
of two Unets (upper and lower, represents by blue and red color), and the other (middle) for pCR prediction integrates the features
from tumor segmentation subnetwork. The SMTN takes T0 and T1 images as inputs (image size: 256 £ 256). Abbreviations: T0: before
neoadjuvant chemotherapy; T1: after the first/second cycle of neoadjuvant chemotherapy; pCR: pathological complete response;
NACT: neoadjuvant chemotherapy. GAP: global average pooling; Lseg: segmentation loss. MT0, MT1: feature maps generated from T0
and T1 images via SMTN. DM: change values between MT0 and MT1. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)
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two same U-nets to perform ultrasound image segmen-
tation at T0 and T1 time points. To capture the dynamic
change information of the tumor, the prediction net-
work extracts different scale features from the layers of
encoder, bottom and decoder of the two U-nets. The dif-
ferent scale features and dynamic change information
were integrated through global average pooling and
fully-connection, and finally used for pCR prediction.

Class imbalance is an important challenge for accu-
rately predicting treatment response in our study. The
number of non-pCR patients was twice more than that
of pCR. To address this issue, we utilized a modified
weighted focal loss to serve as an early pCR prediction
loss function to mitigate the imbalance during train-
ing.28 The imbalance between the foreground and back-
ground of ultrasound was another challenge. To
account for this, a combination of binary cross-entropy
and Dice loss was utilized to train the segmentation
subnetwork. Finally, the total loss was linearly com-
bined with the pCR prediction and segmentation loss as
a multi-task loss.

To alleviate the overfitting of the model, data augmen-
tation was implemented using three transformations: 1)
rotation, 2) flip, and 3) change lighting conditions (e.g.,
brightness, contrast, and saturation). In addition, strate-
gies, such as dropout, batch normalization, and early
stopping were employed in the network design to miti-
gate overfitting. The proposed SMTN was implemented
using the Keras framework with TensorFlow backend on
NVIDIA GeForce RTX 3090. Further details were
described in the Supplementary Materials.
www.thelancet.com Vol 52 Month , 2022
Ablation analysis for SMTN
To explore whether different components of the pro-
posed network are required to accurately predict pCR,
we conducted a set of ablation experiments29 by modify-
ing the network structure. First, we removed half of the
network and dynamic information change capture
branch, while remained a multi-task network for simul-
taneous tumor segmentation and pCR prediction
(denoted as single-MTN) (Supplementary Figure S3).
Second, the dynamic information changes capture
branch of SMTN was removed, and the remaining
structure was used to predict pCR based on longitudinal
ultrasound images (denoted as qMTN, Supplementary
Figure S4). Third, we removed the decoders of SMTN
(denoted as RD-SMTN), which perform pCR prediction
only, but no segmentation (Supplementary Figure S5).
In addition, we removed the decoders and the dynamic
information changes capture branch of SMTN (denoted
as RDD-SMTN). Again, this is a single-task learning
designed for pCR prediction only (Supplementary
Figure S6). In addition, we substituted the SMTN archi-
tecture with Siamese Densenet12120 (denote as S-Den-
senet121) and concatenated features from the fully
connection layer for the T0 and T1 images. This network
was used for pCR prediction only.
Integration with clinicopathological characteristics
Univariable analysis was performed to identify covari-
ates associated with pCR. Multivariable logistic regres-
sion analysis was conducted to construct a clinical
5
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model (Supplementary Figure S7A). Then, we further
developed an integration model with both an image-
based model and clinicopathological characteristics.

Model performance evaluation metrics
First, to evaluate SMTN segmentation performance, we
compared it against manual delineation. Second, to con-
firm the importance of integrating longitudinal informa-
tion in multi-task networks, we compared the performance
between SMTN and the single-MTN model. Third, to esti-
mate the importance of capturing the dynamic information
from longitudinal ultrasound images, we compared the
performance between SMTN and qMTN. Lastly, to investi-
gate whether tumor segmentation was truly necessary to
achieve good performance, we compared the performance
of SMTNwith RD-SMTN and RDD-SMTN.

Then, the model performance for early pCR predic-
tion was assessed using the receiver operating character-
istic (ROC) curve, and the area under the curve (AUC)
was calculated. We defined pCR as a positive event.
False positive event was defined as patients with pCR
predicted by SMTN who were non-pCR in the surgery.
We also calculated the sensitivity, specificity, accuracy,
positive-predictive value (PPV), and negative-predictive
value (NPV) for pCR prediction. For tumor segmenta-
tion, the dice coefficient (Dice) was calculated.

Finally, to ascertain the decision information cap-
tured by SMTN in predicting pCR, we utilized gradient-
weighted class activation mapping (Grad-CAM) to visu-
alize the location and distribution of decision making
on ultrasound images.30
Statistical analysis
Descriptive statistics were summarized as mean § stan-
dard deviation (SD). Comparisons between groups were
made using the Student’s t-test or the Mann-Whiney U
test for continuous variables and the Chi-square or the
Fisher’s exact test for categorical variables. The AUC
was used to estimate the probability of the correct pre-
diction of pCR. Differences between various AUCs were
compared by the DeLong test.31 All statistical tests were
two-sided, and P < 0.05 was considered statistically sig-
nificant. All statistical analyses were performed using R
3.4.1 and SPSS 23.0 (IBM, Armonk, NY, USA) software.
Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of
the report. All authors had full access to all the data and
approved the final manuscript for submission.
Results

Baseline characteristics
A total of 393 patients (215 patients in the TC, 95
patients in the EVC 1, and 83 patients in the EVC 2)
were consecutively enrolled for further analysis (Supple-
mentary materials, Supplementary Figure S1). All
patients underwent anthracycline-based and/or taxane-
based regimens. The details of neoadjuvant chemother-
apy regimens were shown in the Supplementary Table
S2. Anti-HER2 agents were used in 41.9% (90/215) of
patients in the TC (24.7% patients treated with trastuzu-
mab, 17.2% treated with trastuzumab plus pertuzu-
mab), 89.5% (85/95) of patients in the EVC 1(72.6%
patients treated with trastuzumab, 16.9% treated with
trastuzumab plus pertuzumab), and 32.5% (27/83) of
patients in the EVC 2(19.2% patients treated with tras-
tuzumab, 13.3% treated with trastuzumab plus pertuzu-
mab) (Table 1).

The pCR rates ranged from 21.7% to 43.2% in the
three cohorts. The baseline clinicopathological charac-
teristics of the three cohorts are summarized in Table 1.
No significant difference was detected between
patients with pCR and non-pCR in terms of age, meno-
pausal status, and clinical T stage (P > 0.05) among
the three cohorts. pCR was significantly associated
with Ki-67 index only in the TC (P < 0.05). ER, PR,
and molecular subtypes showed a significant associa-
tion with pCR only in the EVC 1. NACT regimen,
anthracycline-containing, and anti-HER2 therapy were
significantly associated with pCR status only in the
EVC 2. Multivariable logistic regression analysis
revealed that Ki-67 index was a significant predictor of
pCR status in the TC (Supplementary Figure S7A),
and it was used to construct the clinical model as a
baseline. Consistent with previous studies,32,33 the per-
formance of clinical models in predicting pCR was
unsatisfactory, with AUC values of 0.588 (95% confi-
dence interval (CI): 0.521, 0.655), 0.524 (95%CI: 0.425,
0.622), and 0.540 (95%CI: 0.437, 0.643) in the three
cohorts. (Supplementary Table S3).
Model performance
To evaluate the segmentation performance of the
SMTN, we compared the segmentation results with
manual delineation. The SMTN achieved promising
segmentation performances in two external cohorts
(DICEmean > 0.764 (range: 0.764-0.793, 0.793 § 0.098
in the TC, 0.764 § 0.096 in the EVC1, 0.782 § 0.100
in the EVC2, respectively, Supplementary Figure S8)).

The proposed SMTN obtained a high accuracy with
an AUC of 0. 986 (95%CI: 0.977-0.995) in the TC. Fur-
thermore, the SMTN achieved consistently a high accu-
racy with AUC values of 0.902 (95%CI: 0.856-0.948)
and 0.957 (95%CI: 0.924-0.990) in two EVCs, respec-
tively (Table 2). Notably, the sensitivity and specificity
slightly decreased, whereas were still satisfactory,
achieving 0.863 (95%CI: 0.794-0.932), and 0.874
(95%CI: 0.807-0.940) in the EVC 1, and 0.940
(95%CI: 0.889-0.991) and 0.904 (95%CI: 0.840-
0.967) in the EVC 2, respectively. Additionally, the
www.thelancet.com Vol 52 Month , 2022



characteristics Training cohort
(n = 215)

P External validation cohort
1 (n = 95)

P External validation cohort
2 (n = 83)

P

pCR non-pCR pCR non-pCR pCR non-pCR

Age (mean § SD) 49.1§8.0 47.1§8.6 0.522 50.8§8.3 49.4§9.2 0.539 49.8§12.8 50.9§9.1 0.070

Age group 0.215 0.103 0.790

<40 7 27 6 8 4 10

40-50 12 50 10 24 5 20

≥50 36 83 25 22 9 35

menopausal status 0.419 0.315 0.601

premenopausal 36 114 17 28 9 37

Postmenopausal 19 46 24 26 9 28

Clinical T stage 0.513 0.071 0.769

T1 0 4 8 3 5 12

T2 40 111 29 40 12 46

T3 8 30 1 7 1 6

T4 7 15 3 4 0 1

ER 0.148 < 0.01 0.155

Negative 26 58 24 13 10 24

Positive 29 102 17 41 8 41

PR 0.962 0.002 0.529

Negative 17 50 29 21 12 38

Positive 38 110 12 33 6 27

Ki-67 0.018 0.635 0.477

Negative 12 63 14 21 3 16

Positive 43 97 27 33 15 49

NACT regimen 0.402 0.403 0.032

Anthracycline-based 2 7 0 0 0 1

Taxane-based 5 26 27 31 7 8

Anthracycline

and Taxane-based

48 127 14 23 11 56

Anthracycline 0.192 0.403 0.017

No 5 26 27 31 7 9

Yes 50 134 14 23 11 56

Anti-HER2 therapy 0.065 0.246 0.001

No 27 98 4 6 8 48

H 20 33 33 36 3 13

HP 8 29 4 12 7 4

Molecular subtype 0.669 0.003 0.130

HR-negative 15 39 22 13 9 20

HR-positive 40 121 19 41 9 45

Table 1: Clinicopathological characteristics of patients in the training cohort and external validation cohorts.
Data were presented as number of patients, with the exception of age (mean § SD).

Abbreviations: pCR: pathological complete response; SD: standard deviation; NACT: neoadjuvant chemotherapy; H: trastuzumab; HP: trastuzumab plus pertu-

zumab; ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor; HR: hormone receptor.

Articles
SMTN performed remarkably well in terms of PPV and
NPV, ranging from 0.872 (95%CI: 0.805, 0.940) to
0.907 (95%CI: 0.846, 0.968), and 0.865 (95%CI:
0.796-0.933) to 0.938 (95%CI: 0.884-0.991) in two
EVCs (Supplementary Table S4, Figure 3A). Moreover,
272 of 279 (97.5%) patients with non-pCR (159 of 160
(99.4%), 53 of 54 (98.1%), and 60 of 65 (92.3%) patients
in the TC and two EVCs, respectively) were successfully
identified by SMTN. Meanwhile, 94 of 114 (82.5%)
www.thelancet.com Vol 52 Month , 2022
patients with pCR (49 of 55 (89.1%), 30 of 41 (73.2%), 15
of 18 (83.3%) patients in the TC and two EVCs, respec-
tively) were successfully identified by the SMTN (Sup-
plementary Figure S9).

Finally, we evaluated the calibration of the SMTN in
pCR prediction. The predicted probabilities of the model
were close to the observed probabilities and showed a
good calibration (Hosmer-Lemeshow test: P-value ranged
from 0.103 to 0.442 in the three cohorts, Figure 3D).
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Models AUC (95%CI)

Training cohort External validation cohort 1 External validation cohort 2

SMTN 0.986 (0.977,0.995) 0.902 (0.856, 0.948) 0.957 (0.924, 0.990)

Clinical model 0.588 (0.521, 0.655) 0.524 (0.425, 0.622) 0.540 (0.437,0.643)

Clinical + SMTN 0.989 (0.982, 0.996) 0.904 (0.861, 0.948) 0.952 (0.920, 0.983)

Table 2: The performance of models.
Abbreviations: AUC: area under the receiver operating characteristics curve; SMTN: Siamese multi-task network.
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Superiority verification of SMTN
The SMTN, integrating temporal and spatial informa-
tion from longitudinal ultrasound images, showed a
superior performance in evaluating treatment response
compared with the traditional clinical model and single
ultrasound information.

Compared with the clinical model, the predictive per-
formance of the SMTN was better than that of the clini-
cal model among the three cohorts (Figure 3B-C,
Table 2, Supplementary Tables S3-S4). We further inte-
grated the clinical model into the SMTN to achieve bet-
ter predictive performance. However, it did not improve
the predictive performance of the SMTN (Table 2, Sup-
plementary Tables S4-S5). We found that none of the
clinical factors were significant variables by analyzing
their relative contribution (Supplementary Figure S7B).

To illustrate the advantages of longitudinal ultrasound
in the early prediction of pCR, we trained single-MTN
with ultrasound images at T0 or T1 time points, respec-
tively. Unsurprisingly, the SMTN achieved a better pre-
dictive performance than the single-MTN (AUC:
0.986 vs. 0.858 vs. 0.916 in the TC (P<0.001), 0.902 vs.
0.869 vs. 0.881 in the EVC 1 (P > 0.05), 0.957 vs.
0.873 vs. 0.849 (P <0.05) in the EVC 2 (P<0.05) (Sup-
plementary Table S4 and Tables S6-7, Figure 3E-F).

To estimate the importance of capturing the
dynamic information from longitudinal ultrasound
images, we simultaneously trained the SMTN and
qMTN on longitudinal ultrasound images and com-
pared their performance. There was a significant
improvement in prediction accuracy after adding
dynamic information in the TC (AUC: 0.918 to 0.986,
DeLong test, P < 0.05). Although differences did not
reach statistical significance, there was also an increase
in predictive performance in the EVCs (AUC: 0.881 to
0.902, 0.919 to 0.957, respectively, DeLong test, P >
0.05) (Tables S4 and S8, and Figure 3E-F).

To investigate whether tumor segmentation is truly
necessary for accurate pCR prediction, we then compared
the performance between SMTN and single-task learning.
The proposed SMTN achieved higher performance than
RD-SMTN and RDD-SMTN (AUC: 0.986 vs.0.890 vs
.0.832 in the TC (PSMTN VS. RD-SMTN < 0.001, PSMTN VS.

RDD-SMTN < 0.001), 0.902 vs. 0.876 vs. 0.811 in the EVC 1
(PSMTN VS. RD-SMTN =0.451, PSMTN VS. RDD-SMTN =0.019),
0.957 vs. 0.913 vs.0.843 (PSMTN VS. RD-SMTN =0.118, PSMTN
VS. RDD-SMTN =0.001) in the EVC 2 (Supplementary Table
S4 and Tables S9-10, Supplementary Figure S10).

The proposed SMTN also achieved better perfor-
mance for pCR prediction compared with S- Dense-
net121 (AUC: 0.902 vs. 0.841 in the EVC1(P =0.097),
0.957 vs. 0.842 in the EVC2 (P=0.001), respectively).
Subgroup analysis of the SMTN
The SMTN achieved a good performance among anti-
HER2 therapy groups, with AUC values of 0.940 (no
anti-HER2 therapy), 0.903 (trastuzumab), and 0.895
(trastuzumab and pertuzumab) in the EVC 1, and 0.972
(no anti-HER2 therapy), 0.833 (trastuzumab) and 0.959
(trastuzumab and pertuzumab) in the EVC 2 (Supple-
mentary Table S11).

We conducted a subgroup analysis based on HR.
Prediction within HR- and HR+ subgroups achieved a
good performance, with AUC values of 0.869 (HR-)
and 0.953 (HR+) in the EVC 1, and 0.940 (HR-) and
0.988 (HR+) in the EVC 2 (Supplementary Table S12).

We also performed subgroup analysis based on the
different ultrasound machines. The performances of
SMTN in the subgroup of the same and different ultra-
sound machines used at T0 and T1 were similar in the
whole study population (supplementary Table S13). We
then performed subgroup analysis based on the ultra-
sound machines in patients who underwent ultrasound
examination at T0 and T1 using the same machine, the
performances were better in patients underwent ultra-
sound examination using Hitachi (supplementary Table
S14). This may be because of the higher amount of data
in the Hitachi group.
Interpretability of the SMTN
For investigating the interpretability of the SMTN in
early pCR prediction, the heatmaps were generated in
key channels at the bottom of the SMTN (Figure 4).
There were two locations valuable for early pCR predic-
tion on ultrasound images (namely, the peritumor
region and intratumor region). To better understand
the decision made by the SMTN, we selected four
patients in the external validation cohorts, two with pCR
and two with non-pCR (Figure 4). For patients with
non-pCR, the peritumor region was highlighted, while
www.thelancet.com Vol 52 Month , 2022



Figure 3. Performances for pCR prediction. A: AUCs of the SMTN in the training cohort and two validation cohorts; B: AUCs of the
SMTN and clinical model in the external validation cohort 1; C: AUCs of the SMTN and clinical model in the external validation cohort
2; D: The calibration curve of the SMTN in the training cohort and two validation cohorts; E: AUC of the SMTN, qMTN, single-MTN0,
and single-MTN1 in the external validation cohort 1; F: AUC of the SMTN, qMTN, single-MTN0, and single-MTN1 in the external vali-
dation cohort 2. pCR: pathological complete response; ROC: receiver operating characteristics; AUC: area under the receiver operat-
ing characteristics curve; YNCH: Yunnan Cancer Hospital (training cohort); GPPH: Guangdong Provincial People’s Hospital (external
validation cohort 1); SCH: Shanxi Cancer Hospital (external validation cohort 2); SMTN: Siamese multi-task network; Clin-model: clini-
cal model; single-MTN0: a multi-task network trained with ultrasound image before neoadjuvant chemotherapy; single-MTN1: a
multi-task network trained with ultrasound image after the first/second cycle of neoadjuvant chemotherapy, qMTN: the dynamic
information changes capture branch of SMTN was removed, and the remaining structure was used to predict pCR based on longitu-
dinal ultrasound images.
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the intratumor region was not in T0 and T1 ultrasound
images (Figure 4A-B). For patients with pCR, the intra-
tumor region was highlighted, whereas the peritumor
region was not in T0 and T1 ultrasound images
(Figure 4C-D). In addition, we also selected four
patients who failed to be correctly predicted (Supple-
mentary Figure S11). For patients who were wrongly
predicted, the SMTN cannot focus on the lesions. In
addition, we demonstrated that more than half of the
256 feature map channels in T1 were inactive (feature
map active rate <50%) compared to T0 for patient with
pCR. What’s more, the proportion of active regions in
feature map was reduced by 3%. By contrast, more than
half of the feature map channels were activated at T1 for
patient with non-pCR, and the proportion of activated
regions increased by 5.7% (Supplementary Figure S12).
www.thelancet.com Vol 52 Month , 2022
Discussion
In the present multicentre study, we developed and vali-
dated a deep learning-based model for early pCR predic-
tion using longitudinal ultrasound images at the early
stage of NACT in patients with HER2-positive breast
cancer. The SMTN achieved favorable results in terms
of AUC, sensitivity, specificity, and calibration curve.
Moreover, the performance of the SMTN was not influ-
enced by HR molecular subtypes and anti-HER2 ther-
apy regimens. Our study presented a precise and robust
model, which could assist clinicians in the early adjust-
ing treatment regimens for patients with non-pCR,
thereby increasing the rates of pCR and avoiding toxic
effects.

The biomarkers of each tumor can be changed dur-
ing NACT,10 including tumor size and tumor cellular
9



Figure 4. SMTN visualization and interpretation. Color-code heatmaps overlaid with the corresponding ultrasound images at T0
and T1 time points for four patients who were accurately predicted. A, B: The heatmaps highlighted the peritumor tissue in patients
with non-pCR, indicating that information exploited from the peritumor region of the tumor contributed to the prediction of non-
pCR by the SMTN; C, D: The heatmaps highlighted the intratumor region of the tumor in patients with pCR, indicating that informa-
tion exploited from the intratumor region of the tumor contributed to the prediction of pCR by the SMTN. T0: before neoadjuvant
chemotherapy; T1: after the first/second cycle of neoadjuvant chemotherapy; pCR: pathological complete response; SMTN: Siamese
multi-task network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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density.34 These changes can be reflected on longitudi-
nal ultrasound images.34,35 Thus, it is crucial to inte-
grate longitudinal ultrasound images for early pCR
prediction. To capture the dynamic changes induced by
NACT, we developed the SMTN using two Siamese sub-
networks based on ultrasound images at T0 and T1 time
points. As expected, the SMTN achieved an increased
performance compared with single-MTN, qMTN, RD-
SMTN, and RDD-SMTN (AUC: 0.902 vs. 0.869 vs.
0.881 vs. 0.881 vs.0.876 vs.0.811 in the EVC1, and 0.957
vs. 0.873 vs. 0.849 vs.0.919 vs. 0.913 vs. 0.843 in the
EVC2). Previous studies have evaluated early treatment
response using deep learning methods based on before
and mid-treatment ultrasound images, with AUC values
of 0.797-0.94.20,21 However, they did not take therapy-
induced changes into account. Moreover, the clinical
applicability remained unclear as these studies had a
small sample size and were not validated in the external
validations, resulting in the possibility of over-fitting.
Radiomics has been used to predict pCR based on pre-
and mid-treatment ultrasound images of breast cancer
patients with an AUC of 0.866 in the internal validation
cohort,36 which had a lower prediction performance
than our method. The reason for this discrepancy may
be because our model not only captured the intratumor
information but also peritumor information for early
pCR prediction, which was evident from heatmaps
(Figure 4). We also surveyed the current literature on
pCR prediction for breast cancer based on MRI or posi-
tron emission tomography (PET). Our results showed
that SMTN was superior to other prediction models
based on MRI and PET findings.14,37−39 This promising
result presents the ability to early predict pCR using
less complex, less costly, and more accessible
www.thelancet.com Vol 52 Month , 2022
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ultrasound images compared with MRI or PET, which
has enormous potential clinical and economic benefits.

The proposed SMTN provided an automatic segmen-
tation approach that did not require any handcrafted
features. Tumor segmentation was extremely important
for pCR prediction. Previous studies mainly used man-
ual segmentation for pCR prediction,20,40 which is
mainly subjective and time-consuming. In the present
study, we developed a multi-task network that could
automatically segment tumors. The performance of
algorithms for automated segmentation was highly con-
sistent with manual delineation (DICEmean > 0.764
(range: 0.764 � 0793)). The proposed networks saved
time for manual delineation and reduced inter/intra-
observer variability even among senior sonographers.

Regarding the clinical applicability, the SMTN has
the potential to guide individual therapy for HER2-posi-
tive breast cancer. For patients without a potential to
achieve a pCR, it is necessary to modify the treatment
regimens to reduce the toxic effects and increase the
rates of pCR. In this study, 272 of 279 (97.5%) non-pCR
patients were successfully identified by the SMTN who
may benefit from adjusting treatment regimes. Com-
paratively, for patients with a potential to achieve a pCR,
it is worthwhile to administer NACT with the same che-
motherapy regimens. Of the 114 patients with pCR in
our study, 94 patients were predicted accurately who
may benefit from breast-conserving surgery and omis-
sion of axillary node dissection.

The heatmap enabled clinicians to visualize the basis
of the SMTN prediction, which could guide their clinical
decision. The heatmaps highlighted the intratumor
region in patients with pCR and peritumor tissue in
patients with non-pCR. Importantly, pCR was associ-
ated with changes in tumor echogenicity.34 In contrast,
tumor microenvironment in peritumor tissue (for
example, lymph vascular invasion) was associated with
non-pCR.33,41 Importantly, we observed substantial
decreases in features form T0 and T1 ultrasound images
for patients with pCR, while there were increases in fea-
tures in patients with non-pCR. This further indicates
that information about treatment response is mainly
contained in the change of ultrasound imaging pheno-
types at T0 and T1, confirming the effectiveness of our
approach.

To investigate whether anti-HER2 therapy regimes
could affect the performance of the SMTN, stratification
analysis in subgroups was performed. We found that the
SMTN achieved a promising performance in no anti-
HER2 therapy, trastuzumab (H), and trastuzumab plus
pertuzumab (HP) groups, with AUCs values of 0.833-
0.972. The SMTN could guide clinicians in identifying
subpopulations of HER2-positive patients who would
benefit from more/less therapy and spare some patients
from unnecessary exposure to ineffective treatments.

Some limitations of the present study should be
pointed out. Firstly, some patients with HER2-positive
www.thelancet.com Vol 52 Month , 2022
breast cancer did not receive anti-HER2 therapy.
Because China is a developing country, some patients
may not be able to afford anti-HER2 therapy, especially
patients in Yunnan and Shanxi provinces. Secondly, a
limited number of patients underwent ultrasound at the
first and second cycles of NACT, thus, we did not ana-
lyse prediction results in the first and second cycles sep-
arately, which should be studied in the future research.
Last but not least, this is a retrospective study, and more
evidence from prospective studies is required to validate
the SMTN before its clinical application in the future.

In summary, the proposed SMTN could be a promis-
ing strategy for early pCR prediction in HER2-positive
breast cancer following NACT. Future prospective stud-
ies on a large group of patients are warranted.
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