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Axon degeneration: make the Schwann cell great again 

Introduction: Degeneration of the Axon-Glia 
Unit in Disease and after Injury
Axons are the thin, often meter-long projections of neurons 
which electrically wire the nervous system. These cable-like 
structures are interlaced with glial cells they closely interact 
with to establish a unique bidirectional relationship (Nave 
and Trapp, 2008; Beirowski, 2013). In the peripheral nervous 
system (PNS) of vertebrate species axons are associated with 
Schwann cells (SCs), while brain and spinal cord axons in 
the central nervous system (CNS) are surrounded by oli-
godendrocytes (OLGs). Under basal conditions these very 
specialized glial cells regulate the axonal cytoskeletal compo-
sition and ion channel distribution, provide support for ax-
ons, and often form compact myelin sheaths around axons, 
which provide faster electrical signal propagation. Because of 
their enormous length and extraordinary energetic demands 
(the axonal volume roughly exceeds the neuronal cell body 
volume by 1,000-fold), axons and their glia are particularly 
vulnerable structures and are at continuous risk of damage. 
Thus it is not surprising that axonal degeneration, along with 
alterations in their glia, is a hallmark of a wide range of neu-
rodegenerative conditions that cause substantial morbidity 
and socioeconomic burden to society (Coleman and Perry, 
2002; Raff et al., 2002). Examples include Alzheimer’s and 

Parkinsons diseases, as well as many hereditary and acquired 
neuropathies such as diabetic neuropathy (Cashman and 
Hoke, 2015; Feldman et al., 2017). Importantly, axonal de-
generation is not merely a pathological epiphenomenon that 
accompanies neuronal demise or a late-stage consequence of 
neuron cell body death. Instead, axonal degeneration is an 
early event in neurodegeneration, and a major cause of ir-
reversible neurological disability in several of the aforemen-
tioned diseases. The etiology of axonal death and whether it 
is caused by cell autonomous or non-cell autonomous mech-
anisms in these conditions is poorly understood. The possi-
ble contribution of glial effects for the progression of axonal 
degeneration in many neurodegenerative diseases is often 
neglected and overlooked. Instead, glial contributions to ax-
onal degeneration are only explored when there exists direct 
evidence for axonal damage through toxic events in glia or 
neuroinflammation secondary to demyelination. Nonethe-
less, there is emerging evidence that pathways in SCs and 
OLGs may play a more instructive role, thus regulating the 
rate and degree of axonal degeneration, and perhaps even di-
rectly executing aspects of axonal breakdown. For example, 
in amyotrophic lateral sclerosis (ALS), a fatal neurodegener-
ative disease of spinal cord motor neurons characterized by 
early degeneration of their axonal projections, it appears that 
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pathological events restricted to SCs and OLGs substantially 
impact axonal degeneration and overall disease progression 
(Lobsiger et al., 2009; Ferraiuolo et al., 2017). Thus, if SCs 
and OLGs play an active role during axonal degeneration, 
then it may be possible to stabilize axons by glial manip-
ulations, thereby establishing novel therapeutic strategies. 
Indeed, we have recently shown that metabolic pathways in 
SCs controlled by the metabolic master regulator LKB1 (also 
known as Stk11) play an essential role for the maintenance of 
long axons (Beirowski et al., 2014). In mouse models with 
SCs lacking LKB1, axons degenerate as a consequence of 
glial metabolic abnormalities including abnormal bioener-
getics. Our data indicated the glial release of lactate, recent-
ly proposed to be the mainstay metabolite for axonal sup-
port by OLGs (Funfschilling et al., 2012; Lee et al., 2012), 
is unlikely compromised in LKB1-deficient SCs (Beirowski 
et al., 2014). Rather, LKB1-deficient SCs seem to mount ca-
nonical SC-injury responses (see below) and respond with 
elevated lactate release to support metabolically distressed 
axons deprived of other critical components (Beirowski et 
al., 2014). 

In this brief review, we will summarize what is currently 
known regarding SC behavior during axonal degeneration, 
and its relevance for axonal loss in disease. We will provide 
circumstantial evidence suggesting that SCs are active par-
ticipants in the degenerative mechanisms that execute axonal 
dismantling in injured nerves. We will conclude by elaborat-
ing on the cellular and molecular mechanisms known to reg-
ulate the phenotypic conversion of SCs to a dedifferentiated 
state that confers neuroprotective and reparative functions 
in injured peripheral nerves. 

SCs are the First Responders to Axonal Injury 
How do SCs react and initially respond to axonal injury 
that eventually may lead to axonal loss? Because the nature 
of axonal injury in many neurodegenerative conditions 
remains elusive, and axonal dismantling in chronic neu-
rodegenerative conditions is a rather slow, asynchronous, 
and stochastic process, models of experimentally-induced 
acute axonal degeneration are better suited to explore this 
question. Wallerian degeneration (WD) is a straightforward 
experimental model system used to study the fast and si-
multaneously-induced degeneration of all axons within a 
nerve (Waller, 1850). In rodents, axonal breakdown during 
WD occurs within the span of few days in the distal stump 
of a transected nerve after all axons are separated from their 
parent neuronal cell bodies (e.g., after surgical transection of 
the rodent sciatic nerve) (Beirowski et al., 2004). The con-
comitant alterations in non-neuronal components during 
WD include prominent reactive injury responses of SCs that 
eventually lead to the disassembly and digestion of the my-
elin sheaths (referred to as myelin ovoid formation), breach 
of the blood-nerve barrier, macrophage recruitment, and a 
complex process of nerve tissue remodeling in preparation 
for nerve repair (Cattin and Lloyd, 2016) (Figure 1). An in-
tricate network of transcriptional changes in the distal nerve 
stump is associated with these reactive SC changes (Yi et al., 
2015). The disintegration of axons itself is characterized by 

a heterogeneous latency phase (about 1 day in mouse sciat-
ic nerve) in which individual transected axons first appear 
grossly normal but then, roughly within an hour, abruptly 
undergo a catastrophic fragmentation process with mor-
phological similarities to programmed cell death (Beirowski 
et al., 2005). It is now recognized that this sudden self-de-
struction of axons after a period of latency, known as the 
commitment phase of WD, is actively regulated by molecu-
lar mechanisms in neurons that are distinct from canonical 
cell death pathways such as apoptosis (Wang et al., 2012; 
Gerdts et al., 2016). This pathway can be potently blocked 
genetically by the overexpression of negative regulators (i.e., 
Wallerian degeneration slow protein (WldS) and its variants 
(Mack et al., 2001; Beirowski et al., 2009, 2010; Babetto et al., 
2010)), or the deactivation of positive regulators of WD (i.e., 
SARM1 (Sterile Alpha and TIR Motif 1), Phr1 (PAM-high-
wire-Rpm-1), TMEM184b, death receptor 6 (DR6) (Osterloh 
et al., 2012; Babetto et al., 2013; Bhattacharya et al., 2016; 
Gamage et al., 2017)), resulting in remarkable protection of 
transected axons in mutant mice. In contrast, in wild-type 
animals, the engagement of this degenerative pathway results 
in a rapid depletion of NAD+ and ATP, a rise of intra-axonal 
calcium levels, and an activation of so-called calpains and 
other downstream molecules leading to the swift enzymatic 
digestion of the axonal cytoskeleton. Strikingly, a number of 
reactive SC changes have been documented in WD markedly 
preceding this disintegration phase of axons (i.e., occurring 
within the latency phase), indicating that SCs ‘sense’ axo-
nal injury long distances away from the lesion point along 
axon portions that do not show morphological evidence of 
degeneration. This temporal and topological pattern is con-
sistent with a model suggesting that SCs could regulate the 
commitment of axons to disintegrate. In addition, SCs could 
also dictate the onset and timing of axon fragmentation once 
this commitment has been established. In fact, reports from 
more than five decades ago demonstrate the retraction of 
paranodal SC components, a corresponding widening of the 
node of Ranvier dividing two adjacent SC myelin sheaths, 
and a prominent dilation of Schmidt-Lanterman incisures 
(SLI) that occurs within minutes to a few hours after a nerve 
lesion (Causey and Palmer, 1953; Williams and Hall, 1971; 
Ghabriel and Allt, 1979a, b). SLI are thin SC cytoplasmic 
channels within compact myelin of the fiber’s internode, 
denoting the SC body area that overlies and enwraps axonal 
segments with myelin. Paranodes are other areas of direct 
axon-glia contact containing paranodal junctions where 
close apposition between SC and axon cytoplasm can be 
found. Alterations at paranodes, nodes, and SLI, together 
with further dynamic changes in these regions were inter-
preted by some authors as indicative for an active role of 
the SC in the breakdown of the axon (Singer and Steinberg, 
1972). Notably, it has long since been speculated that the 
cytoplasmic channels within SCs serve as routes for trophic 
support of axons (Williams and Landon, 1963), suggesting 
the idea that SCs respond to axonal injury by augmenting 
trophic communication routes between the axonal and the 
glial cytoplasm. Alternatively, it is possible that the observed 
alterations allow the transfer of deleterious enzymes harmful 
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to axons that may initiate axonal disintegration (De et al., 
2003). Another deleterious substrate in such cytoplasmic 
channels could be calcium, which has been shown in nu-
merous studies to be a downstream executioner of axonal 
disintegration (Avery et al., 2012; Yang et al., 2013; Villegas 
et al., 2014). In fact, axoplasmic calcium elevations at nodes 

of Ranvier have been observed after paranodal myelin dis-
ruption (Zhang and David, 2016), and another recent study 
using genetically encoded calcium sensors and multiphoton 
microscopy suggested an early and dynamic mitochon-
dria-derived calcium elevation in the SC cytoplasm, starting 
about one hour after peripheral nerve injury (Gonzalez et 
al., 2016a, b, c) [note that this publication has been retracted 
during the review of this manuscript on grounds of errors in 
presentation of data other than the proposed calcium release 
after nerve injury (Gonzalez et al., 2017)].

What are the alterations in regions of axon-glia contact 
on molecular level? Remarkably, SCs even centimeters away 
from the nerve lesion site respond within a few minutes to 
axonal injury by activation of the ErbB2 receptor tyrosine ki-
nase. This change is accompanied by increased downstream 
p38 and Erk1/2 mitogen-activated protein kinase (MAPK) 
signaling, most prominently located at their paranodal mi-
crovilli (Guertin et al., 2005; Yang et al., 2012). During nerve 
development, this receptor heterodimerizes with the ErbB3 
pseudo-kinase and can be activated by axonal neuregulin 
to regulate SC differentiation and myelination. However, 
because addition of recombinant neuregulin induces my-
elin breakdown in in vitro models of myelination (Zanazzi 
et al., 2001; Harrisingh et al., 2004), it is tempting to spec-
ulate that elevated axonal neuregulin ligands, presumably 
as a consequence of injury-induced axolemmal cleavage, 
provide a critical injury signal that is communicated to the 

Figure 1  Schwann cell (SC) responses following axotomy. 
Schematic illustrating distinct stages of SC responses following axoto-
my and during axonal regeneration and remyelination. (A) Under basal 
conditions the axon is encapsulated by a compact myelin sheath, estab-
lished by Neuregulin-ErbB2/3 signaling during development. (B) Upon 
injury the first reactions in the SC, already minutes to 1 hour after axo-
tomy, include widening of Schmidt-Lanterman incisures (yellow stripes 
in compact myelin), activation of the ErbB2 receptor tyrosine kinase (red 
anchors), activation of p38- and Erk1/2 mitogen-activated protein kinase 
(MAPK) signaling, and rapid increase of cytoplasmic calcium levels in 
the SC. Increased expression of c-Jun is also observed few hours after 
nerve injury. Actin progressively polymerizes in widened Schmidt-Lant-
erman incisures (SLI) (not depicted). These changes are accompanied by 
a general increase of the SC body size. (C) Following a latency phase with 
axons showing no morphological evidence of degeneration, axons then 
abruptly disintegrate leaving axon fragments behind. In parallel, during 
Wallerian degeneration (WD) there is formation of myelin debris sec-
ondary to rapid disassembly of the myelin sheaths. SCs release cytokines 
and chemokines that attract macrophages. In addition, SCs robustly 
upregulate injury response pathways including MAPK kinase pathways, 
Notch signaling, as well as further expression increases of c-Jun. (D) 
Axonal regeneration following WD is underway with SCs forming bands 
of Bungner and releasing surface molecules (not shown) and a multitude 
of neurotrophic factors including glial cell-derived neurotrophic factor 
(GDNF), nerve growth factor (NGF), neurotrophin-3 (NT3), brain-de-
rived neurotrophic factor (BDNF), and ciliary neurotrophic factor 
(CNTF). This release is regulated by c-Jun in the SC. (E) SCs eventually 
conclude their repair program and redifferentiate to promote completion 
of nerve repair. Regenerating axons are remyelinated by SCs to restore 
normal nerve function. 

Figure 2 Wallerian degeneration is protracted in the central nervous 
system.
Transmission electron microscopy of control and axotomized trans-
verse mouse sciatic nerves (upper row) and optic nerves (lower row) 
representing Wallerian degeneration of the peripheral nervous system 
(PNS) and central nervous system (CNS), respectively. Note complete 
degeneration of all PNS axons with granular disintegration of the axo-
plasm in the distal nerve stump three days following axotomy (yellow 
arrows depict examples). In contrast, many CNS axons are structurally 
preserved three days following optic nerve axotomy (red arrows depict 
examples). This indicates that Wallerian degeneration of axons pro-
gresses slower in the CNS than in the PNS. Scale bars: 2 µm. 

PNS: mouse sciatic nerve, 3 days after axotomy

Control                                           Axotomy

CNS: mouse optic nerve, 3 days after axotomy

Control                                           Axotomy
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SC. Notably, inhibition of such ErbB2 activation through 
pharmacological approaches suppresses the SC injury re-
sponse and subsequent myelin breakdown both in vitro 
and in vivo (Guertin et al., 2005). In accord with blocked 
axon-glia communication following nerve lesion, ablation 
of axonal neuregulin in adult mice leads to attenuated nerve 
regeneration after nerve lesion (Fricker et al., 2011). Shortly 
after the occurrence of the described ErbB2 activation (~6 
hours), actin in non-compact myelin areas polymerizes as 
assessed by F-actin labeling, which has been proposed as 
a molecular mechanism initializing myelin fragmentation 
during WD (i.e. ‘myelin ovoid’ formation) (Jung et al., 2011). 
As an alternative to axonal neuregulin ligand signaling, it is 
possible that release of damage-associated molecular pat-
terns (DAMPs) or so-called alarmins from mitochondria of 
injured axons including mtDNA, Cytochrome C (Cyt c) and 
H2O2 contributes to SC injury responses because such sub-
stances lead to sustained activation of Erk MAPK signaling 
in SCs within minutes of exposure (Duregotti et al., 2015). It 
will be interesting in future studies to explore whether or not 
such early molecular reactions in SCs that ultimately lead to 
myelin dismantling also occur in paradigms of blocked axon 
disintegration following nerve injury (see above). Interest-
ingly in this context, it has been recently proposed that the 
deterioration of axons and SC myelin after nerve injury can 
be dissociated from each other (Gamage et al., 2017). 

Taken together, in addition to the established function 
that SCs actively disassemble myelin sheaths during WD, 
these earlier and more recent data suggest the concept that 
SCs may also actively participate in the degenerative signal-
ing events that lead to axonal breakdown in injured nerves. 
This clearly contrasts with a model for a more passive role of 
these glia in this initiating phase of axonal degeneration with 
more active functions to follow later (Stoll and Muller, 1999; 
Hirata and Kawabuchi, 2002; Vargas and Barres, 2007; Jessen 
and Mirsky, 2008). 

SCs Dedifferentiate after Nerve Injury to 
Evoke a Glial Nerve Repair Program 
At roughly the same time that axons begin to undergo cyto-
skeletal disintegration and fragmentation during WD, SCs 
activate a dedifferentiation program that leads to a dramatic 
downregulation of myelin-synthesis genes in SCs. These 
genes encode the transcription factor Egr2, myelin basic 
protein (MBP), and P0 glycoprotein (P0) among many other 
myelin proteins (Jessen and Mirsky, 2008). In parallel, mo-
lecular markers characteristic of immature SCs such as the 
p75 neurotrophic receptor (p75NTR) and the glial fibrillary 
acidic protein (GFAP) are progressively upregulated. This is 
accompanied by various adaptive responses in SCs promot-
ing lysosomal/autophagic digestion of axonal and myelin 
debris (Gomez-Sanchez et al., 2015; Jang et al., 2016), and 
re-entry of SCs into the cell cycle (Yang et al., 2008). SCs are 
also known to regulate the immune response of WD that 
leads to macrophage recruitment through the glial release 
of various chemoattractants such as tumor necrosis factor-α 
(TNF-α), chemoattractant protein-1 (MCP-1), and placen-
tal growth factor (Martini et al., 2008; Chaballe et al., 2011; 

Gaudet et al., 2011). This response seems to be counterbal-
anced by parallel release of anti-inflammatory molecules such 
as erythropoietin (Epo) and upregulation of its receptor in SCs 
to prevent excessive inflammation (Campana et al., 2006). The 
intricate phenotypic conversion of SCs, mostly referred to as 
dedifferentiation, is essential for the remarkable regeneration 
potential of PNS axons. Here, axonal regrowth is to large ex-
tent stimulated by release of a plethora of SC-derived neuro-
trophic factors and surface proteins, as well as the fact that SCs 
play a key role in the formation of specialized axon-growth 
guidance tracks, broadly known as bands of Bungner (Stoll 
and Muller, 1999) (Figure 1). Recent intriguing in vivo studies 
have demonstrated that the interactions of fibroblasts with SCs 
and the behavior of macrophages and endothelia at the nerve 
injury site play a critical role for successful axon regeneration 
and nerve repair (Parrinello et al., 2010; Cattin et al., 2015). 
Upon nerve transection, fibroblasts and SCs sort at the injury 
site via ephrin-B/EphB2 signaling interactions to form cords 
of SCs that subsequently guide regrowing axons (Parrinello 
et al., 2010). Prior to that macrophage-induced blood vessels 
escort these SC cords across the transection site (Cattin et al., 
2015). Moreover, SCs release exosomes that are internalized by 
axons and aid axonal regrowth through stimulation of axonal 
growth cone dynamics (Lopez-Verrilli et al., 2013). These mi-
crovesicles of 50-100 nm in diameter contain RNAs and pro-
teins such as the p75NTR and likely other molecules promoting 
axonal regeneration (Lopez-Verrilli and Court, 2012). Eventu-
ally, once axonal elongation and target-reinnervation occurs, 
SCs gradually once again adopt their differentiated cellular 
state to support functions such as myelination of large-diam-
eter axons and normal engulfment of small-diameter fibers 
in Remak bundles (i.e., SCs encapsulating bundles of sever-
al small-diameter unmyelinated axons). These phenotypic 
switches as a reaction to axonal injury, and later repair, reflect 
the extraordinary plasticity of SC glia. Such plastic behavior is 
lacking in OLGs, the myelinating glia counterpart in the CNS, 
perhaps directly causing the protracted WD in the CNS (Fig-
ure 2). Thus OLGs do not promote axon regrowth, resulting 
in the poor regeneration capacity of the CNS (Vargas and Bar-
res, 2007). Notably, and similar in principle, in circumstances 
of genetically blocked axonal self-destruction (impressively 
seen in the so-called WldS mouse), SCs do not dedifferentiate 
which results in compromised axonal regeneration (Brown et 
al., 1992; Arthur-Farraj et al., 2012). 

Based on detailed in vitro and in vivo studies, it has been in-
creasingly appreciated in recent years that the WD-associated 
reprogramming from differentiated SCs to their repair phe-
notype is regulated by a molecular cascade centered around 
the AP-1 transcription factor c-Jun and a number of signaling 
pathways including Ras/Raf/MEK/ERK, p38-MAPK, JUN 
N-terminal kinase (JNK)-MAPK, and Notch (Agthong et al., 
2006; Parkinson et al., 2008; Woodhoo et al., 2009; Monje et 
al., 2010; Arthur-Farraj et al., 2012; Napoli et al., 2012; Yang et 
al., 2012) (Figure 1). The expression of c-Jun after nerve injury 
and activation of above signaling pathways can be prominently 
manipulated by the tumor suppressor Merlin and downstream 
Hippo pathway effector YAP (Mindos et al., 2017). Also very 
recently, it has been additionally shown that the transcription 
factor STAT3 plays a role in sustaining the c-Jun dependent 



522

Wong et al. / Neural Regeneration Research. 2017;12(4):518-524.

SC repair phenotype by promoting long-term SC survival and 
expression of trophic factors important for axonal regener-
ation following axon injury (Benito et al., 2017). Moreover, 
epigenetic polycomb silencing regulating repressive histone 
modifications (methylation) in SCs after nerve injury has been 
implicated in the control of c-Jun dependent SC repair genes 
(Ma et al., 2016). How exactly all these factors work together 
to coordinate the complex program of SC dedifferentiation, 
and whether they converge on a common pathway, is essen-
tially unknown so far. After nerve injury, above signaling 
components are promptly activated in SCs, and some have 
been documented separately as negative regulators of myelin 
genes (Parkinson et al., 2008; Woodhoo et al., 2009; Yang et al., 
2012). It is interesting to note that the upregulation of c-Jun 
expression in SCs can be observed within a few hours of nerve 
injury, suggesting further direct molecular links between the 
SC dedifferentiation pathways and the earliest SC responses 
described above. For example, it is known that activation of 
JNK-MAPK signaling is a key enhancer of c-Jun activity, and 
there is considerable crosstalk between JNK-MAPK signaling 
and other branches of MAPK signaling (Monje et al., 2010). 
The induction of the extracellular signal-regulated protein 
kinases 1 and 2 (ERK1/2) has been shown to promote the in-
flammatory responses of dedifferentiated SCs such as release 
of the chemoattractant MCP-1 that is necessary to entice mac-
rophages to injured nerves (Napoli et al., 2012). Importantly, 
the genetic inactivation of c-Jun in SCs results in dramatic 
axonal regeneration defects and neuronal demise in vivo 
secondary to the shutdown of various SC dedifferentiation 
responses including abolished suppression of myelin clearance 
and release of neurotrophic factors from SCs (Parkinson et al., 
2008; Arthur-Farraj et al., 2012; Fontana et al., 2012). Intrigu-
ingly, it has been demonstrated in vivo that the SC dediffer-
entiation response can be activated in the complete absence 
of WD (through genetic induction of Ras/Raf/MEK/ERK or 
Notch signaling in SCs), thus decoupling the WD-associated 
SC responses from axon injury (Woodhoo et al., 2009; Napoli 
et al., 2012). It is unknown if the artificial activation of the oth-
er pathways (i.e., JNK-MAPK, p38-MAPK) implicated in SC 
dedifferentiation may result in similar effects. Consistent with 
a hierarchy for these pathways regulating SC dedifferentiation, 
it appears that p38-MAPK signaling has a less important role 
because loss of p38-MAPK activity in SCs has no impact on 
axonal regeneration and functional nerve repair in mutant 
mice, and myelin clearance during WD is only slightly delayed 
(Roberts et al., 2017). The injury-induced dedifferentiation 
program of SCs can also be influenced by the ubiquitin-pro-
teasome system (UPS) (Lee et al., 2009), presumably because 
of the possible involvement of the UPS in the degradation of 
myelin components. On the other hand, both in vitro and in 
vivo studies showed that proteasome inhibition prevents SCs 
from upregulating dedifferentiation markers such as p75NTR 
and GFAP upon injury (Lee et al., 2009). Furthermore, it is 
possible that SC dedifferentiation and demyelination is reg-
ulated by the earlier-mentioned rapid calcium burst in SCs 
undergoing WD (Gonzalez et al., 2016a, b, c) [note that this 
publication has been retracted during the review of this man-
uscript on grounds of errors in presentation of data other than 
the proposed calcium release after nerve injury (Gonzalez et 

al., 2017)]. Hence, because cytoplasmic calcium is known to 
induce the activation of several of these signaling pathways, 
it is conceivable that this mechanism represents the initiating 
event in the complex SC dedifferentiation cascade. Finally, this 
mechanism establishes also intriguing links between meta-
bolic neuropathies (e.g., diabetic neuropathy) that are clearly 
associated with mitochondrial abnormalities, SC dedifferenti-
ation, demyelination of nerves, as well as axonal degeneration 
(Fernyhough and Calcutt, 2010; Chowdhury et al., 2013; Zen-
ker et al., 2013; Gonzalez et al., 2016b; Feldman et al., 2017). 

SC Injury Responses Limit Axonal Loss in 
Disease 
Since induction of c-Jun and Erk1/2 signaling in SCs also 
occurs in neuropathic disease contexts in which axons die 
slowly (Hutton et al., 2011; Klein et al., 2014), a critical ques-
tion is whether such upregulation is part of an endogenous 
neuroprotective mechanism to support distressed axons. We 
also observed substantial upregulation of c-Jun expression 
in LKB1-deficient SCs that cause an age-dependent and pro-
gressive axonopathy, and in parallel elicit compensatory ax-
on-supportive features (Beirowski et al., 2014). Remarkably, 
a recent study has shown that elimination of the increased 
c-Jun expression in SCs in a Charcot-Marie-Tooth (CMT) 
1A neuropathy model results in marked accentuation of ax-
onal loss and deterioration in sensory-motor performance 
(Hantke et al., 2014). It will be important to explore the 
mechanistic basis of this finding in the future. For example, 
it is essential to investigate whether the prevention of c-Jun 
upregulation abolishes the increased release of trophic fac-
tors or other neuroprotective responses in the mutant SCs 
which could directly promote axonal degeneration. Alter-
natively, reduced levels of c-Jun induction in SCs have been 
recently implicated in the age-related decline of PNS axonal 
regeneration (Painter et al., 2014), and the reduced axon 
numbers in above neuropathy model therefore could be sec-
ondary to diminished axonal regeneration. 

Conclusions and Perspectives 
In this article, we presented evidence that SCs mount sophis-
ticated responses rapidly following axonal injury through 
poorly understood molecular and cellular mechanisms. It 
is essentially unknown if these reactions are maladaptive or 
neuroprotective or neutral. These responses culminate in the 
induction of a complex glial injury program that converts 
SCs to dedifferentiated cells that promote axonal regenera-
tion and peripheral nerve repair. Future studies will be need-
ed to explore whether the augmentation of different aspects 
of the SC injury response program has neuroprotective po-
tential for a range of diseases with degeneration of axons as a 
major etiological component.
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