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Background: Influenza is an acute respiratory infectious disease with a significant global
disease burden. Additionally, the coronavirus disease 2019 pandemic and its related non-
pharmaceutical interventions (NPIs) have introduced uncertainty to the spread of influ-
enza. However, comparative studies on the performance of innovative models and ap-
proaches used for influenza prediction are limited. Therefore, this study aimed to predict
the trend of influenza-like illness (ILI) in settings with diverse climate characteristics in
China based on sentinel surveillance data using three approaches and evaluate and
compare their predictive performance.
Methods: The generalized additive model (GAM), deep learning hybrid model based on
Gate Recurrent Unit (GRU), and autoregressive moving average-generalized autoregressive
conditional heteroscedasticity (ARMAdGARCH) model were established to predict the
trends of ILI 1-, 2-, 3-, and 4-week-ahead in Beijing, Tianjin, Shanxi, Hubei, Chongqing,
Guangdong, Hainan, and the Hong Kong Special Administrative Region in China, based on
sentinel surveillance data from 2011 to 2019. Three relevant metrics, namely, Mean Ab-
solute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and R squared, were
calculated to evaluate and compare the goodness of fit and robustness of the three models.
Results: Considering the MAPE, RMSE, and R squared values, the ARMAdGARCH model
performed best, while the GRU-based deep learning hybrid model exhibited moderate
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Abbreviations

(NPIs) non-pharmaceutical interven
(ILI) influenza-like illness
(GAM) generalized additive model
(GRU) Gate Recurrent Unit
(ARMAdGARCH) autoregressive movi
(MAPE) Mean Absolute Percentage Er
(RMSE) Root Mean Squared Error
(COVID-19) coronavirus disease 2019
(WHO) World Health Organization
(RT-PCR) Real-time reverse transcripti
(SAR) Special Administrative Region
(CI) confidence interval
performance and GAM made predictions with the least accuracy in the eight settings in
China. Additionally, the models’ predictive performance declined as the weeks ahead
increased. Furthermore, blocked cross-validation indicated that all models were robust to
changes in data and had low risks of overfitting.
Conclusions: Our study suggested that the ARMAdGARCH model exhibited the best ac-
curacy in predicting ILI trends in China compared to the GAM and GRU-based deep
learning hybrid model. Therefore, in the future, the ARMAdGARCH model may be used to
predict ILI trends in public health practice across diverse climatic zones, thereby
contributing to influenza control and prevention efforts.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
tions

ng average-generalized autoregressive conditional heteroscedasticity
ror

on PCR
1. Introduction

Influenza is an acute respiratory infectious disease caused by influenza viruses that circulate among people worldwide
(Uyeki et al., 2022). This disease is characterized by its robust infectivity, rapid transmission, and antigen variation. Seasonal
influenza reportedly occurs with an annual attack rate of 5e10% in adults and 20e30% in children globally (World Health
Organization). Annual influenza epidemics commonly occur during the cold winter in temperate climates worldwide.
Additionally, year-round influenza activity can be observed in tropical and subtropical areas, peaking at different times.
Influenza was the first infectious disease, systematically monitored globally (World Health Organization). Influenza-like
illness (ILI), which is characterized by patients presenting with fever of �38 �C and cough or sore throat (World Health
Organization), is a proxy indicator of influenza activity. Therefore, a sentinel ILI surveillance system was established to
collect epidemiological data on influenza and monitor the influenza trends.

The coronavirus disease 2019 (COVID-19) pandemic and its related non-pharmaceutical interventions (NPIs) have altered
the predictable circulation pattern of influenza globally. Notably, influenza activity was significantly reduced in northern and
southern China and the United States during the 2019e2020 season (Feng et al., 2021). In the World Health Organization
(WHO) European region, the 2019e2020 influenza season was prematurely concluded by the COVID-19 pandemic and was
characterized by low-level influenza activity (Adlhoch et al., 2021). Furthermore, low exposure to the influenza virus and
waning immunity over time add uncertainty to the future influenza circulation. For instance, the influenza peak season was
significantly earlier in the 2022e2023 season than in the previous five seasons and is associated with a higher hospitalization
rate in the United States (Centers for Disease Control and Prevention, 2023). Although COVID-19 remains a persistent global
health threat (Lazarus et al., 2022), the rebound and resurgence of influenza are emerging or imminent. Therefore, predicting
influenza or ILI trends with optimal models and techniques using surveillance data is crucial to inform the early warning and
intervention strategies (Hay & McCauley, 2018) for influenza, particularly in the pandemic or post-pandemic era.

Numerous innovative models and approaches have been applied to influenza prediction. For example, the deep learning
hybrid model (Reichstein et al., 2019)da machine learning algorithmsdhas increasingly become popular because of its
intelligent learning ability (He et al., 2022; Tang Chaofan, Yang, Tang, & Zhao, 2023). Meanwhile, the autoregressive moving
average-generalized autoregressive conditional heteroscedasticity (ARMAdGARCH) model (Bollerslev, 1986 combines two
classic time-series models and is widely used for fitting data with periodic fluctuations in financial and economic fields. The
generalized additive model (GAM) can adapt to complex nonlinear relationships and make superior predictions capable of
817
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incorporating multiple influencing factors (Iva et al., 2018). These three models can effectively predict time series data with
periodic fluctuations and perform well in different research fields. However, studies on the performance of these models in
predicting the ILI trend are limited.

Therefore, this study is aimed to predict the ILI trend using sentinel surveillance data in settings with diverse climate
characteristics in China with three approaches: the generalized additive model (GAM), deep learning model based on Gate
Recurrent Unit (GRU), and ARMA-GARCH model. Additionally, the predictive performance of these models was assessed. Our
findings will add evidence to the innovation and application of ILI- and influenza-predicting techniques while also helping to
addressthe constant threat of emerging infectious diseases, such as COVID-19 and other infectious diseases.
2. Materials and methods

2.1. Data collection

2.1.1. Influenza surveillance dataset
ILI and virological surveillance data in Chinawere obtained from the National Influenza Surveillance Network from 2011 to

2019. The National Influenza Surveillance Network in mainland China, led by China Center for Disease Control and Prevention
(China CDC, Beijing), comprises 554 sentinel hospitals and 407 network laboratories (National Health Commission of the
People's Republic of China) (Yu et al., 2013). Influenza activity levels and trends are monitored using ILI data from sentinel
hospitals and virological data from the Influenza Network Laboratory (Feng et al., 2021).

The weekly proportions of ILI cases in the Hong Kong Special Administrative Region (SAR) were obtained from the Centre
for Health Protection of the Hong Kong SAR, based on sentinel surveillance conducted at the General Outpatient Clinics/
Private Medical Practitioner Clinics (Center for Health Protection/Department of Health of the Government of the Hong Kong
Special Administrative Region; Lau et al., 2008). The influenza sentinel surveillance network comprised approximately 60
outpatient clinics (Cowling et al., 2013; 2020). Each week, data on the proportions of ILI cases per 1000 outpatient consul-
tations (Wu et al., 2017))and influenza test positivity specimens by type, subtype and specimens tested (Yang et al., 2015) are
reported.

As the influenza seasonality patterns in different climates were heterogeneous, seven provinces/megacities in mainland
China and the Hong Kong SAR from three different climatic zones were selected as the study settings. Among them, Beijing,
Tianjin, and Shanxi are located in the temperate region, Hubei, Chongqing, most of Guangdong, and the Hong Kong SAR are
located in the subtropical region, and Hainan is in the tropical region (Fig. 1). In mainland China, each surveillance year
comprises a 12-month interval as follows: fromweek 14 of one year to week 13 of the following year. For consistency within
this study, the surveillance year in the Hong Kong SAR was similar to that in mainland China.

2.1.2. Meteorological dataset
Meteorological data, including mean temperature, absolute humidity, relative humidity, and other meteorological factors

in the eight provinces/megacities between 2011 and 2019 were obtained from the China Meteorological Data Service Center
(China Meteorological Administration) and the National Centers for Environmental Information (National Oceanic and
Atmospheric Administration). Temperature and humidity play a more important role in influenza transmission (Shaman &
Kohn, 2009). Thus, before modeling, collinearity between mean temperature, relative humidity, and absolute humidity
was analyzed using the Pearson correlation test (Tables S1eS8). When the correlation coefficient between a pair of variables
was>0.7, only one of themwas included in themodel. Therefore, absolute humidity was incorporated into the GAMmodels in
the eight settings.

2.1.3. Public and school holiday dataset
The holiday data in the eight provinces/megacities between 2011 and 2019 were obtained from the WorldPop Data re-

pository (WorldPop, 2022) and a relevant previous study (Lai et al., 2022). These datasets were established as a time series to
record the number of days each week containing public or school holidays.

2.1.4. Population density dataset
The yearly population density data for the eight provinces/megacities between 2011 and 2019 was downloaded from the

statistical yearbooks released by the Statistics Bureau of Beijing (Beijing Municipal Bureau Statistics), Tianjin (Tianjin
Municipal Bureau Statistics), Shanxi (Shanxi Provincial Bureau Statistics), Hubei (Hubei Municipal Bureau Statistics),
Chongqing (Chongqing Provincial Bureau Statistics), Guangdong (Guangdong Provincial Bureau Statistics), Hainan (Hainan
Municipal Bureau Statistics), and Statistics Department of the Hong Kong SAR (Census and Statistics, Department of the
Government of the Hong Kong SAR).
818



Fig. 1. Map indicating the geographical locations of the eight provinces/megacities in China in the study. The colors illustrate the following climate zones:
temperature (green), subtropical (yellow), and tropical (red).

X. Zhang, L. Yang, T. Chen et al. Infectious Disease Modelling 9 (2024) 816e827
2.2. Data analysis

2.2.1. Descriptive analysis
Descriptive analysis was used to present the temporal distribution of the mean temperature, relative humidity, and ab-

solute humidity fromweek 14 of 2011 to week 13 of 2019 in Beijing, Tianjin, Shanxi, Hubei, Chongqing, Guangdong, Hainan,
and the Hong Kong SAR, respectively (Figs. S1eS8). Subsequently, the interannual and seasonal trend of the observed weekly
ILI proportion was presented with the fitted and predicted values of the GAM, GRU-based deep learning hybrid, and
ARMAeGARCH models from week 14 of 2011 to week 13 of 2019 in each setting (Figs. 2e4).

2.2.2. Modelling

2.2.2.1. Methods for predicting the ILI trend using the sentinel surveillance data. The first approach is the GAM, and the basic model
(Eq. (1)) is as follows:

log½EðYiÞ� ¼ aþ nsðWi; df Þ þ nsðAHi; df Þ þ factorðHiÞ þ pd (1)

where EðYiÞ is the expected weekly ILI proportion in a given week (i), and the link function is log(.) with the assumption that
weekly ILI proportion follows normal logarithmic distribution; a is the intercept; nsð:Þ is a cubic spline function, df is the
degree of freedom;Wi is a time series comprising the number of weeks (1e52) in a calendar year, representing the potential
seasonality trend in weekly ILI proportion; AHi is the absolute humidity in the week (i); and Hi is an indicator variable that
equals 0e7, which represents the number of days of school or public holidays in a week (i), considered as the “holiday effect”
in disease reporting. The annual population density (pd) of each province/city was also incorporated into the model to adjust
for potential demographic confounding factors across space and time. Given that the incubation period of influenza (1e4)
days and the lagged effect of meteorological factors on influenza, a 1-week lag was adopted in the GAM Finally, the collin-
earity of the meteorological factors was analyzed before building themodel, and absolute humidity was incorporated into the
model (Tables S1eS8).
819



Fig. 2. Observed, fitted, and predicted weekly ILI proportion in Beijing from 2011 to 2019: (a) by the GAM; (b) GRU-based deep learning hybrid model; and (c)
ARMAeGARCH model. The purple-shaded parts indicate the predicted period from week 14 in 2017 to week 13 in 2019.
Abbreviations: GAM, generalized additive model; ARMAeGARCH, autoregressive moving average-generalized autoregressive conditional; GRU, Gate Recurrent
Unit; ILI, influenza-like illness.
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The second approach is the deep learning hybrid model (Fig. S9), which predicts future time series by learning the features
of historical time series based on deep learning. Therefore, to fully learn the characteristics and relationships of ILI historical
data, we converted them into input windows of various step sizes. We built a data model based on supervised learning, which
was combined with the hybrid GRUmodel to predict future ILI data. In this model, to enhance the model's ability to learn the
features of asynchronous long data and capture the features and rules of local and overall data, we constructed data blocks 4,
8, 12, 16, 20, 24, and 28 weeks ahead based on attention mechanism concept, and subsequently fed them into the GRU
module, respectively. The GRUmodules performwell in processing time series and capturing the step spacing features in time
series. Subsequently, the results of all branches are spliced after traversing the pooling layer to obtain the features of long
unsynchronized data simultaneously. Finally, the predicted results of ILI trends were output through the dense layer.

The third approach is the ARMAeGARCH model, which is used in time series analysis, combining the ARMA and GARCH
models to consider both autocorrelation and conditional heteroscedasticity in a time series. ARMA models describe the
autocorrelation structure of a time series, modeling the extent to which past values of the series influence the current value.
Hence, the ARMA component of the ARMAeGARCH models the autocorrelation of the time series mean. In contrast, the
GARCH models describe the conditional heteroscedasticity of a time series by modeling the extent to which the variance of
the series changes over time. Additionally, the GARCH component of ARMAeGARCH models the autocorrelation of the re-
siduals (the deviations of the observed values from the mean predicted by the ARMA component). When combined, the
ARMAeGARCH model provides a comprehensive description of the behavior of a time series by considering the mean and
variance of the series and their dynamic relationships over time. This renders the ARMAeGARCH model a suitable tool to
model ILI trends over time in this study. Further details on the time series method are available in the Supplementary
Information.

When fitting and predicting using the above models, in the first step, data fromweek 14 of 2011 to week 13 of 2017 were
used as a training set to establish models for predicting the ILI proportion in weeks 14e17 of 2017; therefore, 1-, 2-, 3-, and 4-
820



Fig. 3. Observed, fitted, and predicted weekly ILI proportion in Chongqing from 2011 to 2019: (a) by the GAM; (b) GRU-based deep learning hybrid model; and (c)
ARMAeGARCH model. The purple-shaded parts indicate the predicted period from week 14 in 2017 to week 13 in 2019.
Abbreviations: GAM, generalized additive model; ARMAeGARCH, autoregressive moving average-generalized autoregressive conditional; GRU, Gate Recurrent
Unit; ILI, influenza-like illness.
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week-ahead predicted values of weeks 14, 15, 16, and 17 in 2017, respectively, were obtained. In the second step, data of week
14 in 2017 were added to the training set for establishing predictive models; therefore, 1-, 2-, 3-, and 4-week-ahead predicted
values of weeks 15, 16, 17, and 18 in 2017, respectively, were obtained. This one-step-ahead approach continued until the ILI
proportion in week 13 of 2019 was predicted. The predicted values constituted the 1-, 2-, 3-, and 4-week-ahead test sets.
Additionally, the goodness of fit of the three predictive modes was assessed using Mean Absolute Percentage Error (MAPE),
Root Mean Squared Error (RMSE), and R squared.

2.2.2.2. Metrics for evaluating and comparing the methods. The predictive performance of the three models was measured using
the three relevant indicators, which are RMSE (Eq. (2)), MAPE (Eq. (3)), and R-squared (Eq. (4)), as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

½EðYiÞ � AðYiÞ�2
vuut (2)

MAPE ¼ 1
n

Xn

i¼1

����
EðYiÞ � AðYiÞ

AðYiÞ
���� (3)

R squared ¼ 1�
P ½AðYiÞ � EðYiÞ�2P ½AðYiÞ � AðYiÞ�2

(4)
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Fig. 4. Observed, fitted, and predicted weekly ILI proportion in Hainan from 2011 to 2019: (a) by the GAM; (b) GRU-based deep learning hybrid model; and (c)
ARMAeGARCH model. The purple-shaded parts indicate the predicted period from week 14 in 2017 to week 13 in 2019.
Abbreviations: GAM, generalized additive model; ARMAeGARCH, autoregressive moving average-generalized autoregressive conditional; GRU, Gate Recurrent
Unit; ILI, influenza-like illness.
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where EðYiÞ is the expected or predicted weekly ILI proportion in a given week (i), which is the same as in Eq. (1); AðYiÞ is the
observed weekly ILI proportion in a givenweek (i), and AðYiÞ is the meanweekly ILI proportions observed in the given period;
and n represents the number of predicted values in the test set.

MAPE also represents the relative magnitude of the predicted values' deviation from the observed values and ranges from
0 to ∞. The smaller the MAPE, the better the prediction model's performance. RMSE reflects the absolute magnitude of the
predicted values' deviation from the observed values, and its range is between 0 and ∞. Additionally, the smaller the RMSE,
the better the prediction model's performance. According to Eqs. (2) and (3), RMSE is prone tomagnifying errors, while MAPE
is less susceptible to extreme values. Furthermore, R squared is an indicator evaluating the extent to which the regression
model explains observed values. A low R squared value generally indicates poor performance for predictive models. However,
in some cases, a goodmodel may also show a low value. Therefore, the MAPE, RMSE, and R squaredwere regarded as the first,
second, and assistant key metrics, respectively, in this study.

2.2.2.3. Cross-validation. A blocked cross-validation analysis (Yates et al., 2023) was performed to understand the robustness
of the three predicting models in the above settings. In the first step, data from week 14 of 2011 to week 13 of 2017 (312
consecutive weeks) were used as a training set to establish the model, while those in the following 52 consecutive weeks
(fromweek 14 of 2017 to week 13 of 2018) were used as a test set. In the second step, the dataset was shifted forward by one
week for the training and test set. This analysis continued until week 13 of 2019. Finally, 53 analyses were performed for each
model in each setting, and goodness of fit indicators [(mean and 95% confidence interval (CI)] were calculated.

Dataset establishment and data analyses for this study were performed using R version 4.0.0 (2020-04-24) (R Foundation
for Statistical Computing, Vienna, Austria), Python version 3.6.9 (2019-7-2) (Python Software Foundation, Texas, USA), and
Microsoft Excel 365MSO (207 Build 16.0.15427.20182) (Microsoft, Washington, USA).
822
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3. Results

3.1. One-week-ahead predictive performance of the GAM, GRU-based deep learning hybrid, and ARMAeGARCH models

In temperate regions, considering Beijing as an example, the MAPE values (RMSE and R squared values are consistent with
MAPE values) of the GAM, GRU-based deep learning hybrid model, and ARMAeGARCH model were 0.202, 0.172, and 0.139,
respectively (Fig. 2). Overall, the ARMAeGARCHmodel had the best goodness of fit. In the subtropical region, with Chongqing
as an example, the MAPE values of the GAM, GRU-based deep learning hybrid model, and ARMAeGARCH model were 0.411,
0.218, and 0.120 (Fig. 3), respectively, and the ARMAeGARCH model performed best. In tropical Hainan Province, the MAPE
values of the GAM, GRU-based deep learning hybrid model, and ARMAeGARCH model were 0.188, 0.125, and 0.095 (Fig. 4),
respectively, and the ARMAeGARCH model had the best prediction performance. Therefore, considering the goodness of fit
index (Table 1), it can be inferred that the ARMAeGARCH model had the best prediction effect on ILI trend among the eight
provinces/mega-cities across the three climate zones, followed by the GRU-based deep learning hybrid model with medium
performance and the GAM, which had the lowest prediction accuracy.

The GAMperformed best in Beijing and Shanxi, where the annual ILI peak regularly occurs in the cold winter withminimal
inter-annual variation (Fig. 2a andFig. S11a). However, the GAM predicted with moderate accuracy in Tianjin (Fig. S10a),
which is also located in the temperate zone but with larger inter-annual variations. Furthermore, the GAM performed poorly
in Hubei (Fig. S12a), Chongqing (Fig. 3), Guangdong Fig. S13a), Hainan (Fig. 4), and the Hong Kong SAR Fig. S14a).

The predicted peaks of the GRU-based deep learning hybrid model lagged behind those observed by 1e3 weeks in almost
every influenza season in most settings (Figs. 2e4, Figs. S10eS14), besides its moderate predictive performance.

3.2. Two-, three-, and four-week-ahead predictive performance of the GAM, GRU-based deep learning hybrid, and ARMAeGARCH
model

The prediction performance of GAM gradually decreased as the number of weeks ahead increased in the eight provinces/
megacities Tables S9eS11). In temperate zones, with Beijing as an example, the MAPE values predicted 1-, 2-, 3-, and 4-week-
ahead were 0.202, 0.206, 0.209, and 0.212, respectively. However, the values predicted 1-, 2-, 3-, and 4-week-ahead in the
subtropical regions, considering Chongqing as an example, were 0.411, 0.423, 0.434, and 0.442, respectively. In tropical
Hainan Province, the MAPE values predicted 1-, 2-, 3-, and 4-week-ahead were 0.188, 0.193, 0.195, and 0.197, respectively.

The GRU-based deep learning hybrid model's prediction performance also gradually declined as the number of weeks
ahead increased, with a few exceptions in some provinces (Table 1). In temperate zones, with Beijing as an example, theMAPE
values predicted 1-, 2-, 3-, and 4-week-ahead were 0.172, 0.181, 0.191, and 0.203, respectively. However, the MAPE values
predicted 1-, 2-, 3-, and 4-week-ahead were 0.218, 0.260, 0.293, and 0.332, respectively, in subtropical regions, with
Chongqing as an example. Furthermore, in tropical Hainan Province, the MAPE values predicted 1-, 2-, 3-, and 4-week-ahead
were 0.125, 0.157, 0.176, and 0.178, respectively. Remarkably, in the Hubei Province, the prediction performance of 4-week-
ahead was better than that of 3-weeks-ahead (MAPE ¼ 0.272 and 0.256, respectively).

Similar to that of the GAM, the prediction accuracy of the ARMAeGARCH model in the eight provinces/megacities
decreased with an increased number of weeks ahead. In temperate zones, considering Beijing as an example, theMAPE values
predicted 1-, 2-, 3-, and 4-week-ahead were 0.139, 0.184, 0.234, and 0.269, respectively. The values predicted 1-, 2-, 3-, and 4-
week-ahead in the subtropical region of Chongqing were 0.120, 0.177, 0.225, and 0.261, respectively. Moreover, in tropical
Hainan Province, the MAPE values predicted 1-, 2-, 3-, and 4-week-ahead were 0.095, 0.120, 0.138, and 0.149, respectively.

Therefore, a comparison of the three models’ prediction performance revealed that the results of 2-, 3-, and 4-week-ahead
results were similar to that of 1-week-ahead for most provinces/megacities (Table 1, Tables S9eS11). The ARMAeGARCH
model had the best prediction performance, while GAM performed poorly, and the GRU-based deep learning hybrid
model had a moderate performance. However, there were a few exceptions, such as the 2-weeks-ahead prediction perfor-
mance of the GAM in Tianjin, which was better than that of the GRU-based deep learning hybrid model (MAPE values were
Table 1
Predictive performance of the three models 1-week-ahead in eight provinces/megacities, 2011e2019.

GAM Deep learning hybrid model ARMAeGARCH

MAPE RMSE R squared MAPE RMSE R squared MAPE RMSE R squared

Beijing 0.202 0.668 0.377 0.172 0.566 0.552 0.139 0.470 0.698
Tianjin 0.256 1.783 �0.089 0.205 1.094 0.591 0.102 0.734 0.819
Shanxi 0.162 0.391 0.610 0.157 0.445 0.494 0.127 0.327 0.736
Hubei 0.381 1.034 �0.745 0.155 0.546 0.511 0.087 0.356 0.792
Chongqing 0.411 1.746 �0.520 0.218 0.767 0.705 0.120 0.533 0.882
Guangdong 0.160 1.092 �0.389 0.134 0.749 0.347 0.082 0.593 0.616
Hainan 0.188 0.668 0.114 0.125 0.443 0.612 0.095 0.419 0.666
Hong Kong SAR 0.228 1.212 0.100 0.223 1.029 0.346 0.182 0.887 0.515

GAM, generalized additive model; ARMAeGARCH, autoregressive moving average-generalized autoregressive conditional; GRU, Gate Recurrent Unit; MAPE,
Mean Absolute Percentage Error; RMSE, Root Mean Squared Error; SAR, Special Administrative Region.
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0.261 and 0.330, respectively). The 3-weeks-ahead prediction performance of GAM in the Hong Kong SARwas superior to that
of the GRU-based deep learning hybrid model (MAPE values were 0.297 and 0.319, respectively).

3.3. Robustness of the GAM, GRU-based deep learning hybrid, and ARMAeeGARCH models

The three models’ prediction performances in each block were relatively stable (reasonable mean values of RMSE, MAPE,
and R squared with lower 95% CIs), as per the blocked cross-validation analysis (Table 2). This further implies that all models
were robust to the changes in data and had a low risk of overfitting.

4. Discussion

Influenza is a contagious respiratory illness caused by influenza viruses that has a significant disease burden globally. The
transmission pattern of influenza varies across climate zones globally (Azziz Baumgartner et al., 2012). ILI is a sensitive proxy
indicator of influenza activity that is key to understanding the influenza trend. Additionally, due to the similarity in symp-
toms, such as cough and fever, ILI can provide insights into the trends of other respiratory diseases (Aung et al., 2021).
Therefore, this study evaluated and compared the prediction performance of three models, which are the GAM, GRU-based
deep learning hybrid model, and ARMAeGARCH model, in predicting ILI trend and found that the ARMAeGARCH model
attained the best accuracy, followed by the GRU-based deep learning hybrid model irrespective of the climate zone.

The GRU-based deep learning hybrid model addresses the challenges of gradient explosion or disappearance commonly
encountered in simpler recurrent neural networks (He et al., 2022; Tang Chaofan et al., 2023). This model is particularly adept
at predicting significant events in time series data characterized by long intervals and substantial time delays. A notable
application is in the ILI sentinel surveillance data, where the model demonstrates considerable predictive capability. One of
the distinct features of the model is its multi-step input mode, which allows it to capture both macro and micro temporal
features within the ILI time series. This capability enables a more nuanced understanding andmodeling of the data dynamics,
which is critical for accurate forecasting. However, despite its strengths, the model exhibits some limitations in the timing of
its predictions. Specifically, the predicted peaks for ILI occurrences tend to lag behind the observed ones by approximately
1e3 weeks. This lag indicates potential areas for improvement in the model's architecture or training process to enhance its
responsiveness and accuracy in real-time forecasting scenarios. To address the observed lag in peak prediction, future work
could explore the integration of additional predictive indicators or the implementation of real-time data adjustment tech-
niques. Also, experimenting with different configurations of the GRU layers or introducing complementary neural network
structures might refine the model's predictive performance. Nevertheless, the model excels in handling extremely large-scale
datasets (Reichstein et al., 2019), making it particularly suitable for applications where vast amounts of data need to be
processed efficiently. Notably, the conclusions of this study are primarily applicable under the current conditions andwith the
specific data characteristics involved in this research.

In the realm of epidemiological analysis, the ARMA-GARCH model offers a refined methodology for modeling and fore-
casting time series data that exhibits periodic trends and volatility clustering, such as those seen in ILI trends in the study. The
ARMA (Autoregressive Moving Average) component of the model adeptly captures the linear dependencies and periodic
fluctuations in the data, employing autoregressive and moving average terms to accurately describe the conditional mean of
the series (Box et al., 2015). Complementing this, the GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
Table 2
Goodness of fit of the three models with blocked cross-validation method in eight provinces/megacities, 2011e2019.

GAM deep learning hybrid model ARMAeGARCH

RMSE MAPE R squared RMSE MAPE R squared RMSE MAPE R squared

Beijing 0.416 (0.399,
0.433)

49.186 (37.709,
60.663)

0.131 (0.042,
0.221)

0.476 (0.451,
0.501)

0.149 (0.145,
0.153)

0.642 (0.623,
0.662)

0.374 (0.347,
0.402)

0.127 (0.124,
0.130)

0.780 (0.760,
0.801)

Tianjin 0.413 (0.384,
0.442)

0.239 (0.221,
0.258)

�0.474 (�0.835,
�0.112)

0.230 (0.215,
0.245)

1.025 (0.986,
1.064)

0.230 (0.215,
0.245)

0.095 (0.091,
0.099)

0.586 (0.542,
0.629)

0.095 (0.091,
0.099)

Shanxi 0.203 (0.198,
0.209)

2.406 (2.292,
2.521)

0.679 (0.649,
0.710)

0.441 (0.429,
0.453)

0.163 (0.165,
0.161)

0.542 (0.523,
0.561)

0.308 (0.301,
0.315)

0.132 (0.129,
0.136)

0.778 (0.760,
0.797)

Hubei 0.371 (0.341,
0.401)

0.439 (0.383,
0.495)

�1.404 (�1.641,
�1.167)

0.165 (0.160,
0.169)

0.501 (0.485,
0.516)

0.165 (0.160,
0.169)

0.097 (0.095,
0.099)

0.338 (0.326,
0.350)

0.097 (0.095,
0.099)

Chongqing 1.071 (1.007,
1.136)

e �7.737 (�10.337,
�5.137)

0.200 (0.193,
0.207)

0.732 (0.704,
0.761)

0.200 (0.193,
0.207)

0.115 (0.111,
0.119)

0.516 (0.496,
0.536)

0.115 (0.111,
0.119)

Guangdong 0.374 (0.343,
0.405)

0.442 (0.385,
0.499)

�1.448 (�1.696,
�1.201)

0.131 (0.129,
0.132)

0.686 (0.672,
0.700)

0.131 (0.129,
0.132)

0.074 (0.072,
0.076)

0.492 (0.470,
0.513)

0.074 (0.072,
0.076)

Hainan 0.222 (0.217,
0.227)

0.212 (0.208,
0.216)

�0.103 (�0.124,
�0.083)

0.136 (0.134,
0.137)

0.442 (0.439,
0.446)

0.136 (0.134,
0.137)

0.092 (0.090,
0.093)

0.395 (0.388,
0.401)

0.092 (0.090,
0.093)

Hong Kong
SAR

0.379 (0.361,
0.396)

0.274 (0.248,
0.299)

�0.690 (�0.794,
�0.586)

0.241 (0.231,
0.252)

1.104 (1.092,
1.115)

0.241 (0.231,
0.252)

0.192 (0.183,
0.202)

0.093 (0.091,
0.094)

0.192 (0.183,
0.202)

GAM, generalized additive model; ARMAeGARCH, autoregressive moving average-generalized autoregressive conditional; GRU, Gate Recurrent Unit; MAPE,
Mean Absolute Percentage Error; RMSE, Root Mean Squared Error; SAR, Special Administrative Region.
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component specifically addresses the conditional variance, effectively modeling the dynamic and often unpredictable
changes in volatility that can occur due to environmental factors, social interactions, and other external influences (Bollerslev,
1986). This combined modeling approach significantly enhances the capability to predict and understand disease trends,
providing vital insights for public health planning and intervention strategies.

With an increase in the number of weeks ahead, the prediction performance of the GAM, GRU-based deep learning hybrid
model, and ARMAeeGARCHmodel gradually worsened, with the performance of 1-week-aheadbest for all threemodels. This
phenomenon is related to themodels' internal operation patterns andILI's transmission patterns. That is, ILI comprises a series
of symptoms, such as fever of �38 �C and cough, which may be caused by influenza, severe acute respiratory syndrome
coronavirus 2, rhinovirus, parainfluenza virus, respiratory syncytial virus, and many other respiratory viral infections. Res-
piratory infectious diseases spread through the respiratory tract, close contact, and other means, casusing the spatial and
temporal distribution of cases to be interrelated but not independent (Leite et al., 2021), implying that the previous week's
data are closely related to that of the followingweek. Therefore, whether the previous week's data are included or excluded in
the training set of the model significantly impacts the prediction accuracy of the specific week. Additionally, the more the
number of weeks ahead, the lower the prediction accuracy, which implies a worse prediction performance. However, the
prediction performance of the GRU-based deep learning hybrid model occasionally out-performed those of the GAM and
ARMA-GARCHmodels with an increase in the number of weeks ahead, whichmay be related to thewaveform of ILI trend that
the model mainly learns (Tian et al., 2020). Meanwhile, its prediction stability also declines when the waveform of a certain
province or city is unstable (considerable clutter).

This study has some limitations. First, excluding certain temperature settings, the prediction accuracy of the GAM was
remarkably poor. Themore complex circulation pattern of influenza in subtropical or tropical zones could partially account for
this phenomenon. However, the main nonparametric terms incorporated into the GAM in this study were the absolute
humidity and number of weeks in a calendar, which are key factors that drive the seasonal variations of influenza. Therefore,
to attain better prediction performance in the future, other drivers should be explored and considered in the GAM, partic-
ularly in subtropical and tropical settings, such as population mobility or density. Second, the lag times of 1-, 2-, 3-, and 4-
week-ahead were used, which could have improved the prediction accuracies compared to longer lag times. However,
forecasting ILI trends several weeks ahead, such as 8 or 16 weeks, can help researchers gain early insights into influenza
trends to facilitate preparations for influenza epidemics and outbreak responses. Therefore, striking a balance when deciding
the lag time in prediction is crucial in public health practice. Third, due to the data accessibility, the study period ranged from
2011 to 2019, excluding the COVID-19 pandemic. Therefore, the influenza transmission patterns may have been impacted, or
even partly changed, by the COVID-19 pandemic and related NPIs. Therefore, future studies focused on influenza prediction
during or after the COVID-19 pandemic are warranted to enrich existing evidence.

Collectively, findings of the study shed light on the influenza prediction approaches, which inform the application of the
ARMA-GARCHmodel to predict disease epidemic trends or optimize relevant polices, particularly under the scenario of short-
time forecast (e.g., 1-week ahead).

5. Conclusions

The ARMAeGARCHmodel exhibited the best accuracy in predicting ILI trends in China, compared with the GAM and GRU-
based deep learning hybrid model, irrespective of the number of weeks ahead, whether it was 1-, 2-, 3-, or 4-week-ahead.
Therefore, based on our findings, the ARMAeGARCH model may be considered for predicting ILI trends in public health
practice in varying climate zones. Its implementation can contribute to enhanced efforts in influenza control and prevention
in the future.
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