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ABSTRACT

Quenched autoligation (QUAL) probes are a class
of self-reacting nucleic acid probes that give strong
fluorescence signal in the presence of fully comple-
mentary RNAs and selectivity against single nucle-
otide differences in solution. Here, we describe
experiments designed to test whether QUAL probes
can discriminate between bacterial species by the
detection of small differences in their 16S rRNA
sequences. Probes were introduced into live cells
using small amounts of detergent, thus eliminating
the need for fixation, and fluorescence signal
was monitored both by microscopy and by flow
cytometry without any washing steps. The effects of
probe length, modified backbone, probe concentra-
tion and growth state of the bacteria were investig-
ated. The data demonstrate specific fluorescence
discrimination between three closely related bac-
teria, Escherichia coli, Salmonella enterica and
Pseudomonas putida, based on single nucleotide
differences in their 16S rRNA. Discrimination was
possible with cells in mid-log phase or in lag phase.
These results suggest that QUAL probes may be
useful for rapid identification of microorganisms in
laboratory and clinical settings.

INTRODUCTION

There is a great deal of interest in rapid and highly accurate
detection of microorganisms for applications in molecular
diagnostics, clinical chemistry, molecular biology, environ-
mental sampling and food monitoring. Ribosome-targeted
nucleic acid hybridization probes have been commonly
applied for the identification of prokaryotic organisms in

environmental (1–3) and clinical samples (4,5). rRNA is an
attractive target in bacterial cells because of its abundance, its
accessibility (6,7) and the availability of sequences for a wide
range of organisms (8,9). Furthermore, there is enough
sequence variability that family-specific and sometimes
even genus- or species-specific rRNA-targeted probes can
be used to help classify bacterial samples (3). However, clo-
sely related bacteria, such as Escherichia coli and Salmonella
species, have highly conserved rRNA sequences that are
extremely difficult or impossible to distinguish using standard
hybridization-based methods (10,11). Moreover, simple
hybridization probes cannot be applied in intact cells because
of the requirement for washing away of unbound probes; it
would be advantageous to use live cells because this would
save time-consuming and potentially error-prone fixation and
washing steps, as well as potentially allowing studies on the
dynamics and localization of RNA. For these reasons there has
been considerable interest in the development of more highly
specific probes that rely on a sequence-directed conformation
change or chemical reaction to yield signals.

Several new strategies for oligonucleotide-based probes that
can detect sequences with high specificity have been reported
recently, including a Staudinger reaction approach (12),
target-assisted self-cleavage probes (13), PNA-based hybrid-
ization assays (14,15), metal-mediated DNA cleavage (16),
molecular beacons (17,18) and quenched autoligation (QUAL)
probes (19–21). Of these methods, only molecular beacons and
QUAL probes have been thus far applied to cells. Early studies
have reported the targeting of rRNA in live E.coli with QUAL
probes (22), while no reports yet exist on the testing of
ribosome-targeted molecular beacon probes in live bacteria.
Furthermore, there are no reports of molecular beacons dis-
tinguishing rRNA single nucleotide polymorphisms (SNPs) in
live or fixed bacterial cells.

The goal of this work is rapid and accurate discrimination of
live bacteria of different species by fluorescence that can be
observed simply by flow cytometry or fluorescence micro-
scopy. The use of very short probes that react with one another
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is a strategy developed for enhancing sequence discrimination
while yielding a signal change that might be applied in
intact cells (21). QUAL probes consist of a pair of modified
oligonucleotides: an electrophilic probe containing an internal
fluorophore and a dabsyl quencher attached to the 50-terminus
by a sulfonate ester linkage, and a nucleophilic probe contain-
ing a 30-phosphorothioate group. In the presence of target, the
two probes bind side-by-side, and nucleophilic displacement
of the quencher by the phosphorothioate leads to probe ligation
and unquenching of the fluorophore (Figure 1A) (21). The
reaction can be monitored by the gradual increase in fluores-
cence signal appearing over minutes to hours. In most previous
work, the dabsyl quencher was attached to the 50-hydroxyl of
a terminal thymidine (Figure 1B). Recently, an ‘universal
linker’ for attachment of the quencher to DNA (Figure 1C)
was reported (23); this allowed application to generalized
targeting of sequences without restriction. Furthermore, the
linker forms a bulge in the ligated DNA, thereby destabilizing
the duplex, which yielded amplification of up to 92 signals per
template in one study (23).

In early experiments with fixed E.coli cells, 16S rRNA-
targeted QUAL probes using dabsyl-dT showed substantial
signal only when the electrophilic and nucleophilic probes
bound adjacently, and none when targeted to sites several
hundred nucleotides apart (24). Preliminary reports suggested
that QUAL probes could also be used for generating signals in
living bacteria (22). However, it was unknown whether dif-
ferent bacterial species could be targeted with such probes; this
is an issue because of possible differences in cell wall struc-
ture, intracellular properties and RNA sequence. Nor was it
known whether single nucleotide differences could be discrim-
inated in live cells. The preferred probe lengths were not
established, and no data existed on whether altering the
probe backbone to render it more resistant to degradation
would improve signal.

In this work we addressed these issues experimentally,
and investigated whether optimized QUAL probes with the
universal dabsyl linker are able to discriminate single nucle-
otide differences in the 16S rRNA sequences of three closely
related bacterial species: E.coli, Salmonella enterica and
Pseudomonas putida. When the intact cells were monitored
by using flow cytometry or fluorescence microscopy, signific-
ant fluorescence signals were observed only when fully match-
ing probes were used; in the presence of probes with as little
as a single mismatch, significantly diminished signals were

observed, suggesting the application of such probes in
bacterial identification.

MATERIALS AND METHODS

QUAL probes

Universal butanediol linker phosphoramidite was synthesized
as described previously (23). DNA and 20-OMe RNA probes
were prepared using literature methods (21,23). Reagents and
standard phosphoramidites for DNA synthesis were obtained
from Applied Biosystems. Ultramild phosphoramidites and
CPG columns, 30-phosphate CPG columns, sulfurizing reagent
and fluorescein-dT phosphoramidite were obtained from Glen
Research. Oligonucleotides containing a 30-phosphorothioate
were prepared using 30-phosphate CPG columns and sulfur-
izing reagent as described previously (20). 30-Phosphorothioate
and helper oligonucleotides were deprotected using ammo-
nium hydroxide at 55�C for 16–20 h and were used without
further purification. Dabsyl- and fluorescein-containing oligo-
nucleotides were prepared using Ultramild phosphoramidites
to allow for mild deprotection at room temperature in meth-
anolic 0.05 M K2CO3 for 4–6 h. Fluorescein was introduced
using the fluorescein-dT phosphoramidite. After deprotection,
dabsyl probes were purified by high-performance liquid chro-
matography using a gradient of acetonitrile in 0.1 M TEAA
buffer (5–65% over 45 min). Purified probes were stored at
�80�C. All oligonucleotide sequences are listed in Supple-
mentary Material.

Thermal denaturation studies

RNA templates were purchased from Integrated DNA Tech-
nologies. Solutions for melting temperature (Tm) determina-
tion contained 3 mM each of template and complementary or
mismatched strands in 6· SSC buffer at pH 7.0. The solutions
were heated to 80�C for at least 15 min to denature any
duplexes, and then cooled at 0.5�C/min in the UV-vis spec-
trophotometer Varian Cary 1 equipped with a thermoprogram-
mer. The melting studies were carried out in Teflon-stoppered
1 cm path length quartz cuvettes under a steady flow of
nitrogen to prevent condensation on the quartz wall at low
temperature. Absorbance was monitored at 260 nm. Tm values
were generated by computer fitting of the data with MeltWin
software.
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Figure 1. Structure and mechanism of QUAL probes. (A) Diagram of ligation reaction on complementary template. (B) Molecular mechanism of ligation reaction
using earlier dabsyl-dT electrophile. (C) Molecular mechanism of ligation reaction using the present universal dabsyl linker.
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Bacteria culture and preparation

Materials and reagents were sterilized by autoclaving at 120�C
for 20 min. Buffers were prepared using RNase-free water.
E.coli K12 (ATCC 10798) and S.enterica (ATCC 700720)
were grown to mid-log phase (OD600 ¼ 0.4–0.6) or lag phase
(OD600 ¼ 1.2–1.4) in Luria–Bertani (LB) media (DIFCO) at
37�C with rapid shaking. P.putida (ATCC 49128) were grown
in Nutrient Broth (DIFCO) with rapid shaking at 37�C.
Aliquots of media were centrifuged for 5 min at 9000 g super-
natant was removed and the pellets were washed with 0.5 ml of
phosphate-buffered saline buffer (pH 7.2). The pellets were
then resuspended in hybridization buffer [6· SSC buffer (pH
7.0) containing 0.05% SDS].

In situ ligation reactions

Aliquots of bacteria suspended in hybridization buffer (100 ml)
were treated with dabsyl probe as described (typically
200 nM), phosphorothioate probe (2 mM) and helper probes
(3 mM each). The reactions were incubated in the dark at 25 or
37�C for 2 h, then monitored by microscopy or flow cytometry
without any washing steps. Judging by microscopy and flow
cytometry (forward and orthogonal scattering), cellular mor-
phology was not affected by the addition of QUAL probes.

Fluorescence microscopy

Slides were prepared by sandwiching a solution of 1% agarose
between two glass slides. One slide was removed after the
agarose solidified, then 3 ml of bacteria in hybridization buffer
was directly spotted onto the agarose and covered with a glass
coverslip. Fluorescence images were obtained with an
epifluorescence microscope (Nikon Eclipse E800 equipped
with ·100 objective Pan Fluor apo) with super high-
pressure mercury lamp (Nikon model HB-10103AF), excita-
tion 460–500 nm, using a SPOT RT digital camera and SPOT
Advanced imaging software. Typical digital camera settings
were as follows: exposure time green 3 s, no binning,
gain ¼ 2.

Flow cytometry

Flow cytometry data were collected on a FACScan instrument
(Becton Dickinson) using an argon laser (ex ¼ 488 nm). In a
typical sample, 50 000 events were recorded. Data were ana-
lyzed using FlowJo software version 4.6.1 (Tree Star, Inc.).

RESULTS

Probe design

16S rRNA sequences for E.coli, S.enterica and P.putida were
obtained from the NCBI Entrez Genome Project (http://www.
ncbi.nlm.nih.gov/genomes/lproks.cgi). Sequence alignments
were performed using ClustalW (25). Each of these bacteria
species has seven 16S rRNA operons (26), and sequence align-
ment showed the presence of several sequence differences
between the individual operons. These variable positions
were avoided when designing probes for bacteria discrimina-
tion. Sequence alignments between the three bacterial species
showed >97% sequence identity between E.coli and S.enterica
and �85% sequence identity between E.coli and P.putida.

To test whether QUAL probes could discriminate very small
sequence differences, we chose target sites where a single
mismatch, or small number of mismatches, was present
between the different bacterial species. Target sites were
also selected based on their accessibility in E.coli to fluores-
cence in situ hybridization probes (6). In addition, sequences
were chosen to have an adenine a few bases past the mismatch
for incorporation of fluorescein-dT into the dabsyl probe. The
probes were designed so that the mismatch would occur at the
center of the dabsyl probe, which yields highest selectivity
for autoligating probes (19). Dabsyl oligonucleotides were
typically short (8 or 9 nt in length, but varied in different
experiments), containing the dabsyl group attached to the
50-terminus by a butanediol linker (Figure 1C) and
fluorescein-dT 2–3 bases from the linker. The nucleophilic
phosphorothioate probes were designed to bind to the target
RNA adjacent to the dabsyl probe, and since they were not
required to sense small nucleotide differences, we used longer
12mer to 15mer to increase binding. In addition to the dabsyl
and phosphorothioate probes, we used ‘helper’ oligonuc-
leotides (18 nt), designed to bind next to the ligating probe
pairs to help disrupt secondary structure of the rRNA, thereby
increasing target accessibility (27).

Optimization of conditions for discrimination of E.coli
and S.enterica

QUAL probes were introduced into the bacterial cells by using
0.05% SDS in 6· SSC buffer. After 2 h incubation under these
conditions, bacteria remained viable, as they continued to
grow when resuspended in LB media. In order to optimize
conditions for using QUAL probes to discriminate live bac-
teria, we chose to focus on a C/A SNP at 16S ribosomal
position 745 in E.coli and S.enterica (Figure 2, Ec/Se584
probes). We first addressed whether DNA or 20-OMe RNA
dabsyl probes would perform better. The 20-OMe backbone is
known to be resistant to degradation as compared with
unmodified DNA, and to increase affinity for RNA (28). We
prepared 9mer DNA and 20-OMe RNA dabsyl probes specific
for E.coli or S.enterica (Ec/Se584 sequence), and used them
with DNA phosphorothioate and helper probes (for all
sequences see Supplementary Material). These experiments
revealed that 20-OMe RNA probes gave somewhat enhanced
signal as compared with the DNA probes. However, nearly no
discrimination of the two bacteria species was observed
(Figure 3).

A lack of sequence discrimination might be explained
by a binding affinity that was too high, allowing even
mismatched probes to bind strongly enough for ligation to
occur. Thus the impact of varying probe length on identifica-
tion of E.coli and S.enterica was then examined. We prepared
a series of DNA dabsyl probes ranging from 6 to 9 bases
in length with the SNP site in the center of the probes, the
position of greatest selectivity for self-ligating probes (19).
Bacteria were grown to mid-log phase and treated with these
QUAL probes, incubated at 25 or 37�C for 2 h, then the
fluorescence intensity was monitored by flow cytometry.
Figure 4A–D shows that nearly no signal from ligation
was observed when 6mer or 7mer dabsyl probes were used,
suggesting that they were too short to yield sufficient binding
affinity.
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In contrast to this, 8mer and 9mer probes did yield ligation
signals. At 25�C, there was approximately equal signal when
E.coli were treated with E.coli-specific 8mer or 9mer probes
versus S.enterica-specific probes (Figure 4A). However, at
37�C, there was substantially more fluorescence in E.coli
treated with E.coli-specific 9mer probes (Figure 4B), showing
discrimination against a single G–T mismatch. S.enterica
treated with 8mer probes were discriminated reasonably
well at 25�C (an A–T pair versus an A–C mismatch) but
not as well at 37�C, while S.enterica treated with 9mer probes
were discriminated quite well at both 25 and 37�C (Figure 4C
and D). Background signals were quantified by omitting
the phosphorothioate probes; presumably, the remaining
non-specific signals arise from hydrolysis or degradation of
the dabsyl probe. These background signals were relatively
consistent across all samples, and were higher at 37�C than
at 25�C.

To investigate the relationship between probe length, mis-
matches and signals, we then performed melting studies on the
584E and 584S probes on RNA templates. The Tm values for
these probes bound to matched and mismatched templates are
shown in Table 1. As expected, there was a substantial Tm

difference for the E.coli-specific probes bound to matched
versus mismatched template, representing a C–A mismatch,
while the Tm difference for the S.enterica-specific probes, a
G–T mismatch, was small. The Tm values for matching
sequences shorter than the 9mer were <37�C, which could par-
tiallyaccount for thediminishedsignal in theshorterprobes.The
lack of signal for the short probes may also be a result of increas-
ing sequence redundancy in the 16S rRNA.

With probe length optimized for these targets, we were
next interested in learning the effects of cell growth on the
effectiveness of the QUAL probes. The effect of lowering
the concentration of the dabsyl probe, while keeping the

Ec/Se584

E CCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAG 778
S CCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAG 778

Target Site 1

 
 

P TCCTTGAGATT

E CCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCG 898
S CCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTAGACCGCCTGGGGAGTACGGCCG 898

TTAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCG 877 

Target Site 2

E GCCGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGC 868 
S GCCGTAAACGATGTCTACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGC 868
P GCCGTAAACGATGTCAACTAGCCGTTGGAATCCTTGAGATTTTAGTGGCGCAGCTAACGC 847

Target Site 3

E CCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAG 682
S CCTGGGAACTGCATTCGAAACTGGCAGGCTTGAGTCTTGTAGAGGGGGGTAGAATTCCAG 682
P CCTGGGAACTGCATCCAAAACTGGCAAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCT 661

Figure 2. Sequence alignments for probe target sites. Polymorphisms are in red. Binding sites for dabsyl and phosphorothioate probes are highlighted in blue and
green, respectively.

A B

Figure 3. Comparison of DNA and 20-OMe RNA dabsyl probes. Bacteria were incubated at 37�C with 200 nM dabsyl probe, 3 mM helper probes and 2 mM
phosphorothioate probe (in cases indicated) for 2 h, then analyzed by flow cytometry. Mean fluorescence values are from three experiments. E-Probes, E.coli-specific
dabsyl probe and phosphorothioate; E-Control, E.coli-specific dabsyl probe only; S-Probes, S.enterica-specific dabsyl probe and phosphorothioate; S-Control,
S.enterica-specific dabsyl probe only. (A) E.coli and (B) S.enterica.
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concentrations of phosphorothioate and helper probes con-
stant, was concurrently tested. Substantially less signal was
observed for bacteria grown to lag phase versus those grown to
log phase (Supplementary Material). Background signals
when no phosphorothioate probe was added decreased
when lower concentrations of dabsyl probe were used, but
positive signals were also diminished. At 20 nM dabsyl
probe concentration, signal was so low that nearly no fluor-
escence was observed when the bacteria were imaged under a
fluorescence microscope. Overall, the greatest signal-to-
background ratio and the discrimination were achieved
when 200 nM dabsyl probes were used (Supplementary Mater-
ial). Further increases in the dabsyl probe concentration did
not improve discrimination, and led to lower signal-to-
background ratios (data not shown).

Using the optimized conditions for mid-log phase bacteria
(DNA 9mer dabsyl probe at 200 nM, 2 h incubation at 37�C),
we imaged the bacteria under an epifluorescence microscope

with 460–500 nm excitation (Figure 5). When dabsyl probes
were added but no phosphorothioate, nearly no fluorescence
was observed in these controls (Figure 5, insets). In the pres-
ence of the intended phosphorothioate probes, bright signals
were observed when E.coli cells were treated with E.coli-
specific dabsyl probe, and substantially less signal was
observed with S.enterica-specific probes. Conversely,
S.enterica treated with S.enterica-specific probes fluoresced
brightly, and nearly no fluorescence was observed when they
were treated with E.coli-specific probes.

Specific identification of three live bacterial strains

Encouraged by the results of the Ec/Se584 probe set, we pre-
pared a series of probes for three new target sites, these aimed
at discriminating the three types of bacteria (Figure 2). The
sites were chosen based on the presence of 16S sequence
differences between the three strains, and on a prediction of
at least moderate accessibility (6). Although in principle each
site could allow for discrimination between the three species,
we chose three to test because different mismatches may yield
different responses, and because accessibility in practice may
differ from predicted models. For each target site, a dabsyl
probe specific for each bacteria was prepared. For site 1, a
single phosphorothioate probe was appropriate for all three
bacteria species, but for sites 2 and 3, a different phosphoro-
thioate specific for P.putida was required. We attempted to
obtain Tms for the G/T mismatch in the target site 2 probes, but
were unable to determine the melting transition because of
significant self-complementarity in the RNA template strand.

Bacteria grown to mid-log phase were treated with QUAL
probes, incubated at 37�C for 2 h and then analyzed by flow

A B

C D

6 7 8 9

Probe Length

Figure 4. Comparison of dabsyl probe length on bacteria discrimination. Bacteria were incubated with 200 nM dabsyl probe, 3 mM helper probes and 2 mM
phosphorothioate probe (in cases indicated) for 2 h, then analyzed by flow cytometry. Mean fluorescence values are from three experiments. (A) E.coli incubated at
25�C; (B) S.enterica incubated at 25�C; (C) E.coli incubated at 37�C; and (D) S.enterica incubated at 37�C.

Table 1. Tms (�C) of 584E and 584S probes hybridized to RNA complementary

or mismatched templates

Probe Tm (�C)
E.coli S.enterica

E9 39 20
E8 38 19
E7 35 16
E6 28 15
S9 39 31
S8 32 24
S7 30 22
S6 24 21
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cytometry (Figure 6). Background was measured with control
samples that contained dabsyl probe but no phosphorothioate
probe. For site 1, we observed substantial signal using matched
probes designed for E.coli and S.enterica, while no signal over
background was observed for the designed P.putida probes,
suggesting accessibility limitations (Figure 6). In the case of
site 2, signal was observed for all three bacteria when correctly
matched probes were used. For site 3, no signal over back-
ground was observed for E.coli or S.enterica, while significant
signal was observed for P.putida treated with matching probes.
In all cases, little or no signal over background was observed
when each of the three bacterial species was treated with
probes for the other two species, indicating high sequence
specificity.

Images taken with an epifluorescence microscope (Figure 7)
were entirely consistent with the flow cytometry data. No
signal was observed when the phosphorothioate probe was
left out (images not shown), and little to no signal was
observed when bacteria were treated with probes for the
other two species. Images from target site 2 are shown in
Figure 7, and images from sites 1 and 3 are provided in Sup-
plementary Material. Positive signals were visible for the same
probe and site combinations as seen with flow cytometry. In
the case of target site 1, no signal was observed for P.putida,
and in the case of target site 3, no signal was observed for
E.coli or S.enterica. This result is the same as was seen by flow
cytometry, again suggesting limited accessibility at these sites.

Overall, the results showed that probes for two 16S RNA
sites gave clear discrimination of E.coli from S.enterica based
on single nucleotide differences, and one site allowed discrim-
ination of all three species. Two different analytical methods
were established to document this discrimination, and both
yielded identical conclusions.

DISCUSSION

The current results establish that QUAL probes can be applied
in intact bacteria, allowing discrimination of single nucleotide

differences among three different bacterial strains. This is
markedly different from previous results with standard
in situ hybridization methods for the detection of sequences
in bacteria. The standard FISH protocol uses fluorescence-
labeled oligonucleotides 15–30 nt in length. In a typical
protocol, bacteria are fixed and incubated with probe, then
unbound probe is removed using stringent washing conditions
(2,29). Since unbound probe must be washed away to avoid
background signal, the bacteria must be killed and permeab-
ilized using paraformaldehyde or other fixative, making FISH
inapplicable to live cells. Even more problematic, inefficient
or inconsistent washing can lead to false positive signals.
With standard FISH probes it is also extremely difficult or
impossible to distinguish very small sequence differences such
as SNPs (10,11).

Quenched probes obviate the need for washing away of
unbound probes and thus raise the possibility of application
in intact cellular specimens. The major types of quenched
probes used for in situ hybridization experiments are molecu-
lar beacons and QUAL probes. Molecular beacons have shown
promise for use in living cells, but most of these applications
have focused on human cells, not bacteria (30–32). Molecular
beacons have been used to discriminate different species of
bacteria using fixed cells (33), but we are not aware of any
cases in which they have been used to discriminate bacteria
using non-fixed cells. Moreover, molecular beacons have
not been shown to be able to discriminate single nucleotide
differences in bacterial RNAs. A limitation with molecular
beacons for in situ applications is non-specific signals,
owing in part to binding of the molecular beacon to proteins
(34,35). In the case of QUAL probes, non-specific signals can
arise from spontaneous hydrolysis of the dabsyl group; how-
ever, simple omission of the nucleophile probe in a control
experiment can reveal the level of this background signal. An
advantage of molecular beacons is their rapid response, which
can occur in real-time during PCR. Thus most bacterial
applications of molecular beacons have been in real-time
PCR-based assays carried out after extraction of RNAs

Figure 5. Fluorescence images of E.coli and S.enterica treated with Ec/Se584 probes. Bacteria were incubated with 200 nM dabsyl probe, 3 mM helper probes and
2mM phosphorothioate probe for 2 h. Insets show images for controls when phosphorothioate probe was omitted. (A and B) E.coli and (C and D) S.enterica. (A and C)
Bacteria treated with E.coli-specific probes are shown; and (B and D) bacteria treated with S.enterica-specific probes are shown.

Nucleic Acids Research, 2005, Vol. 33, No. 15 4983



from cells (18,36,37), which although accurate in allele dis-
crimination, are time consuming and labor intensive.

In this work we focused on the use of QUAL probes
to generate a fluorescence change, allowing the discrimination
of live bacteria that have highly conserved 16S rRNA
sequences. The current method is appealingly simple,
requiring only the single step of incubating probes with
cells. In the longer term we are interested in applying this
method to clinically relevant pathogens; in the present invest-
igation we selected related non-pathogenic strains as an initial
test. The Salmonella strain we used, an S.enterica, is a non-
pathogenic relative of the substantially more dangerous

Salmonella typhii and S.choleraesuis (38). Pseudomonas
aeruginosa is a known pathogen that is particularly dangerous
to cystic fibrosis patients, and we selected a non-pathogenic
relative, a P.putida strain (39,40). Future studies will be
needed to evaluate whether the QUAL probes can perform
as well with the pathogenic strains.

These are the first data showing genetic discrimination
between living E.coli and S.enterica, which are extremely
similar in size and shape and cannot be distinguished by
their morphology (41). We targeted a site with a C/A poly-
morphism, one of the most difficult SNPs to sense, since G–T
mismatches lower hybridization Tm only slightly. It was not
surprising that brighter signal was obtained with 20-OMe RNA
probes, as 20-OMe RNA is known to bind RNA targets with
greater affinity than DNA (28). Previous studies comparing
DNA and 20-OMe RNA molecular beacons (42) or linear
hybridization probes (34) in human cells showed that the
20-OMe RNA binds tighter but less specifically than the cor-
responding DNA probes, and our results, showing less
sequence discrimination with the modified probes, were con-
sistent with this.

Our data reveal a strong influence of probe length and
hybridization temperature on single nucleotide selectivity.
No signal was observed for 6mer or 7mer dabsyl probes,
while temperature-dependent signals were observed for
8mer and 9mer dabsyl probes. These data suggested a strong
dependence on Tm, both for overall signal intensity and for
mismatch sensitivity. At 25�C, the E.coli-specific probes dis-
tinguished the two bacteria, but virtually no selectivity was
observed for the S.enterica-specific probes (Figure 4A and B),
which form a G–T mismatch when bound to E.coli. However,
when the hybridization temperature was raised to 37�C
(Figure 4C and D), substantial discrimination was achieved.
Although the flow cytometry results only showed �1.5-fold
increase in fluorescence for the matched probes versus mis-
matched probes, the bacteria were easily distinguished under
the microscope (Figure 5). Again, more non-specific signal
was observed in the case of the G–T mismatch (E.coli treated
with S.enterica-specific probes) than in the case of the C–A
mismatch (S.enterica treated with E.coli-specific probes), as
expected based on the empirically determined Tm differences
of these mismatches.

Our data with optimized-length DNA probes showed that
the use of three target sites allowed us to distinguish E.coli,
S.enterica and P.putida (Figure 2). Ec/Se584 probes target a
moderately accessible region in E.coli 16S rRNA (6), and
when helper probes were omitted, considerably less signal
was observed (data not shown). Target sites 1 and 2 span
large accessible regions in E.coli 16S rRNA, while target
site 3 is in a moderately accessible site spanned by sites
that are less accessible (6). The accessibility of 16S rRNA
sites for hybridization probes in S.enterica and P.putida
have not been reported, though a consensus model for
in situ accessibility for prokaryotes has been proposed (43).
In the consensus model, the accessibility of target site 1 is
undetermined, while the accessibility of target sites 2 and 3 are
very similar to the empirically determined accessibilities in
E.coli. For all three target sites, bright fluorescence was only
observed when fully matching sequenced probes were used
along with helper probes. However, no signal at all was
observed for P.putida treated with target site 1 probes, and

A

B

C

Figure 6. Flow cytometric analysis of bacteria treated with target sites 1–3
probes. Bacteria were incubated at 37�C with 200 nM dabsyl probe, 3mM helper
probes and 2 mM phosphorothioate probe (in cases indicated) for 2 h, then
analyzed by using flow cytometry. Mean fluorescence values are from three
experiments. E-Probes, E.coli-specific dabsyl probe and phosphorothioate; E-
Control, E.coli-specific dabsyl probe only; S-Probes, S.enterica-specific dabsyl
probe and phosphorothioate; S-Control, S.enterica-specific dabsyl probe only;
P-probes, P.putida-specific dabsyl probe and phosphorothioate; P-control;
P-putida-specific dabsyl probe only. (A) E.coli, (B) S.enterica and (C)
P.putida.
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also for E.coli and S.enterica treated with target site 3 probes.
This result, however, is largely consistent with Amann’s in situ
accessibility models.

Target site accessibility will remain a factor for experi-
mentation when designing probes for other bacterial strains.
However, the present data show that QUAL probes can
distinguish bacteria with highly conserved rRNA sequences.
Future studies will be aimed at detecting antibiotic-resistant
bacteria, which typically have SNPs in their rRNA (44,45), as
well as specific identification of pathogenic microorganisms in
clinical samples.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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