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The red blood cell (RBC) membrane contains a mechanosensitive cation channel Piezo1
that is involved in RBC volume homeostasis. In a recent model of the mechanism of
its action it was proposed that Piezo1 cation permeability responds to changes of
the RBC shape. The aim here is to review in a descriptive manner different previous
studies of RBC behavior that formed the basis for this proposal. These studies include
the interpretation of RBC and vesicle shapes based on the minimization of membrane
bending energy, the analyses of various consequences of compositional and structural
features of RBC membrane, in particular of its membrane skeleton and its integral
membrane proteins, and the modeling of the establishment of RBC volume. The
proposed model of Piezo1 action is critically evaluated, and a perspective presented for
solving some remaining experimental and theoretical problems. Part of the discussion
is devoted to the usefulness of theoretical modeling in studies of the behavior of cell
systems in general.

Keywords: Piezo1, Gárdos channel, mechanosensitivity, spectrin skeleton, curvature dependent protein–
membrane interaction, cell to cell variability, osmotic fragility, negative feedback loop

INTRODUCTION

The red blood cell (RBC) shape is, basically, assumed to depend on the cohesion and mechanical
stability of its membrane (Mohandas and Chasis, 1993) and its volume to depend on the
harmonized action of several different membrane pumps and channels that define the content of
cytoplasm cations (Hoffmann et al., 2009). It is therefore considered that RBC shape and volume
attain their physiological states independently of each other. The discovery that the RBC membrane
includes a mechanosensitive channel, Piezo1, that has an effect on RBC dehydration (Murthy et al.,
2017), indicated that RBC volume may also depend on membrane mechanics. Piezo1 acts through
the activation of Gárdos channels by Ca++ ions that enter the cell when it is open (Cahalan
et al., 2015). Recently we proposed a theoretical model in which it was postulated that Piezo1
cation permeability depends on an RBC discoid shape (Svetina et al., 2019). The model revealed
the existence of a negative feedback loop that interrelates this shape with the RBC content of
potassium ions and, thus, also with its volume. At the Monte Verita RBC meeting I reported
about how predictions of the model were verified by utilizing the concepts developed in studies
on RBC cell to cell variability (Svetina, 1982, 2017; Svetina et al., 2003). However, the model is
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a combination of these and several other concepts, together with
views expressed previously in different theoretical studies on RBC
shape and volume behavior. The present review will include the
topics of these studies. This review is also motivated by the fact
that the organizers of the Monte Verita meeting asked some
senior participants to disseminate to newcomers to the field their
research experiences. In this sense it will be rather subjective and
thus largely concentrated on the work of our research group. The
model discussed here is an example of the research approach
by which, on the basis of theoretical analyses and exploitation
of existing experimental data, it is possible to make predictions
about the behavior of a treated system, thus providing new ideas
as to how to advance the corresponding inquiries (Goldstein,
2018). We shall therefore discuss also some general capabilities
of theoretical approaches in studies of cell processes.

To understand a given cell process it is necessary to
identify the structural elements responsible and to provide a
description of the mode of their operation. The corresponding
theoretical studies are aimed at obtaining their structure–
function relationship in a quantitative manner. This task is, in
general, difficult, since cells are complex. The only way to make
progress is frequently by analyses of mathematical models. In
modeling it is usually necessary first to identify the structural
level that is proper for the description of different aspects and
for the function of a treated physiological process, and then
to reveal its essential features on the basis of the simplest
possible system. Models are, as a rule, built on the basis of
a set of assumptions that can then be tested experimentally.
When these assumptions are found to be correct, and it is thus
possible to obtain model predictions by exact either analytical
or numerical calculations, a model becomes a theory. The
modeling approach should be distinguished from the use of
mathematics in the analysis of experimental results and from
simulations where, on the basis of the already established
theory, the system’s behavior can be described mathematically
in an exact manner. When modeling the behavior of whole
cells it is advantageous to study those that are simple. RBCs,
although composed of several thousand different molecules and
ions, are, in some aspects, extremely simple. Basically, they are
constituted by a concentrated hemoglobin solution enclosed
by an essentially smooth membrane. Moreover, they also have
a well-defined main function of carrying respiratory gasses.
Therefore, and because of its availability, the RBC served, and
still serves, as an ideal system for developing the principles
of modeling structure–function relationships in cell systems in
general (Lux, 2016).

This review will be focused on the bases on which we
recently developed a model of the role of Piezo1 in the
regulation of the RBC volume (Svetina et al., 2019). The
aim is to help build a more thorough critical view on this
model. The model was formed on the basis of several RBC
and other research directions. It illustrates a circuitous nature
of modeling approaches: the past theoretical studies on RBC
shape have opened up some other research topics which have
turned out to be relevant to studies of the regulation of
RBC volume after the identification of the mechanosensitive
protein Piezo1 (Coste et al., 2010) and the elucidation of

its role in hereditary xerocytosis (Zarychanski et al., 2012).
Briefly, some years ago we examined the possible osmotic
states of RBC in dependence on the permeability state of
its membrane (Brumen et al., 1979, 1981). In another study
we presented (Svetina et al., 1982) a theoretical counterpart
of the earlier proposed bilayer couple hypothesis of RBC
shape transformation (Sheetz and Singer, 1974). This led us
to formulate a general theory of shapes of vesicular objects
with flexible membranes (Svetina and Žekš, 1989). This theory
predicted that, among the possible stable shapes, some exhibit
polar symmetry. We proposed that such shapes could serve
as a mechanical origin of cell polarity, and also speculated
that this could have been realized through curvature dependent
interaction between membrane inclusions such as channels
and pumps and the surrounding membrane (Svetina and
Žekš, 1990; Svetina et al., 1990). We later derived a general
phenomenological interaction term for the curvature dependent
inclusion–lipid matrix interaction (Kralj-Iglič et al., 1999), and
formulated the procedure for treating the mutual effects of
the shape of a vesicular object and the lateral distribution of
membrane inclusions on each other (Kralj-Iglič et al., 1996; Božič
et al., 2006). These results gained significance because, in the
meantime, several membrane proteins had been disclosed that
were characterized by their membrane sensing and curvature
forming capabilities (McMahon and Gallop, 2005; Zimmerberg
and Kozlov, 2006). The curved Piezo1 structure (Ge et al., 2015;
Guo and MacKinnon, 2017; Saotome et al., 2018; Zhao et al.,
2018) indicates that it affects the shape of the surrounding
membrane. A possible role of curvature dependent protein–
membrane interaction in the process of mechanosensitivity
has also been indicated (Svetina, 2015). The described broad
modeling background thus seemed to be well suited also for
analyzing different possible modes of Piezo1 operation in the
regulation of RBC volume.

The review is organized as follows. The treated model (Svetina
et al., 2019) will be described and commented in the last section
(see section “Model of the Effect of RBC Discocyte Shape on RBC
Volume and its Outlook”). The two intermediate sections will
describe the model background. Section “The Mechanical and
Thermodynamic Bases of RBC Shape and Deformability” deals
with the RBC shape and deformability. In its first subsection
it will be described how the initial theoretical studies of RBC
shapes in which it was assumed that its membrane is laterally
homogeneous led to a general theory of vesicular objects with
flexible membranes. In the second subsection it will be shown
how the difference between the predictions of this theory and
the behavior of RBCs helps to understand the role of RBC
membrane skeleton. Section “RBC Volume and Related Aspects
of the Variability of RBC Population” will deal with the models of
the regulation of RBC volume. Special attention will be devoted
to the aspects of RBC population variability. It will then be
shown how the results described in two previous sections can
be combined in the model of the effect of Piezo1 on RBC
volume. A critical review of this model will be given and some
suggestions presented for the necessary future work. Throughout
the review, the emphasis will be on the development of concepts,
therefore it will be mostly presented in a descriptive manner. The
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corresponding equations and their derivation can be found in the
cited literature.

THE MECHANICAL AND
THERMODYNAMIC BASES OF RBC
SHAPE AND DEFORMABILITY

The function of RBC as the carrier of respiratory gasses led to its
adoption throughout evolution of numerous specific mechanical
and thermodynamic properties. In the absence of external forces,
the normal RBCs of most vertebrates assume the shape of a disk
that involves, at its poles, the presence of symmetrically indented
dimples. RBCs are deformable, e.g., under microcirculatory
flow conditions, at sufficiently high shear stress, deform into
rolling stomatocytes and, finally, adopt polylobed shapes (Lanotte
et al., 2016). An important factor that allows for these shape
transformations is that RBC occupies only about 60% of the
volume that a cell could at a given area of its membrane.
This property of RBCs is conveniently quantified in terms
of the reduced volume (v) defined as the ratio between the
RBC volume (V) and the volume of the sphere with the same
membrane area (A):

v = 3V/4πRs
3 (1)

where Rs = (A/4π)1/2. The mechanism for the establishment
of RBC volume will be dealt with in section “RBC Volume
and Related Aspects of the Variability of RBC Population.”
Here our focus is on how, at a given value of v, RBC shape
and its deformation depend on the mechanical properties
of its membrane. RBC membrane is composed of a lipid
bilayer occupied densely by membrane integral proteins, and
the underlying membrane skeleton, a two-dimensional pseudo-
hexagonal network with actin based protein complexes as nodes
and spectrin tetramers as bonds. The bilayer and the skeleton
are linked by chemical bonds between spectrin and integral
membrane proteins band3 and glycophorin C, via ankirin
and actin complexes, respectively (Mohandas and Gallagher,
2008; Lux, 2016). The RBC membrane differs from those
of most other eukaryotic cells in that it has no cytoplasm
reservoirs and has therefore a smooth appearance. Because of
a relatively large value of the compressibility modulus of the
bilayer it is, laterally, practically incompressible. RBC mechanical
behavior depends crucially on the characteristic of its membrane
that its three layers, the two leaflets of the bilayer and the
underlying skeleton, can slide, one over the other. The bilayer
resists bending of the membrane and the skeleton to exhibit
shear deformation. The first reasonable models of RBC shape
behavior were based on the assumption that their shapes
correspond to the minimum of membrane bending energy.
In the subsequent subsection it will be revealed how, out of
these models, a theory of shapes of simple vesicular objects
such as phospholipid vesicles developed, and how the stability
of shapes depends on the elastic properties of multilayered
membranes. In the second subsection it will be shown how
the comparison between the predictions of this theory and

the behavior of RBC helps the different roles of its membrane
skeleton to be understood.

Interpretation of RBC and Vesicle Shapes
on the Basis of Membrane Bending
Red blood cell shape has been treated by assuming its membrane
to be a single, thin, laterally homogeneous mechanical entity.
RBC membrane can, at its reduced volume v of about 0.6, take
up an infinite number of shapes, exhibiting different values of the
total membrane bending energy (Wb) that can be for symmetrical
bilayer obtained by the integral of the square of the mean
membrane curvature (H = (C1 + C2)/2 where C1 and C2 are the
principal membrane curvatures) over the whole membrane area
expressed as

Wb = 2kc

∫
H2dA (2)

with kc membrane bending constant. In general membrane
bending energy involves also a contribution due to Gaussian
curvature (K = C1C2) (Helfrich, 1973). However, because the
integral of K over the membrane area is for a given membrane
topology constant this term will be in further discussions
here ignored. Canham (1970) looked for the minimum of Wb
(Eq. 2) and found that, at v = 0.6, the shape is a discoid.
He assumed that the membrane has zero energy when it is
flat and took into consideration that the membrane has no
lateral shear, i.e., that it behaves laterally as a two-dimensional
liquid. Helfrich (1973) generalized the expression for membrane
bending energy by assuming that the membrane may have, due
to transmembrane asymmetry, zero energy when it is bent to
its spontaneous curvature (C0). Deuling and Helfrich (1976),
by applying their “spontaneous curvature model,” obtained
by minimizing the Helfrich’s (1973) expression of membrane
bending energy at given reduced volumes and reduced values
of the spontaneous curvature (RsC0) beside the discocyte also
several other shapes including cup shaped stomatocytes. At about
the same time Sheetz and Singer (1974) introduced the “bilayer
couple hypothesis” based on the evidence that RBCs change shape
under conditions of asymmetric changes of the areas of the outer
and inner leaflets of the membrane bilayer. They showed that, by
adding a drug (chlorpromazine) that intercalates into the inner
monolayer of the RBC bilayer, the discocyte transforms into a cup
shape (stomatocyte) whereas drugs intercalating into the outer
layer cause shape transformation into a spiculated echinocyte.
In a theoretical treatment of the bilayer couple hypothesis, RBC
shapes (which were defined in terms of the finite number of
geometrical parameters) were obtained by minimization of the
membrane bending energy at a fixed difference between the
areas of the outer and inner leaflets of the bilayer (Svetina et al.,
1982). It was implied that this area difference (1A) constitutes
a convenient single parameter whose continuous decrease causes
the shape to be transformed from discocyte to stomatocyte in a
continuous manner. This result was confirmed and, also, further
explored by an exact variational procedure for minimizing
membrane bending energy under the constraints of constant
membrane area, cell volume, and area difference (Svetina and
Žekš, 1989). While bilayer couple hypothesis represents for
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some aspects of RBC shape transformations a useful workable
model, it also turned out to be a strict theory for shapes of
simple vesicular objects defined as a liquid interior enclosed by
a flexible membrane. For students of RBC shape behavior and
deformability it is useful to be familiar with the basic results of
this theory because knowledge of its predictions may help to
distinguish which aspects of RBC behavior depend on properties
of its bilayer and which on its other structural features.

The bilayer couple theory (Svetina and Žekš, 1989) predicts
that vesicle shapes depend on only two geometrical parameters,
the reduced volume v and the reduced area difference 1a
(defined as the ratio between 1A and its value for the sphere
which is 8πhRs with h the distance between the neutral surfaces
of the bilayer leaflets and Rs, as already defined, the radius of the
sphere). The geometrical meaning of 1a is that it is also equal to
the integral of the reduced mean membrane curvature (RsH) over
the membrane surface. Vesicle shapes can be grouped into classes
that occupy different parts of the v – 1a (or 1a – v as used in
Seifert et al., 1991) shape phase diagram. The shapes belong to a
given class if they have the same symmetry and if, by continuously
changing1a and/or v, they are changing continuously. The sense
of such shape classification is illustrated in Figures 1A–C. There
are two types of shape class boundaries. One type comprises
shapes obtained by variational search of the extreme values of the
reduced volume v at a fixed value of the reduced area difference
1a (Figure 1A). They are composed of spheres or spherical parts
with only two possible values of their radius (Svetina and Žekš,
1983, 1989). For example, lines 1 and 6 are boundaries of shape
class to which belongs the discocyte (located in the minimum
of the bending energy curve “S” in Figure 1C). All these shapes
are axisymmetric and involve equatorial mirror symmetry. The
second type of shape class boundaries are symmetry breaking
lines (lines 9 to 12 in Figure 1B). For example, the class of cup
(stomatocyte) shapes is, on one side, bounded by the limiting
shape (line 5 in Figure 1A) and, on the other side, by the
symmetry breaking line (line 9 in Figure 1B) that connects the
points at which the equatorial mirror symmetry of disk shapes
breaks down (shown by an arrow in Figure 1C) at all reduced
volumes. Notably, the class of non-axisymmetric (ellipsoidal)
shapes is bounded by symmetry breaking lines on both of its
sides (lines 10 and 11 in Figure 1B) at which disk and cigar
shapes, respectively, break down their axial symmetry (Heinrich
et al., 1993). As demonstrated by curves A and S in Figure 1C,
classes overlap. Only the shape with the lowest bending energy
is stable. Figure 1B shows which shapes are stable within the
presented central part of the v – 1a shape phase diagram. Red
point and triangle in Figures 1A–C indicate where in the v –
1a shape phase diagram are located the discocyte and typical
stomatocyte, respectively. The significance of the bilayer couple
theory is that it predicts all possible shapes of vesicular objects
with laterally homogeneous membranes. If a vesicle shape differs
from any of these shapes it means that there are external forces
acting on it (Svetina and Žekš, 1996) or that its membrane is
laterally inhomogeneous (Božič et al., 2006).

The described predictions of the bilayer couple model are
strictly only valid if the two equally composed leaflets of a
bilayer are incompressible. In reality they are compressible and

therefore it has to be taken into account that, in general,
in a given shape, they might be deformed differently, for
example in that the area of one is extended and of the other
compressed. In such cases the reduced area difference (1a) differs
from analogously defined equilibrium (preferred) area difference
(1a0) which corresponds to the situation where leaflets are
neither extended nor compressed. The bilayer thus exhibits, in
addition to the already defined bending energy (Eq. 2), also the
non-local bending energy (Wk) (Evans, 1980), termed also as area
difference elastic term (Miao et al., 1994), expressed in its reduced
form (wk = Wk/8πkc) as

wk = kr(1a−1a0)
2/2 (3)

where kr is the non-local bending constant. The derivation and
consequences of non-local bending energy were comprehensively
reviewed in Svetina and Žekš (2014). Briefly, in the generalized
bilayer couple model, vesicle shapes correspond to the minimum
of the sum of the bending (Helfrich, 1973) and non-local bending
energies. The shape equation to be solved is the same as in the
limit of the strict bilayer couple model so the shapes obtained are
the same. However, not all of them are necessarily stable. Why
it is so is demonstrated by Figure 1D. The minimization of the
sum of the two bending energies with respect to 1a gives rise to
the requirement

∂wb/∂1a = − (kr/kc)(1a−1a0) (4)

The solution of Eq. 4 for its unknown 1a can, for a given
value of 1a0, be obtained graphically as a point on the graph
of Figure 1D where a dashed curve (right hand side of Eq. 4)
crosses one (either S or A) of the ∂wb/∂1a curves (left hand
side of Eq. 4). The number of solutions of Eq. 4 at given 1a0
depends on the slope of dashed curves that is proportional to
the ratio kr/kc. There is only one solution if this slope is steeper
than that of the largest derivative by1a of the function ∂wb/∂1a
of asymmetrical shapes (A) which is at the symmetry breaking
point (Figure 1C). A vesicle can thus attain all possible shapes
predicted by the strict bilayer couple model. At values of kr/kc
that are smaller than above defined critical value of ∂wb/∂1a
there are, for some values of 1a0 (e.g., 0.82 in Figure 1D), three
solutions of Eq. 4. The shape at the middle value of 1a is not
stable. Consequently there is, e.g., at continuously decreasing
value of1a0, a discontinuous shape transformation from the1a
at a cross-section of a dotted line with the curve S to the smaller
1a at which this line crosses the curve A. The shapes of the
strict bilayer couple model that correspond to the intermediate
1a values are not stable. Possible stable shapes of the generalized
bilayer couple model are thus defined by the 3-dimensional v –
1a – kr/kc shape phase diagram. The example of the cross-
section of this diagram is for v = 0.85 shown in Figure 12 of
Svetina and Žekš (1996). The slope of the ∂wb/∂1a curve at the
symmetry breaking point is at v = 0.6 close to – 3. The estimated
ratio kr/kc for RBC membrane is about 2 (Hwang and Waugh,
1997) which indicates that the discocyte–stomatocyte transition
is discontinuous. The described reasoning can be generalized
straightforwardly to cover also the effects of transmembrane
asymmetry characterized by membrane spontaneous curvature
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FIGURE 1 | Demonstration of basic features of the bilayer couple theories of vesicle shapes [(A–C) of “strict” and (D) of “generalized”]. (A) v(1a) dependences of
limiting shapes which correspond to the extreme values of v at a given value of 1a (lines 1 to 8) plotted in the v – 1a shape phase diagram (Svetina and Žekš, 1989).
Examples of corresponding shape cross-section are also shown. The dotted horizontal line at v = 0.6 indicates the range of 1a values for which minimal membrane
bending energy is presented in (C). Red point indicates the phase diagram location of a discocyte and red triangle of a characteristic stomatocyte. (B) Stable vesicle
shapes in the central part of the v – 1a shape phase diagram. Lines 9–12 are symmetry breaking lines. Marked areas represent the parts of the shape phase
diagram where there are no contacts between different regions of the membrane. The meaning of red points is the same as in (A). (C) Membrane bending energy wb

(defined relative to the bending energy of the sphere which is 8πkc) calculated at v = 0.6 for the 1a values indicated by the dotted line in (A). Line S shows bending
energy of disk shapes and line A of the cup shapes. The arrow indicates the point of the symmetry breaking of the disk shape as predicted by Svetina and Žekš
(1989). Shown are also contours of cross-sections of a discocyte (red point) and a stomatocyte (red triangle) and it is indicated which are their 1a values. (D) The
dependence of the partial derivatives of the bending energies S and A presented in (C) by the area difference 1a. The dotted lines present the right hand side of
Eq. 4 for the indicated values of 1a0 and kr/kc = 3 (reprinted with permission from Svetina, 1998).

C0. C0 and1A0, in spite of having different physical background
affect the shapes of vesicular objects with bilayer membranes in
a similar manner. The stationary shapes obtained by solving the
shape equation are the same as in the strict bilayer couple model
if for the reduced equilibrium area difference is taken an effective
one defined as

1a0,eff = 1a0 + c0kc/2kr (5)

It has to be noted that in this case the region of stable shapes in the
generalized shape phase diagram v – 1a0,eff – kr/kc depends on
the relative contribution to 1a0,eff of 1a0 and c0. It is because
the energy term due to 1a0 (Eq. 3) involves 1a2 whereas the
energy term due to c0 is a linear function of 1a. Therefore the
discontinuous transition indicated in Figure 1D occurs at shifted
1a values, such that at increasing the relative contribution of c0,

the region of stable shapes is diminishing. The limit kr/kc = 0
represents the spontaneous curvature model of Deuling and
Helfrich (1976). A full description of which shapes are stable
in this limit was presented by Seifert et al. (1991) (reviewed in
Seifert, 1997). The spontaneous curvature model also applies in
the case that due to transmembrane lipid transport the bilayer
relaxes into the state with 1a0 =1a. The relaxation time for this
process was estimated to be 8 min (Raphael and Waugh, 1996) or
even much less (Svetina et al., 1998).

Effects of Compositional and Structural
Features of the RBC Membrane
Red blood cell membrane is, compared to phospholipid
membranes, complex. Its bilayer part is crowded with integral
membrane proteins such as band3 that is involved in RBC’s
function of carrying carbon dioxide, different pumps and
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channels that take care of the establishment of RBC volume, and
many other proteins serving in its protection (Mohandas and
Gallagher, 2008). As already noted, it contains, on its cytoplasmic
side, a spectrin based membrane skeleton which is the main
element that accounts for how RBC shape behavior differs from
that of simple phospholipid vesicles. In this respect we here
discuss skeleton shear elasticity, its role in the formation of RBC
shape, and its possible effects on the lateral distribution of integral
membrane proteins and their lateral diffusion.

Red blood cell membrane exhibits shear elasticity. Because
its bilayer part can be considered as two-dimensional liquid,
the shear elasticity can be ascribed solely to its membrane
skeleton which is a two-dimensional pseudo-hexagonal network
of spectrin tetramers as bonds and acting filaments as nodes.
To understand the skeleton behavior it is crucial to realize that
RBC membrane deformation may cause an alteration of local
skeleton densities while the density of the lipids remains the
same, as was observed by measuring skeleton lateral distribution
in RBC partially aspirated into the micropipette (Discher et al.,
1994; Discher and Mohandas, 1996; Figure 2A). These results
imply that skeleton nodes shift their position relative to the
bilayer and that the bonds deform elastically. This is possible
because the bilayer integral proteins to which the skeleton is
anchored can move laterally in the plane of the bilayer. The
observed changes of skeleton density indicate that the extension
ratios (λi, the ratio between the final length and the initial length
of the deformed skeleton material in the i-th direction) may
reach a value of about 3, which corresponds to a fully extended
spectrin tetramer of length∼ 200 nm. Skeleton deformation may
be described by shear and area compressibility deformational
modes (Mohandas and Evans, 1994). The area compressibility
elastic modulus of the RBC skeleton is estimated at 26 µN/m
(Svetina et al., 2016), which is about four orders of magnitude
less than that of the whole RBC membrane determined to be
0.29 N/m (Evans et al., 1976). Consequently, the deformed
skeleton redistributes over the RBC membrane at its practically
constant total area A. Different parts of RBC skeleton are kept
together by non-covalent bonds which can break and reform,
indicating the possibility that it is plastic. The undeformed state
of the skeleton may thus depend on the RBC’s history and is in
general not well defined.

Theoretical modeling of the RBC skeleton is developing in
several different directions (e.g., Discher et al., 1998; Fedosov
et al., 2010; Peng et al., 2010; Svetina et al., 2016). The present
discussion will focus on the type of models aimed at making a
distinction between skeleton deformation due to the change of
the shape of the cell membrane and that due to its mechanical
properties. In this respect Mukhopadhyay et al. (2002) applied
in their model of the RBC membrane the concept of a mapping
function defined in terms of the dependence of the original
position of a skeleton element on its position in the deformed
state. They used this concept in their studies of the effect of
the skeleton on RBC shapes (see below). For axisymmetric
shapes it is possible to express the mapping function as s0(s)
where s0 is the arc-length distance from the cell pole to a
given contour point of the original skeleton state and s the
corresponding distance of the deformed state. Mathematically,

the dependence s0(s) is sought at which the sum of the skeleton
energy and the membrane bending energy is minimal. We
treated a simplified version of this problem by studying cases
in which the deformed shape is defined by rigid walls and
therefore there is no need to consider the bending energy
(Svetina et al., 2016). Examples of such deformations are RBC
aspiration into medium sized (with respect to the RBC size)
(Figure 2A) and narrow (∼ 1 µm) pipettes. Following Discher
et al. (1998) we also assumed that the main contribution to
the skeleton energy is the energy of spectrin bonds. Instead
of using for bond energy a more realistic flexible chain model
(Discher et al., 1998), we described this energy by a harmonic
potential which is a good approximation at sufficiently small
deformations (Figure 8 in Svetina et al., 2016). The energy
of the deformed skeleton was determined in the mean field
approximation. In this simple model the skeleton deformation
is the same for any value of the bond strength. This means
that the most important factor for the observed change in
skeleton lateral distribution is the changed cell geometry. For
axisymmetric shapes it is, to some extent, possible to reason
about the effect of changed geometry in qualitative terms.
When a patch of the skeleton that is at a distance r0 from
the axis moves in the deformed state to the distance r from
the axis, its extension along the parallels is λp = r/r0. The
corresponding compression (in case that r < r0) exerts a
tendency to make λm larger than 1. The local magnitudes of
the extensions along meridians are restricted by the requirement
that the total skeleton area is constant. The effect of this
requirement cannot be visualized so clearly; however, it can
still be concluded that the skeleton prevents shape changes
with significant changes of the distances of the membrane
from the axis. In Figure 2B, as an example, is shown by this
model predicted deformation of RBC discocyte aspirated into a
medium sized pipette.

Red blood cell shape behavior differs qualitatively from that
of phospholipid vesicles in the region of the v – 1a shape phase
diagram, where prolates are the typical equilibrium shapes of
vesicles with simple membranes (e.g., dumb-bells and pears) with
their limiting shapes involving external buds (Figures 1A,B). In
contrast, RBC shapes are, in the respective1a region, echinocytic
(reviewed in Svetina et al., 2004). Mukhopadhyay et al. (2002)
studied the formation of echinocytes on the basis of continuum
mechanics by searching for the minimum of the sum of the
local and non-local bending energies of the bilayer, and the
stretching and shear elastic energies of the membrane skeleton.
The bending energy of the spiculated membrane is larger than
that of the dumb-bell shape. However, the echinocyte can be
understood to be more stable since the deformation of the
skeleton into the geometry of a dumb-bell would, because of large
changes of the distances from the axis, require a much larger
increase of the skeleton energy than that for its transformation
into a quasi-spherical echinocyte (neglecting that some skeleton
albeit with decreased density is also present in its spicules).
The formation of echinocytes has a physiological advantage by
preventing the occurrence of shapes with large external buds
that form in simple vesicles at increased values of 1a (c.f. line
3 in Figure 1A). The probable pinching off of such buds in
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FIGURE 2 | Deformation of RBC skeleton. (A) Experimental evidence for the deformation of the membrane skeleton when RBC ghost is aspirated into a medium
size pipette (Rp ≈ 2 µm) (from Discher et al., 1994; reprinted with permission from AAAS). The skeleton density profiles along the projection of four aspirated RBC
ghosts are shown, obtained by measuring fluorescein-phalloidin-labeled actin. Relevant for the present discussion is the decrease of the intensity along the aspirated
part of the ghosts (arrows). (B) Skeleton extension ratios along parallels λp (dashed) and along meridians λm (dots) and the density 1/λpλm (relative to its mean value;
full line) calculated according to the described model (Svetina et al., 2016) for the RBC aspirated into medium size pipette (A) (reprinted with permission from Švelc
and Svetina, 2012). The pipette is on the right. The initial shape with, presumably, homogeneous skeleton distribution is a discocyte.

the turbulent blood flow would increase RBC reduced volume
considerably, thus diminishing its deformability. It should be
noted that when RBC changes its shape from discocyte to
stomatocyte, e.g., due to possible decrease of membrane 1a0,
the skeleton is not deformed so much because these two shapes
are both oblate and the distances of skeleton elements from the
axis in them do not differ appreciably. Therefore, the behavior
of RBC shape in the “oblate” region of the v – 1a shape phase
diagram does not differ essentially from the behavior of simple
phospholipid vesicles. In cases where the buds are internal (c.f.
lines 1 and 5 in Figure 1A) there is also no danger that they
would be pinched off.

Another physiological role of the RBC membrane skeleton
is that of the prevention of formation of risky budded shapes
due to lateral segregation of its integral proteins. Membrane
embedded proteins interact with the surrounding membrane
when their intrinsic principal curvatures differ from those of the
membrane at their location. For example, when the drastically
curved protein Piezo1 (Guo and MacKinnon, 2017) is embedded
in a flat phospholipid membrane it is predicted that it will cause
the membrane in its surroundings to form a kind of dome-shaped
invagination (Figure 3A, from Haselwandter and MacKinnon,
2018). It is possible to treat such a protein–membrane interaction
in terms of a phenomenological expression that takes into
account the fact that there is a mismatch between the intrinsic
principal curvatures of membrane inclusion (e.g., a protein)
and those of the membrane. The general expression for the
corresponding energy term, in the limit of a rigid inclusion
surface, is conveniently written as (Kralj-Iglič et al., 1999)

Wcurv,j =
κj

2
(
H −HP,j

)2

+

κ
∗

j

2

[
1H2

− 21H1HP,j cos
(
2ωj

)
+1H2

P,j

]
(6)

where HP,j = (C1,P,j + C2,P,j)/2 is the mean principal intrinsic
curvature of the transmembrane part of the inclusion and

1HP,j = (C1,P,j − C2,P,j)/2 is a measure of the difference
between its two principal curvatures. κj and κj

∗ are independent
interaction constants. The angle ωj defines the mutual orientation
of the coordinate systems of the intrinsic principal curvatures
of the inclusion and the principal curvatures of the membrane.
One consequence of such interaction term is curvature sensing,
meaning that mobile membrane proteins, due to curvature
dependent interaction energy term, accumulate in membrane
regions where this mismatch is small and are depleted from
regions where it is large. For example, it is reasonable to
expect that it is more probable for the Piezo1, due to its
curved structure, to reside in regions of RBC discocyte poles
(dimples) than on its equator. The second possible consequence
of the curvature dependent protein–membrane interaction is
its effect on shape which, for a membrane with mobile
proteins, corresponds to the minimum of the sum of their
distributional free energy and the bending energy of the
membrane (Božič et al., 2006). The effect of inclusions on
RBC shape depends on their number. Using a model study
(Svetina et al., 1996), it was shown that, for the discocyte,
the minimum system’s free energy depends on the number
of inclusions in a much stronger manner than in that for a
budded shape (Figure 3B). If this number is sufficiently small
the bending energy prevails and the stable shape remains to be
the disk. However, above a certain critical value, the budded
shape has a lower free energy. RBC membrane contains about
106 band3 proteins which could constitute a potential danger
for the stability of the RBC if most of them were not linked
to the skeleton.

Red blood cell membrane proteins that are not linked to
the skeleton can, upon the deformation, redistribute over the
membrane with a time constant that depends on their diffusion
coefficient. The latter can be smaller than in a vesicle because of
the corralling effect of the spectrin skeleton (Tomishige et al.,
1998). A drastic reduction of the diffusion constant can be
expected for Piezo1 because the membrane indentation that it
causes (Figure 3A). It just about fits into the triangle formed
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FIGURE 3 | Illustrations of effects of protein–membrane interaction. (A) The shape of the Piezo1 membrane footprint shown as the cross-section of the mid-bilayer
surface and its intersection with the Piezo1 dome; scale bar: 4 nm (reprinted from Haselwandter and MacKinnon, 2018, held under CC-BY 4.0 license). (B) The sum
of the membrane bending energy and the distributional free energy of mobile membrane inclusions calculated for the disk shape and for the shape that involves two
buds for a cell with the reduced volume 0.6 in the dependence of the number of inclusions p (in some reduced units) (reprinted with permission from Svetina et al.,
1996).

by the three spectrin tetramers, with each of them having in the
RBC’s resting state the length of about 70 nm.

RBC VOLUME AND RELATED ASPECTS
OF THE VARIABILITY OF RBC
POPULATION

Red blood cell membrane is, as those of most mammalian cells,
well permeable for water. Therefore the RBC’s water content, and
thus also its volume, depend on its content of osmotically active
substances and on the external tonicity (Hoffmann et al., 2009).
Hemoglobin, the main protein constituent of the RBC cytoplasm,
cannot cross its membrane, so therefore the RBC is under
osmotic stress. In RBCs of many species, their reduced volume
is, by virtue of the active pump-leak system for monovalent
cations K+ and Na+, nevertheless kept at about 0.6. These
cations are pumped by Na+/K+- ATPase which actively expels
three sodium ions and takes in two potassium ions (Tosteson
and Hoffman, 1960; Kay and Blaustein, 2019). The consequent
higher cell concentration of K+ and lower concentration of
Na+, both relative to their concentration in the environment,
cause fluxes of these two cations in the direction of their
concentration gradients. The pumping and leaking of K+ and
Na+ eventually leads to the stationary volume level. There are
several channels/transporters involved in the passive leakage of
these two cations. The results of many studies of their action
and of the data on cation pumping made it possible to formulate
realistic mathematical modeling of RBC volume regulation (Lew
and Bookchin, 1986; Armstrong, 2003; Ataullakhanov et al.,
2009). K+ and Na+ attain their stationary value in a time
scale which is several orders of magnitude larger than that of
water and also of univalent anions Cl− and HCO3

− which can
thus be treated at correspondingly short time scales as being

in quasi-equilibrium between the inside and outside solutions.
Because hemoglobin is charged, this equilibrium can be described
by models that involve a version of the Donnan equilibrium in
which cations do not exchange (Brumen et al., 1979; Freedman
and Hoffman, 1979).

The issue here is the extension of already established models
of RBC volume regulation that take into consideration the
role of Piezo1 and Gárdos channels (Svetina et al., 2019). The
predictions of the proposed model were supported by studies
on properties of RBC population cell to cell variability. RBCs,
in otherwise homogeneous RBC population, are known to be
variable with respect to many of their measurable parameters
such as cell volume, membrane area, hemoglobin content,
density, etc. RBCs vary because of the variable properties of
their precursors and because, throughout their lifespan, they
are releasing nanovesicles (Westerman and Porter, 2016). In
general, cells of the same kind are presumably organized in an
identical manner, meaning that their state is defined by the same
physical-chemical processes. On the basis of this assumption it
can be deduced that, if there are some strict algebraic relations
between the parameters that define the state of a single cell,
there are also relationships between the parameters that measure
the variability of these parameters, e.g., coefficients of variation
and correlation coefficients. This notion has been confirmed by
analysis of relations between standard deviations and correlation
coefficients extracted from different single cell measurements
of RBC volume, membrane area, density, and hemoglobin and
cation contents (Svetina, 1982). Moreover, this analysis also
revealed the possibility that an RBC involves a strict relationship,
of at that time unknown origin, between membrane area and
hemoglobin and cation contents. The analogous conclusion
was later, by a different approach, obtained by Lew et al.
(1995). The basic source for such relation was realized to be
the strong correlation between RBC volume and membrane
area. Simultaneous single cell determinations of these two cell
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FIGURE 4 | Illustrations of consequences of the correlation between RBC area (A) and volume (V ). (A) Coefficient of variation of RBC reduced volume (CVv) in
dependence on the correlation coefficient ρA,V obtained for the values of coefficients of variations of RBC volume and membrane area to be 0.12 and 0.13,
respectively (reprinted with permission from Svetina et al., 2019). CVv at ρA,V = 0.96 is about 0.06. (B) Evidence for the role of Piezo1 based regulation of RBC
volume on the mouse RBC V – A correlation. Cahalan et al. (2015) measured osmotic fragility of normal (WT) and of Piezo1 knocked out (Vav1-PicKO) mouse RBC
in the absence (+Veh) and presence (+A23187) of Ca2+ ionophore A23187 (reprinted with permission from Svetina et al., 2019). In Figure 5 of Svetina et al. (2019)
we added to Figure 3D of Cahalan et al. (2015) the column of the corresponding coefficients of variation (CVh) obtained from steepness of osmotic fragility curves as
indicated by red dashed lines.

parameters yielded for the corresponding correlation coefficient
a value of ρA,V ∼ 0.97 (Canham and Burton, 1968) and of ∼
0.96 (Gifford et al., 2003). The strong correlation between V
and A is reflected in the fact that the coefficient of variation of
the reduced volume is only about one half of the coefficients of
variation of V and A (Figure 4A). It also explains the narrowness
of the coefficient of variation for the hemolytic osmotic pressure
presented in Figure 2 of Lew et al. (1995). With respect to the
modeling of the regulation of the RBC volume it can be concluded
that one of the model parameters should be membrane area.
Recent evidence indicates that the process responsible for V – A
correlation involves Piezo1 (Cahalan et al., 2015). Namely, in
Piezo1 knockout mice, and in the case where Piezo1 action of
opening Gárdos channels was overruled by the Ca2+ ionophore
A23187, this correlation was lost (Figure 4B).

MODEL OF THE EFFECT OF RBC
DISCOCYTE SHAPE ON RBC VOLUME
AND ITS OUTLOOK

The fact that RBC dehydration in hereditary xerocytosis can be
caused by malfunctioning of a mechanosensitive protein Piezo1
indicates that RBC volume may also depend on mechanical
properties of RBC membrane. Piezo1 system appeared to
represent a relatively independent module of the otherwise
complex regulation of RBC volume, and could thus be considered
as an ideal candidate for application of the modeling approach.
In the model under consideration (Svetina et al., 2019) we chose,
for its elements that are crucial for the action of Piezo1, the
sensing of the membrane curvature through curvature dependent
inclusion–membrane interaction (Svetina et al., 1990; Kralj-Iglič
et al., 1996, 1999), and the assumption that the mechanical

properties of an RBC membrane affect its volume through the
dependence of Piezo1 Ca++ permeability on RBC discocyte
shape. These ideas were supported by curved structure of the
Piezo1 trimer, evidenced by its structural studies (Ge et al.,
2015; Guo and MacKinnon, 2017; Saotome et al., 2018; Zhao
et al., 2018) and, indirectly, also by the altered RBC membrane
cation permeability when stressing the cells by a distorting device
(Kuchel and Shishmarev, 2017) or by a flow through a capillary
constriction (Cinar et al., 2015; Danielczok et al., 2017). Here we
shall first outline which of the topics presented in the previous
two sections formed the basis of this model. Then we shall
evaluate its outcome, define its deficiencies and indicate some
model implications to improve the understanding of RBC Piezo1
action by further experimental and theoretical studies.

The essential ingredients of the proposed mechanism of the
effect of Piezo1 on RBC volume are schematically represented by
the cause-effect links shown in Figure 5. These links represent
either experimental evidence or the results of theory or modeling.
The upper dashed link indicates that RBC discocyte shape,
according to theories described in the subsection “Interpretation
of RBC and Vesicle Shapes on the Basis of Membrane Bending,”
depends on RBC reduced volume. The lower dashed line link
represents Eq.1. The link between RBC content of K+ and RBC
volume is in a broad sense the consequence of the fact that
RBC volume is established through osmotic equilibrium with
the surrounding solution and that thus depends on the level
of its cytoplasm cations. As discussed in section “RBC Volume
and Related Aspects of the Variability of RBC Population” the
regulation of cell cation content operates on the basis of active
and passive membrane cation permeabilities (Hoffmann et al.,
2009). The model concentrates on the homeostasis of K+. The
preceding two links are thus based on the experiments of Cahalan
et al. (2015) who have shown that Piezo1 channels act by the
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FIGURE 5 | Schematic presentation of processes involved in the effect of
RBC discocyte shape on RBC volume. The meanings of the links are
described in the text. Because the volume affects the shape (dashed links) the
described system as a whole represents a closed regulatory loop. It is
indicated that Piezo1 Ca++ permeability can be affected either by membrane
curvature or membrane lateral tension.

way that, when they are temporarily transformed into their open
conformation, allow the influx calcium ions which activate the
potassium specific Gárdos channels. The enhanced leakage of
potassium ions then causes a decrease of their cell content and
consequent loss of water. The Piezo1–Gárdos channel system
is thus considered as a complement to the mechanism of RBC
volume regulation based on the balance between influx and efflux
of cations K+ and Na+. In the model it is assumed that, due
to active Ca++ efflux, the Gárdos channels are on the average
open only part of the time and that it is therefore reasonable to
express membrane permeability coefficient for K+ (PK) as the
sum two contributions

PK = PK,0 + fGPK,G (7)

where PK,G is RBC K+ permeability of its Gárdos channels,
f G the average fraction of them that are open, and PK,0
the potassium permeability of its other K+ channels. Due
to osmotic equilibrium between its interior and exterior (see
section “RBC Volume and Related Aspects of the Variability
of RBC Population”), RBC volume is at larger values of f G
smaller. In the treated model we derived a relationship between
f G and the reduced volume v in which appeared as model
parameters the ratio PK,G/PK,0, the relative amount of other
RBC cytoplasm ingredients that cannot penetrate the membrane,
and the reduced volume at f G = 0. The crucial task of the
model was to reveal a plausible mechanism for the effect of
RBC shape on the fraction of time that Piezo1 channels are
open. In the model it was proposed that there is another
relationship between f G and v based on the dependence of
Piezo1 cation permeability on RBC shape. This relationship
is represented in Figure 5 by the links that relate RBC
discocyte shape and Piezo1 Ca++ permeability. The theory
described in sub-section “Interpretation of RBC and Vesicle
Shapes on the Basis of Membrane Bending” makes it possible
to determine reduced mean membrane curvature (h) at each
point on the membrane and its dependence on the reduced
volume v. In the model (Svetina et al., 2019) it was shown

that its value in RBC poles can be well represented by a
linear function

hpole = hpole,r + βpole(v− vr) (8)

where hpole,r is the reduced mean curvature at an arbitrarily
chosen reference reduced volume vr. The value of the coefficient
βpole is 4.0. It was then taken into account that due to Piezo1
intrinsic curvature and its interaction with the membrane
(Eq. 6), its molecules would tend to concentrate in the
regions of RBC poles. On the basis of the assumption
of that open Piezo1 conformation is less curved than its
closed conformation it follows that, at the decrease of v, the
probability that Piezo1 is closed increases. The parameters
that defined thus obtained increasing function f G(v) are a
combination of parameters that appear in Eqs. 6 and 8.
Due to thus obtained relationships between f G and v it
is possible to express these two parameters in terms of
other RBC structural parameters. On the basis of assuming
the curvature dependent Piezo1–lipid matrix interaction it
has been thus established that the system operates as a
negative feedback regulatory loop between the average of
the fraction of open Gárdos channels (f G) and the RBC
reduced volume (v).

The described model was meant primarily to serve as the
proof of principle for Piezo1 based regulation of RBC volume.
Therefore it involves many simplifications of the real system. For
example, it was restricted to K+ homeostasis and did not take
into consideration possible concomitant changes of RBC Na+
content; the fraction of open Piezo1 channels was calculated as
if they would all be located at the RBC poles; it was assumed that
there are only two relevant Piezo1 conformations, etc. However,
some of the model predictions are general in that they do not
depend on its specific features. The main outcome of the effect
of the RBC discoid shape on its volume is that it implies the
existence of a closed regulatory loop for RBC volume regulation.
The Piezo1–Gárdos channel system can be considered as a
complement to the mechanism for the regulation of cell volume
that operates on the basis of active and passive membrane cation
permeabilities (Hoffmann et al., 2009). Within the mechanism
of RBC volume regulation based on the balance between influx
and efflux of cations K+ and Na+, Piezo1 acts at the level of K+
efflux. The membrane permeability coefficient for K+ involves
a contribution that depends on the RBC reduced volume v and
thus also on the membrane area A. The consequence of the
regulation of v is the strong V–A correlation. Such correlation
has been observed by simultaneous measurements of V and A in
the RBC population (Canham and Burton, 1968; Gifford et al.,
2003) and is evidenced by the steepness of the osmotic fragility
curve (Figure 4B). Confirmation of this prediction of the model
lies in the fact that the V–A correlation is lost, either in the
absence of Piezo1 or by the application of the Ca2+ ionophore
A23187 which overrules its action (Cahalan et al., 2015).
The regulation of the RBC reduced volume is physiologically
important because RBC, during the process of its aging,
constantly releases nanovesicles (Westerman and Porter, 2016).
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In this type of vesiculation the loss of area is more significant than
the loss of volume and, therefore, without this regulation the cells
would lose their deformability because of the consequent increase
of their reduced volume.

The model presented here points to the involvement of
the RBC discoid shape in the fine regulation of its volume
in a rather consistent manner. However, there are still many
unanswered questions that require further experimentation. One
such concern is whether the response of Piezo1 to change
of RBC shape is due to change of membrane curvature or
to the change of membrane lateral tension (Figure 5). For
example, the theory of vesicle shapes predicts that the lateral
tension is negative and that its absolute value at lowering the
v increases (Svetina and Žekš, 1989). Changes of the lateral
tension thus act in the appropriate direction but their effect was
estimated to be small (Svetina et al., 2019). It could, however,
be enhanced by the action of myosin motors (Smith et al.,
2018). The dilemma about possible role of lateral tension could
be resolved by experimental determination of the distribution
of Piezo1 channels over the RBC membrane. Because mean
principal membrane curvature is most negative in the RBC
dimples, the analogously curved Piezo1 (Guo and MacKinnon,
2017) would preferentially reside in this region. With regard
to the question as to whether the described mechanism of fine
regulation of RBC volume also functions in vivo it should be
realized that RBCs spend only about 50% of their time in veins,
in which hydrodynamic conditions allow them to establish their
discocyte shape. Namely, freely movable, membrane embedded
proteins have diffusion coefficients that would cause them to
equilibrate along the whole RBC surface in about 1 min. It
would thus be important to determine whether the Piezo1 lateral
diffusion coefficient is, for one reason or another, sufficiently
smaller. It could be smaller because the RBC membrane is
crowded (with more than 104 proteins per 1 µm2) or because
the Piezo1 molecule modifies the shape of the surrounding
membrane to the size (Haselwandter and MacKinnon, 2018) that
fits well into the area of the triangle of the structural unit of
the hexagonal network of the spectrin skeleton. With regard to
the Piezo1 oligomeric homo-trimer structure it can be noted
that, in the case where its subunits can, independently, have
two different conformation, it may attain at least four different
structures, of which two have axial symmetry and two not. It
still has to be established which of these structures corresponds
to the Piezo1 open state. In the analyses of the variations
within RBC population it has been assumed that there is no
variation in membrane areal density of different RBC membrane
proteins. In the context of the presented model it would be of

particular interest to determine whether there are differences
in the variability parameters of pumps and channels that are
involved in the regulation of RBC volume.

There are also many aspects of the proposed model that
require further theoretical modeling. For example, there is the
question as to what is causing, in the A–V scatter plot, the
remaining cell to cell variability. It could be ascribed to RBC
variability with respect to its hemoglobin content (Svetina, 1982),
but also to cell to cell variability of the ratio between the
permeabilities of Gárdos channel and other potassium channels.
In the model presented here it was taken that, for a given
fixed membrane shape, the inclusions redistribute due to their
interaction with the surrounding membrane. However, in general
the effect is mutual: due to the curvature dependent interaction
of Piezo1 molecules with the surrounding membrane, the RBC
shape may also change (Božič et al., 2006). The consequent
coupling between the RBC shape and the conformational state of
Piezo1 molecules could cause oscillatory non-stationary behavior
of the treated system. One has to be aware also of possible second
order factors such as membrane lateral inhomogeneity (Hoffman,
2019). It still needs to be established as to the nature of the
physical basis for the Piezo1–lipid matrix interaction. It could be
based on the perturbed energy of the lipid bilayer (Haselwandter
and MacKinnon, 2018) but may also involve specific interactions
between a protein and its surrounding molecules, e.g., the
curvature dependence of the number of hydrogen bonds that
Piezo1 forms with surrounding lipids. Curvature dependent
Piezo1–lipid matrix interaction may also involve energy terms
due to Piezo1 intrinsic elasticity (Lin et al., 2019).
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