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Long noncoding RNAs (lncRNAs) have an important role in various life processes of the body, especially cancer. The analysis of
disease prognosis is ignored in current prediction on lncRNA–disease associations. In this study, a multiple linear regressionmodel
was constructed for lncRNA–disease association prediction based on clinical prognosis data (MlrLDAcp), which integrated the
cancer data of clinical prognosis and the expression quantity of lncRNA transcript.MlrLDAcp could realize not only cancer survival
prediction but also lncRNA–disease association prediction. Ultimately, 60 lncRNAsmost closely related to prostate cancer survival
were selected from 481 alternative lncRNAs. Then, the multiple linear regression relationship between the prognosis survival of
176 patients with prostate cancer and 60 lncRNAs was also given. Compared with previous studies, MlrLDAcp had a predominant
survival predictive ability and could effectively predict lncRNA–disease associations.MlrLDAcphad an area under the curve (AUC)
value of 0.875 for survival prediction and an AUC value of 0.872 for lncRNA–disease association prediction. It could be an effective
biological method for biomedical research.

1. Introduction

Long noncoding RNAs (lncRNAs) are noncoding RNA
molecules, including miRNAs [1], lncRNAs [2], tRNAs [3],
piRNAs [4], and more than 200 nucleotides. They were
initially thought to be nonfunctional RNA fragments and the
only by-product of massive transcription [5–8]. A large num-
ber of recent studies have shown that lncRNAs have abundant
biological functions, including the silencing of X chromo-
some [9] and activation and interference of transcription [10–
12]. At the same time, the abnormal expression of lncRNAs
leads to various diseases [13–15]. Therefore the investigation
on lncRNA–disease associations is of great significance at
the molecular level to radically cure the disease.

Many computational methods have been applied to
human lncRNA–disease association prediction in recent
years.Thesemethods have two prominent features: machine-
learning-based feature and network-based feature.

The machine-learning-based feature of lncRNA–disease
association prediction is to establish a learning model in
the training dataset and then to perform tests in the test
dataset using this learning model. For instance, Zhao et
al. [16] developed a learning model based on the Bayesian
classifier for lncRNA–disease association prediction. The
key issue was that the learning model regarded unknown
lncRNA–disease associations as negative sets, restricting the
performance of the learning model. In fact, the negative sets
for lncRNA–disease association prediction were difficult to
achieve. To avoid this problem, Chen et al. [17] put forward
the method of LRLSLDA to predict lncRNA–disease associa-
tions. It was based only on positive sets, not on negative sets.
It adopted the strategy of Laplacian regularized least squares,
was a semisupervised learning model, and needed selected
optimal parameters to obtain optimal prediction results.
LRLSLDA had two limitations: (a) they were under the
assumption that functionally similar lncRNAs were related
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to similar diseases and (b) they were restricted to selecting
optimal parameters. Moreover, Chen et al. [18] developed
another method, KATZLDA, which incorporated known
lncRNA–disease associations, lncRNA expression profiles,
lncRNA functional similarity, disease semantic similarity,
and Gaussian interaction profile kernel similarity. KATZLDA
could adapt to new diseases and lncRNAswithout any known
associations. However, KATZLDA still was built on lncRNAs
withmore known associated diseases or/and miRNA interac-
tion partners.

The network-based feature of lncRNAs–disease asso-
ciation prediction is to establish a learning network of
lncRNA–disease associations using known associations. For
instance, Yang et al. [19] constructed the bipartite network
about lncRNA–disease associations and predicted these asso-
ciations by the method of transmission in the network, which
was the first prediction method based on the network model.
A coding–noncoding gene–disease bipartite network was
constructed to improve the prediction results in which better
prediction results were obtained. However, the approach
did not take into account the interaction between lncRNAs
and coding genes, and the forecast range was limited. The
results were relatively general. Sun et al. [20] proposed a
new method based on the network model: RWRlncD. It was
used to construct the functional similarity network of lncR-
NAs using the known lncRNA–disease association network
and the similarity network. Subsequently, the reactivated
random walk was performed in the functional similarity
network of lncRNAs to predict the potential lncRNA–disease
associations. However, the edge of the test set was used to
calculate the functional similarity of lncRNAs before cross
validation, which overestimated the verification results. Zhou
et al. [21] presented a novel method (named RWRHLD)
to distinguish candidate lncRNA–disease associations using
the hybrid network and then performed the random walk
algorithm on this hybrid network. RWRHLD was used only
to predict lncRNAs in known lncRNA–miRNA associations,
where an incomplete coverage of lncRNAs cross talk net-
work and lncRNA–disease association network might lead
to inaccurate prediction results. Chen et al. [22] improved
the traditional random walk with restart and proposed
the method of improved random walk with restart for
lncRNA–disease association prediction (IRWRLDA). But the
existing problem of IRWRLDA was how to obtain integrated
lncRNA similarity based on lncRNA functional similarity
and lncRNA Gaussian interaction profile kernel similarity.
Chen et al. [23] developed two novel LNCSIMs and proposed
a new method LRLSLDA–LNCSIM that could improve the
predictive ability of LRLSLDA. LRLSLDA–LNCSIM still had
the limit that a semantic contribution decay factor was
not well solved. Yu et al. [24] employed multidimensional
heterogeneous data to construct an lncRNA function simi-
larity network, employed the disease ontology to construct
a disease network, and then proposed the BRWLDA to
predict lncRNA–disease associations. Although the predic-
tion performance was improved by BRWLDA, the defect of
random walk algorithm still existed. Chen et al. [25] devel-
oped a method of HGLDA by integrating miRNA–disease
associations and lncRNA–miRNA interactions. However,

HGLDA could not be used in the lncRNAs without any
known miRNA interaction partners. Ganegoda et al. [26]
developed the computational model of KRWRH network,
which was a heterogeneous network formed by integrat-
ing a disease–disease similarity network, lincRNA–lincRNA
similarity network, and known lincRNA–disease association
network.

The reviews of Chen et al. [27] and the aforementioned
discussions showed that few references were made to the
combination of clinical prognosis data with lncRNA–disease
association in the existing studies on lncRNA–disease associ-
ation prediction. In the present study, the analysis of disease
prognosis was ignored, and the existing prediction model
was limited to a single lncRNA prediction. The prognosis
information of a disease associated with lncRNAs was rarely
involved (such as the survival time of patients, current
state of disease, and family history of genetic diseases). In
fact, an analysis related to the prognosis of lncRNA–disease
association has more realistic meaning and value.

To overcome the aforementioned issues, a multiple lin-
ear regression model for lncRNA–disease association pre-
diction based on clinical prognosis data (MlrLDAcp) was
constructed to predict the potential associations between
lncRNAs and diseases. At the same time, the survival time
of patients with prostate cancer was also predicted in MlrL-
DAcp. The concepts of predictive correlation factor Θ, decay
coefficient 𝜉, Γ operation, and Γ correction were proposed in
this study to construct the multiple linear regression model.
An algorithm for developing the multiple linear regression
model was designed, in which 481 lncRNA transcripts with 𝑃
values less than 0.001 were cut back to 60most closely related
to the survival time of patients with prostate cancer. Finally,
the potential multiple linear regression relationship between
the prognosis survival time of 176 patients with prostate can-
cer and 60 lncRNAs was proposed. MlrLDAcp could realize
not only cancer survival prediction but also lncRNA–disease
association prediction. Compared with previous findings,
MlrLDAcp had a predominant survival predictive ability and
could effectively predict lncRNA–disease associations.

2. Materials and Methods

2.1. LncRNAExpressionData. The lncRNAexpression data of
prostate cancer was obtained from the lncRNAtor database
(http://lncrnator.ewha.ac.kr). A total of 44 normal samples
and 176 prostate cancer samples were obtained, and the
prostate cancer samples were denoted in an ascending order
according to sample ID (denoted by 𝑇1, 𝑇2, ⋅ ⋅ ⋅ , 𝑇176). The
expression level of each lncRNA transcript in normal and
prostate cancer samples was calculated. The differential
expressions between normal and prostate cancer samples
were calculated using the aforementioned expression quan-
tities. A total of 481 lncRNA transcripts with a significant
difference were obtained (denoted by 𝐺1, 𝐺2, ⋅ ⋅ ⋅ , 𝐺481 using
a P value in the ascending order) by selecting a P value less
than 0.001, and the 481 transcript expression quantities on𝑇𝑖 were denoted by 𝐺𝑖∼1, 𝐺𝑖∼2, ⋅ ⋅ ⋅ , 𝐺𝑖∼481(1 ≤ 𝑖 ≤ 176).
The lncRNA expression training data matrix (denoted by
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𝐿𝑒𝑑 = [
[
𝐺1∼1 𝐺1∼2 ⋅⋅⋅ 𝐺1∼481
𝐺2∼1 𝐺2∼2 ⋅⋅⋅ 𝐺2∼481
...
...
...
...

𝐺176∼1 𝐺176∼2 ⋅⋅⋅ 𝐺176∼481

]
]
) was constructed based on the

aforementioned data.

2.2. Clinical Prognosis Data of Patients with Prostate Cancer.
The clinical prognosis data of 176 prostate cancer samples
in Section 2.1 were obtained from the TCGA database
(https://cancergenome.nih.gov). Each prostate cancer sample
contained the clinical prognostic data of 60 samples. The
data were filtered to keep the patient ID (submitter id),
survival state (vital status, the survival state of 𝑇𝑖 denoted
by 𝑉𝑠𝑖), time of death of patients (days to death, the
death time of 𝑇𝑖 denoted by 𝐷𝑑𝑖), and final contact time
(days to last follow up, final contact time of 𝑇𝑖 denoted
by 𝐷𝑙𝑖). Hence, the survival time training matrix 𝜔 =
[[
[
𝐷𝑑1 𝐷𝑙1
𝐷𝑑2 𝐷𝑙2
...
...

𝐷𝑑176 𝐷𝑙176

]]
]

was obtained. If the patient was in a state of

death, he had only the time of death but no final contact
time, and the final contact time was recorded as 0. On the
contrary, if the patient was alive, he had only the final contact
time but no death time, and the death time was recorded
as 0. Therefore, the survival distribution coefficient matrixΩ = [ 𝛼𝛽 ] (if 𝑉𝑠𝑖 = 𝑑𝑒𝑎𝑑 then 𝛼 = 1, 𝛽 = 0; else 𝛼 = 0, 𝛽 = 1)
was constructed. Finally, the survival analysis matrix 𝐿𝑎 =
𝜔 × Ω = [[

[
𝐷𝑑1 𝐷𝑙1
𝐷𝑑2 𝐷𝑙2
...
...

𝐷𝑑176 𝐷𝑙176

]]
]
× [ 𝛼𝛽 ] was obtained.

2.3. Abstracting the Issue. This study on lncRNA–disease
associations was conducted from the following two aspects:

(a) A part of lncRNAs in the 481 lncRNAs, which were
most closely related to prostate cancer, was screened out
through the analysis of prognosis survival. Hence, a subset
of 𝐿𝑒𝑑 (denoted by 𝐿𝑒𝑑𝑠𝑢𝑏, 𝐿𝑒𝑑sub ⊂ 𝐿𝑒𝑑) was obtained,
and set Δ = ⟨𝐿𝑒𝑑𝑠𝑢𝑏⟩ (⟨𝐿𝑒𝑑𝑠𝑢𝑏⟩ was the number of elements
in 𝐿𝑒𝑑𝑠𝑢𝑏, 1 ≤ Δ < 481). 𝐿𝑒𝑑𝑠𝑢𝑏 contained Δ lncRNAs
(denoted by 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔Δ). The expression quantity of 𝑔𝑖 on𝑇𝑖 was denoted by 𝑔𝑖∼1, 𝑔𝑖∼2, ⋅ ⋅ ⋅ , 𝑔𝑖∼Δ. Therefore, 𝐿𝑒𝑑𝑠𝑢𝑏 =
[
𝑔1∼1 𝑔1∼2 ⋅⋅⋅ 𝑔1∼Δ
𝑔2∼1 𝑔2∼2 ⋅⋅⋅ 𝑔2∼Δ
...
...
...
...

𝑔176∼1 𝑔176∼2 ⋅⋅⋅ 𝑔176∼Δ

].
(b) The potential relationship between 𝐿𝑒𝑑𝑠𝑢𝑏 and 𝐿𝑎

was given using multiple statistical methods, and finally the
prognosis prediction of lncRNA–disease associations was
realized using 𝐿𝑒𝑑𝑠𝑢𝑏 predicting 𝐿𝑎.
Definition 1 (predictive correlation factor Θ). Θ was defined

as Θ = [
[
Θ1
Θ2
...
ΘΔ

]
]
, where Θ𝑖 corresponded to 𝐺𝑖 in 𝐿𝑒𝑑𝑠𝑢𝑏. The

value of predictive correlation factor Θ𝑖 was the coefficient
of multiple linear regression 𝐿𝑎. 𝐿𝑎 is shown in (1). For
the prognosis prediction of lncRNA–disease associations, the
formal definition was as follows. Two tasks needed to be

completed while establishing 𝐿𝑎: (1) to calculate 𝐿𝑒𝑑𝑠𝑢𝑏 and(2) to calculate Θ.
𝐿𝑎 = 𝐿𝑒𝑑𝑠𝑢𝑏 × Θ

=
[[[[[[
[

𝑔1∼1 𝑔1∼2 ⋅ ⋅ ⋅ 𝑔1∼Δ𝑔2∼1 𝑔2∼2 ⋅ ⋅ ⋅ 𝑔2∼Δ... ... ... ...
𝑔176∼1 𝑔176∼2 ⋅ ⋅ ⋅ 𝑔176∼Δ

]]]]]]
]
×
[[[[[[
[

Θ1Θ2...
ΘΔ

]]]]]]
]

=
[[[[[[
[

𝐷𝑑1 𝐷𝑙1𝐷𝑑2 𝐷𝑙2... ...
𝐷𝑑176 𝐷𝑙176

]]]]]]
]
× [𝛼𝛽]

(1)

2.4. Γ Operation
Definition 2 (line class vector 𝑋). 𝑋 was a one-dimensional
vector with 481 rows and 1 column (𝑋 = [𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋481]).𝑋𝑖 corresponded to𝐺𝑖, and that𝑋𝑖 was equal to 1 or 0. When𝑋𝑖 was equal to 1, 𝐺𝑖 corresponding to 𝑋𝑖 was selected to𝐿𝑒𝑑𝑠𝑢𝑏. Otherwise, 𝐺𝑖 corresponding to 𝑋𝑖 was not selected
to 𝐿𝑒𝑑𝑠𝑢𝑏. 𝐶(𝑋) was the number of 𝑋 components (i.e., 481).𝐶(𝑋)=1 was the number of𝑋 components, the value of which
was 1.

Definition 3 (decay coefficient 𝜉). 𝜉 denoted the decay dura-
tion in Γ operation. 𝜉(𝑑), which was the 𝜉 value of the 𝑑𝑡ℎ
iteration in Γ operation, is shown in (2).

𝜉 (𝑑)

= {{{{{
0.1 (𝑑 ∈ 𝑍, 10 ≤ 𝑑 ≤ 𝐷)
𝑒2×((𝐷−𝑑)/𝐷)+1 − 𝑒1/(2×((𝐷−𝑑)/𝐷)+1)𝑒2×((𝐷−𝑑)/𝐷)+1 + 𝑒1/(2×((𝐷−𝑑)/𝐷)+1) (𝑑 ∈ 𝑍, 1 ≤ 𝑑 ≤ 9)

(2)

In (2), 𝐷 is the maximal iterations of Γ operation and 𝑑
is the current iterations of Γ operation. When 𝑑 takes the
minimal value 1, 𝜉 is close to 1. When 𝑑 takes the maximal
value 𝐷, 𝜉 is 0.1. When 𝑑 takes the value between 1 and 𝐷, 𝜉
is the reduction value between 1 and 0.1. The greater 𝜉 is, the
greater the decay efficiency is.

Definition 4 (Γ operation). Γ operation was divided into three
stages. (a) The variation center 𝐶𝑒𝑛𝑡𝑒𝑟(𝑋𝑑) of the 𝑑𝑡ℎ itera-
tion on 𝑋 was calculated according to (3). (b) The variation
range 𝑅𝑎𝑛𝑔𝑒(𝑋𝑑) of the 𝑑𝑡ℎ iteration on 𝑋 was calculated
according to (4). (c) Bitwise inversion was performed within
the variation range (𝑅𝑎𝑛𝑔𝑒(𝑋𝑑) ∩ [1, 𝐶(𝑋)]). Figure 1 shows
the schematic of Γ operation.
𝐶𝑒𝑛𝑡𝑒𝑟 (𝑋𝑑)

= {{{{{{{
⌊𝐶 (𝑋)2 ⌋ (𝑑 = 1)
⌊𝐶 (𝑋)2 ⌋ + (⌊𝐶 (𝑋)𝐷 ⌋ × (−1)𝑑−1 × ⌊𝑑2⌋) (2 ≤ 𝑑 ≤ 𝐷)

(3)
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Figure 1: Schematic of Γ operation. The black circles represent 0. The red circles represent 1. The yellow circles represent overflow value.
The green curly bracket area represents bitwise invert. To briefly explain the principle, the principle parameters were set as follows: 𝐶(𝑋) =50, 𝐷 = 10. The number of iterations of (a) was 2.The number of iterations of (b) was 4. The number of iterations of (c) was 7.The number of
iterations of (d) was 9. (a) Calculated that𝐶𝑒𝑛𝑡𝑒𝑟(𝑋1) = 20,𝑅𝑎𝑛𝑔𝑒(𝑋1) = [1, 39], the length of Γ operation was 39, and the left side overflowed
a value. (b) Calculated that 𝐶𝑒𝑛𝑡𝑒𝑟(𝑋4) = 15, 𝑅𝑎𝑛𝑔𝑒(𝑋4) = [1, 31], the length of Γ operation was 31, and the left side overflowed three values.
(c) Calculated that 𝐶𝑒𝑛𝑡𝑒𝑟(𝑋6) = 40, 𝑅𝑎𝑛𝑔𝑒(𝑋6) = [29, 50], and the length of Γ operation was 22. (d) Calculated that 𝐶𝑒𝑛𝑡𝑒𝑟(𝑋9) = 45,𝑅𝑎𝑛𝑔𝑒(𝑋9) = [41, 48], and the length of Γ operation was 8.

𝑅𝑎𝑛𝑔𝑒 (𝑋𝑑) = [𝐶𝑒𝑛𝑡𝑒𝑟 (𝑋𝑑) − ⌊𝜉 (𝑑) × 𝐶 (𝑋)2 ⌋ , 𝐶𝑒𝑛𝑡𝑒𝑟 (𝑋𝑑)
+ ⌊𝜉 (𝑑) × 𝐶 (𝑋)2 ⌋ − 1]

(4)

In (3) and (4), 𝐷 is the maximal iterations of Γ operation
and 𝑑 is the current iterations of Γ operation.
Definition 5 (Γ correction). The components (their value was
1) in 𝑋𝑑 remained valid only within the top 𝜃 period in Γ
operation, and the rest were set to 0.

2.5. Stepwise. 𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(𝑋𝑑) was performed 𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒 on𝑋𝑑.{𝑋𝑑+} was the set of 𝑋𝑑𝑗 = 1. The insignificant component
𝑋𝑑𝑗 in 𝑋𝑑 went from 1 to 0 by 𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(𝑋𝑑). After executing
Stepwise, {𝑋𝑑+} was changed to {−𝑋𝑑+}. 𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(𝑋𝑑) was the
process of further subtracting and retaining the most impor-
tant components. The execution of Stepwise went through
the following six steps. (A temporary container {𝑋𝑡𝑒𝑚𝑝} with

an initial value of empty and two marker variables 𝑓𝑙𝑎𝑔+
and 𝑓𝑙𝑎𝑔− were defined. The initial values of both marker
variables were 0.)

Step 1. A component𝑋𝑑𝑗 of significant effect on 𝐿𝑎was added
to {𝑋𝑡𝑒𝑚𝑝}.
Step 2. Whether a new component was added to {𝑋𝑡𝑒𝑚𝑝} was
judged; if true, then both 𝑓𝑙𝑎𝑔+ and 𝑓𝑙𝑎𝑔− were set to 0 and
Step 1 was performed; otherwise, 𝑓𝑙𝑎𝑔+ was set to 1 and Step
3 was performed.

Step 3. Whether𝑓𝑙𝑎𝑔+ = 1 and𝑓𝑙𝑎𝑔− = 1was judged; if true,
then Step 6 was performed; otherwise, Step 4 was performed.

Step 4. A component 𝑋𝑑𝑗 of insignificant effect on 𝐿𝑎 was
removed from {𝑋𝑡𝑒𝑚𝑝}.
Step 5. Whether a new component was removed from{𝑋𝑡𝑒𝑚𝑝} was judged; if true, then both 𝑓𝑙𝑎𝑔+ and 𝑓𝑙𝑎𝑔− were
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Figure 2: Algorithm flowchart of computing 𝐿𝑎.
set to 0 and Step 4 was performed; otherwise, 𝑓𝑙𝑎𝑔− was set
to 1 and Step 1 was performed.

Step 6. The components in {𝑋𝑑+}, which was not in {𝑋𝑡𝑒𝑚𝑝},
were set to 0.The updated {𝑋𝑑+} was set to {−𝑋𝑑+}, then {−𝑋𝑑+}
and 𝐴𝐼𝐶({−𝑋𝑑+}) were the output.

2.6. Algorithm of Computing 𝐿𝑎. The algorithm flow of
computing 𝐿𝑎 was as follows. (Figure 2 shows the algorithm
flowchart of computing 𝐿𝑎.)
Step 1. Initialization was set. 𝐷 = 10, 𝜃 = 𝐶(𝑋0)=1, 𝐶(𝑋) =481, 𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑋0, and 𝐴𝐼𝐶(𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙). 𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙 was the
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current best bulletin board.𝑋0𝑖 , the 𝑃 value of which was less
than 10−12 in 𝑋, was set to 1, and the rest was set to 0.

Step 2. Γ operation was executed. If top 𝜃 components of 𝑋𝑑
were the same as top 𝜃 components of𝑋𝑑−1 and 𝑑 > 0, bitwise
inversion was performed on the previous 𝜃 components of𝑋𝑑. After that, Γ correction was performed.

Step 3. 𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(𝑋𝑑) was executed. If 𝐴𝐼𝐶({−𝑋𝑑+}) was
better than 𝐴𝐼𝐶(𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙), then 𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = {−𝑋𝑑+}, and𝐴𝐼𝐶(𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙) was updated.
Step 4. Whether the maximal iterations were reached was
judged; if true, then Step 5 was performed; otherwise, Step
2 was performed.

Step 5. 𝐿𝑒𝑑𝑠𝑢𝑏 was set to𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙.
Step 6. Themultivariate linear regression analysis on 𝐿𝑎 was
performed using 𝐿𝑒𝑑𝑠𝑢𝑏. Θ was set to the multiple linear
regression coefficients.

Step 7. 𝐿𝑎 was the output.
3. Results and Discussion

3.1. 𝐶𝑒𝑛𝑡𝑒𝑟(𝑋𝑑). The calculation results of variation center𝐶𝑒𝑛𝑡𝑒𝑟(𝑋𝑑) in Γ operation are shown in Figure 3. The figure
shows that the variation center value of Γ operation was
evenly distributed in 10 iterations. Furthermore, the variation
center value was scattered around each interval from 1 to
481. The variation center value had 5 points on each side of
the center point (240). This ensured that the components
of all 481 LncRNAs had an equal opportunity to perform
variations. It was more beneficial to obtain the global optimal
solution.

3.2. 𝜉(𝑑). Figure 4 shows the calculation results of decay
coefficient 𝜉. The variation operation proposed in this study
aimed to enrich the diversity of sample space. Meanwhile,
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Figure 4: Distribution of the decay coefficients of the Γ operation
among 10 iterations.

the variation operation should be dynamic rather than fixed.
For the aforementioned issue, the decay coefficient 𝜉 was
proposed to control the strength of the variation operation.
Figure 4 shows that the decay coefficient 𝜉 decreased with
the increase in the number of iterations. This was because
the variation operation should be strong at the incipient
iteration to obtain the global optimization ability. On the
contrary, the variation operation should be weak at the late
iteration to obtain the local development ability. It was not
hard to see that the decay coefficient 𝜉 was the value of
decreasing change between 1 and 0.1, and it controlled the
lncRNA components that performed the bitwise inversion in
481 lncRNA components.

3.3. Computing 𝐿𝑎. Table 1 shows the detailed calculation
process of 𝐿𝑒𝑑𝑠𝑢𝑏, including the variation position, interval,
and result in the 𝑑𝑡ℎ iteration. As shown in Table 1, the
variation position and the interval distribution were relatively
discrete, reducing the blind area of Γ operation. In addition,
the two factors proposed in the calculation to ensure optimal
performance were significant differences in 𝑋𝑖 (denoted by𝑆𝐷𝑋𝑖) and𝐴𝐼𝐶 of 𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(𝑋𝑑) (denoted by𝐴𝐼𝐶𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(𝑋𝑑)),
both of which were characterized by the better performance
with a smaller value. Two factors should not be considered
unilaterally but comprehensively. For example, if only 𝑆𝐷𝑋𝑖
was taken into account, 𝐴𝐼𝐶 of 𝑋0+, which was the set
of 𝑃 less than 10−12, was equal to 2249.24, as shown in
Figure 5. Obviously, it was not an optimal solution but a
poorer solution. Based on the aforementioned considera-
tions, Γ operation, which was proposed in this study, was a
combination of 𝑆𝐷𝑋𝑖 and 𝐴𝐼𝐶𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(𝑋𝑑). In each variation
process, the smaller part of 𝑆𝐷𝑋𝑖 performed the variation,
rather than the whole. Finally, 𝑋1+ (𝐴𝐼𝐶=2208.47) was the
optimal solution. Therefore, 𝐿𝑒𝑑𝑠𝑢𝑏 was equal to 𝑋1+ (i.e.,
the matrix built using the expression quantity of 𝑋1+ on 𝑇𝑖,1 ≤ 𝑖 ≤ 176 ). Then, a multivariate linear regression analysis
was performed on 𝐿𝑎, and the regression coefficients were
obtained as required (Table 2). The ensemble transcript ID
of X14 was ENST00000559477 in the Table 2. The ensemble
transcript ID of X16 was ENST00000560882 in the Table 2.
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Table 1: Variation position, interval, and result of Γ operation in the 𝑑𝑡ℎ iteration.
𝑑 𝑅𝑎𝑛𝑔𝑒(𝑋𝑑) 𝑋𝑑+ LncRNA number in {−𝑋𝑑+}
0 ---- 1–107

{3, 4, 5, 6, 8, 10, 13, 15, 16, 19, 21, 23, 27, 33, 35, 36,
37, 38, 40, 43, 45, 53, 54, 55, 59, 63, 64, 67, 68, 70,
74, 76, 77, 80, 81, 82, 89, 95, 96, 100, 101, 103, 104}

1 (38–441) (1–37)∪(108–177)
{1, 2, 3, 9, 10, 11, 13, 14, 16, 18, 19, 20, 22, 23, 25,
26, 27, 29, 30, 33, 34, 35, 36, 108, 110, 112, 113, 114,
116, 118, 120, 122, 125, 126, 127, 130, 131, 134, 135,
137, 138, 139, 140, 145, 146, 149, 150, 151, 152, 153,
154, 157, 163, 164, 165, 169, 171, 172, 173, 176}

2 (1–384) (38–107)∪(178–214) {40, 41, 43, 44, 45, 46, 47, 50, 70, 76, 87, 89, 90,
98, 99, 101, 104, 182, 185, 186, 192, 194, 198, 199,

200, 203, 207, 214, 59, 202, 74}
3 (106–469) (108–177)∪(215–251)

{108, 110, 111, 112, 113, 114, 117, 124, 125, 127, 131,
137, 142, 145, 149, 150, 152, 159, 160, 163, 168, 169,
170, 173, 176, 217, 219, 223, 225, 231, 232, 237,

243, 249}
4 (1–312) (178–214)∪(252–312)

{182, 186, 189, 190, 192, 193, 194, 198, 199, 200,
201, 202, 203, 204, 205, 208, 210, 256, 257, 261,
265, 270, 272, 273, 279, 283, 284, 287, 288, 290,

291, 292, 293, 296, 303, 304, 308, 312}
5 (184–487) (178–183)∪(215–312) {178, 182, 265, 270, 272, 273, 274, 277, 288, 289,

292, 293, 301, 302, 305, 306, 307, 312}

6 (1–227) (184–214)∪(228–303)
{184, 186, 190, 193, 194, 198, 199, 200, 201, 202,
203, 205, 206, 207, 208, 213, 230, 232, 233, 234,
240, 244, 247, 255, 256, 257, 259, 261, 265, 270,
272, 273, 276, 279, 284, 287, 289, 290, 291, 292,

293, 294, 295, 298, 302}
7 (276–481) (184–214)∪(228–275)∪(304–331)

{186, 190, 194, 197, 200, 201, 202, 203, 205, 208,
214, 228, 229, 230, 233, 240, 241, 243, 245, 247,
257, 261, 265, 268, 270, 272, 273, 306, 309, 310,

317, 319, 327, 329}

8 (1–126) (108–126)∪(184–214)∪(228–275)∪(304–312)
{108, 110, 112, 114, 121, 124, 125, 126, 184, 190, 193,
194, 197, 198, 200, 203, 206, 208, 210, 213, 214,
228, 230, 232, 233, 235, 238, 239, 241, 247, 248,
249, 254, 256, 257, 262, 265, 267, 268, 270, 272,

273, 306, 308, 309}

9 (389–474) (108–126)∪(184–214)∪(228–275)∪(304–312)
{108, 110, 112, 114, 121, 124, 125, 126, 184, 190, 193,
194, 197, 198, 200, 203, 206, 208, 210, 213, 214,
228, 230, 232, 233, 235, 238, 239, 241, 247, 248,
249, 254, 256, 257, 262, 265, 267, 268, 270, 272,

273, 306, 308, 309}

10 (1–24) (1–24)∪(108–126)∪(184–-214)∪(228–260)
{7, 9, 11, 12, 14, 15, 16, 18, 20, 23, 24, 108, 110, 111,
112, 114, 116, 120, 121, 122, 123, 124, 125, 184, 185,
187, 190, 193, 194, 196, 197, 199, 201, 203, 206,
208, 213, 214, 230, 233, 234, 236, 237, 238, 239,

241, 244, 245, 247, 252, 256, 257, 259}

The 𝑇 test was performed on the regression model 𝐿𝑎 (the
results are shown in Table 3). As 𝑃 was less than 0.0001, the
regression model 𝐿𝑎 had the statistical significance. It also
indicated that MlrLDAcp was feasible and effective.

The predictionmodel (MlrLDAcp) proposed in this study
had two potential aspects:

(a) The survival of cancer patients was predicted by
combining with the multiple linear regression model of
MlrLDAcp.

(b) The association between lncRNAs and diseases was
predicted using MlrLDAcp.

The performance of evaluation was expanded from the
two aforementioned aspects.

3.4. Survival Predictive Ability. Receiver operating charac-
teristic (ROC) analyses were performed to compare the
predictive accuracies of prostate cancer samples between
MlrLDAcp and Huang’s method [28] (the state-of-the-art
method), to evaluate the survival predictive ability.The 5-year
biochemical recurrence survivals of the two methods were
compared betweenTCGAand lncRNAtor databases. Figure 6
shows the experimental results. The value of the area under
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Table 2: Results of multiple linear regression analysis on 𝐿𝑎 (intercept was constant term, and the rest were 60 independent variables).

Serial number Gene name Coefficients Serial number Gene name Coefficients
Intercept --------- 1.486e+03 X120 AMZ2P1 7.286e+07
X1 AC017048.3 –1.808e+08 X122 A2M-AS1 –2.177e+08
X2 KCP 1.669e+09 X125 RP11-399O19.5 –7.673e+07
X3 RP11-342C23.4 –6.523e+07 X126 SNHG16 –7.531e+06
X9 FAM222A-AS1 –9.817e+07 X127 MIR143HG 6.360e+07
X10 PCA3 3.460e+05 X130 GABPB1-AS1 –1.999e+08
X11 CYP4F8 –4.604e+06 X131 GGTA1P 9.237e+07
X13 RP11-627G23.1 –7.704e+07 X134 CTD-2284J15.1 7.787e+07
X14 RP11-279F6.1 –2.877e+07 X135 KB-431C1.4 2.647e+07
X16 RP11-279F6.1 6.888e+07 X137 RP11-66B24.4 –3.950e+07
X18 RP1-163G9.1 2.957e+08 X138 CBR3-AS1 –3.629e+07
X19 AC003090.1 –2.135e+08 X139 MIR22HG –3.956e+07
X20 AP001626.1 –8.890e+08 X140 DANCR 2.628e+06
X22 AC073133.1 1.038e+08 X145 RRN3P2 4.049e+08
X23 RP11-401F24.4 6.834e+08 X146 LINC00654 –4.514e+08
X25 AC073343.13 6.070e+08 X149 ARHGEF26-AS1 3.073e+07
X26 MAGI2-AS3 –7.389e+07 X150 RMST –9.826e+07
X27 BOLA3-AS1 1.865e+08 X151 LINC00086 –8.181e+07
X29 C1orf126 –8.830e+08 X152 NBPF8 1.050e+08
X30 CTD-3199J23.4 3.565e+08 X153 CTD-2126E3.1 –1.185e+07
X33 FBXL19-AS1 1.895e+08 X154 AP001258.4 2.169e+07
X34 RPL13P5 –2.848e+08 X157 LINC00312 6.236e+08
X35 RP11-412D9.4 –1.784e+08 X163 RAET1K –7.308e+08
X36 ADAMTS9-AS2 2.616e+08 X164 PCBP1-AS1 –3.683e+08
X108 XKR5 –1.608e+09 X165 RP11-1000B6.3 3.913e+08
X110 HOXA-AS2 1.159e+08 X169 CTBP1-AS1 3.419e+07
X112 CTC-308K20.1 2.544e+09 X171 BX004987.4 1.583e+08
X113 BX284650.3 1.066e+08 X172 GAS5 –1.064e+07
X114 AC002055.4 –1.601e+08 X173 RP11-166D19.1 –1.299e+08
X116 CD27-AS1 3.876e+07 X176 GBP1P1 –2.108e+08
X118 ATG9B –1.542e+08
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Figure 5: AIC value among 10 iterations.

the curve (AUC) was calculated from the corresponding area
under the ROC curve. As shown in Figure 6, MlrLDAcp
with an AUC value of 0.875 was better than Huang with
an AUC value of 0.833. As a result, the prediction accuracy

Table 3: T test results of multivariate linear regression analysis on𝐿𝑎.
T value test Residual standard error P value

Value 46.42 on 115 degrees of
freedom 1.558e-10

of 5-year biochemical recurrence survival in MlrLDAcp was
improved by 4.2% (versus Huang). These results suggested
thatMlrLDAcpmight have a predominant survival predictive
ability.

3.5. Predictive Ability of lncRNA–Disease Associations. The
leave-one-out cross validation (LOOCV) was implemented
on the gold standard dataset to compare MlrLDAcp and
two state-of-the-art methods: LRLSLDA [17] and KRWRH
[26], to evaluate the predictive ability of lncRNA–disease
associations. The datasets were divided into training sets
({𝑇𝑅𝑆}) and test sets ({𝑇𝐸𝑆}). The known lncRNA–disease
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Figure 6: ROC contrast curves of MlrLDAcp and Huang in
predicting 5-year biochemical recurrence survival. The prediction
accuracy of 5-year biochemical recurrence survival in MlrLDAcp
improved by 4.2% (versus Huang).

associations in {𝑇𝑅𝑆}were defined as𝐾-𝐿𝐷𝐴 𝑖 (1 ≤ 𝑖 ≤ 𝑛, and𝑛 was the number of known lncRNA–disease associations).
In each step of the LOOCV, each 𝐾-𝐿𝐷𝐴 𝑖 was implemented
on {𝑇𝑅𝑆 − 𝐾-𝐿𝐷𝐴 𝑖} and {𝑇𝐸𝑆 + 𝐾-𝐿𝐷𝐴 𝑖}, and then the
model learning was carried out on {𝑇𝑅𝑆 − 𝐾-𝐿𝐷𝐴 𝑖}. The
ROC curve plotted the sensitivity (that was true-positive rate𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)) versus the 1-specificity (that was
false-positive rate 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)), where TP denoted
true positives, FP denoted false positives, TN denoted true
negatives, and FN denoted false negatives. The sensitivity
was the ratio of positive samples which could be accurately
distinguished, and the specificity represented the percentage
of negative samples which could be correctly predicted.
Figure 7 shows the experimental results. The value of AUC
was calculated from the corresponding area under the ROC
curve. As shown in Figure 7, MlrLDAcp with an AUC value
of 0.872 was better than KRWRH with an AUC value of
0.838 and LRLSLDAwith an AUC value of 0.822. As a result,
the prediction accuracy of lncRNA–disease associations in
MlrLDAcp increased by 3.4% (versus KRWRH) and 5.0%
(versus LRLSLDA). These results suggested that MlrLDAcp
might have a preferable ability to predict lncRNA–disease
associations.

4. Conclusions

In this study, a model of MlrLDAcp was constructed. MlrL-
DAcp took the expression quantity of lncRNAs transcript as
an independent variable and the clinical prognosis data as
a dependent variable. Using MlrLDAcp, 60 lncRNAs, which
were most closely related to cancer prognosis information
(survival time), were selected from 481 alternative lncR-
NAs. MlrLDAcp could realize not only the cancer survival
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Figure 7: ROC contrast curves of MlrLDAcp and two state-
of-the-art methods, LRLSLDA and KRWRH, in predicting
lncRNA–disease associations. As can be observed, the prediction
accuracy of lncRNA–disease associations in MlrLDAcp improved
by 3.4% (versus KRWRH) and 5.0% (versus LRLSLDA).

prediction but also the lncRNA–disease association predic-
tion.

Further research directions about lncRNA–disease asso-
ciation prediction are as follows.

(a) The lncRNA–disease association prediction should
take into account clinical prognostic data in future inves-
tigations. The lncRNAs associated with diseases may have
a clinical value as therapeutic targets. Hence, the clinical
prognostic data is quite valuable to lncRNA–disease associa-
tion prediction. The clinical implications and the mechanism
underlying the association of lncRNAs with diseases are
definitely worth exploring further.

(b) How to build an effective computational model to
construct an lncRNA similarity function, which can rea-
sonably integrate the similarity scores of different biological
information, is worthy of further research.

(c) With the increase in lncRNA–disease correlation, the
prediction accuracy can be further improved. Furthermore,
most computing models rely heavily on unobtainable nega-
tive samples, which is an urgent problem to be solved.

(d) The new network-based computing model should
be implemented on heterogeneous networks instead of sin-
gle networks. Hence, more heterogeneous networks, such
as lncRNA–disease network, disease similarity network,
lncRNA functional similarity network, and lncRNA interac-
tive networks, should be integrated in the future.
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