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ABSTRACT  

Attaining a complete thermodynamic and kinetic characterization for processes involving multiple 

interconnected rare-event transitions remains a central challenge in molecular biophysics. This 

challenge is amplified when the process must be understood under a range of reaction conditions. 

Herein, we present a condition-responsive kinetic modeling framework that can combine the 

strengths of bottom-up rate quantification from multiscale simulations with top-down solution 

refinement using experimental data. Although this framework can be applied to any process, we 

demonstrate its use for electrochemically driven transport through channels and transporters. 

Using the Cl– /H+ antiporter ClC-ec1 as a model system, we show how robust and predictive kinetic 

solutions can be obtained when the solution space is grounded by thermodynamic constraints, 

seeded through multiscale rate quantification, and further refined with experimental data, such as 
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electrophysiology assays. Turning to the Shaker K+ channel, we demonstrate that robust solutions 

and biophysical insights can also be obtained with sufficient experimental data. This multi-

pathway method proves capable of identifying single-pathway dominant mechanisms but also 

highlights that competing and off-pathway flux is still essential to replicate experimental findings 

and to describe concentration-dependent channel rectification. 

1. INTRODUCTION 

The mechanisms of most biomolecular processes are well described by reactant and product 

states that are separated by a finite number of metastable intermediates (states) connected by rare-

event transitions. As long as rates of transitions are known, the reactive flux through these 

intermediates in response to non-equilibrium starting populations is easily described by a set of 

ordinary differential equations according to the kinetic master equation. Connecting this coarse-

grained kinetic description with a molecular-level understanding of the involved rare-event 

transition ensembles lends unprecedented insight into the mechanism and how it responds to non-

equilibrium conditions. However, defining a robust and accurate kinetic model is challenging as it 

requires identifying all relevant intermediates, determining which intermediates are connected by 

kinetically relevant transitions, and quantifying the transition rates for the range of conditions of 

interest. To help address these challenges, we present multiscale responsive kinetic modeling 

(MsRKM), a framework that combines the strengths of computational characterization of 

intermediates and rare-event transitions with experimental data to identify robust kinetic solutions. 

This enables the description of any biomolecular processes involving multiple rare event 

transitions in terms of the underlying mechanistic reaction network and the ensemble flux through 

intermediates in response to initial nonequilibrium and equilibrium conditions. MsRKM includes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.606205doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606205
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

the dynamic response of the underlying rate coefficients to the influence of transmembrane 

voltage, enabling the description of electrochemically driven transport through channels and 

transporters.  

Part of the motivation for this work is an increasing recognition of the importance of kinetic 

selection and mechanistic heterogeneity.3-9 Although some processes are certainly dominated by a 

single pathway (sequence of intermediates), many others involve off-pathway transitions and 

condition-varying flux through alternative pathways that can play essential roles in mechanistic 

outcomes (Figure 1). A prime 

example is kinetic proofreading, as 

originally envisioned by Hopefield10 

and Ninio11, in which competing 

pathways increase substrate 

selectivity when a slow step follows 

substrate association. This decreases 

the error rates in processes requiring 

high fidelity, such as replication, 

translation, and transcription12, and has also been demonstrated in signal transduction13 and 

pathogen recognition14, 15. Kinetic selection can also enable condition-specific mechanistic 

outcomes, as demonstrated in molecular machines that transform input-free energy (e.g., from an 

abundance of ATP) into various cellular processes. For example, branched networks play a central 

role in explaining both chemomechanical coupling16 and the different mechanistic steps observed 

in motor proteins such as myosin and kinesin under different ATP/ADP ratios 17, 18. 

Figure 1. Full reaction network for channel with 3 ion 
binding sites (left) compared to single-pathway 
simplification of ion transport process (right). 
Intermediates are labeled with both a binary description 
of the bound ions with matching decimal label and state 
image. 
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Another domain where kinetic selection is proving important is the controlled transport of solutes 

across membranes. Membrane channels and transporters play pivotal roles in a myriad of cellular 

processes (maintaining concentration gradients, triggering action potentials or cell signaling, 

importing nutrients, exporting waste and toxins, and regulating intracellular signaling) through the 

translocation of ions and substrates across cellular membranes. In transporters for which consistent 

stoichiometry must be obeyed across a range of conditions, such as the Na+/K+ antiporter, exact 

precision via a single transport pathway may indeed be important. For others, however, kinetic 

selection between competing pathways explains non-integral and variable stoichiometries and 

enables essential function. For example, the sodium/glucose transporter was shown to use a 

substrate slip pathway to exchange some degree of efficiency for toxin discrimination.8, 19 

Additionally, the multidrug efflux pump EmrE was shown to employ multiple transport pathways 

to enable different transport regimes, including symport, antiport, and uniport, under different 

electrochemical driving forces.20 These two examples demonstrate how the electrochemical 

conditions can be a controlling factor in substrate transport, as opposed to the more commonly 

recognized ligand binding, voltage gating, or ATP hydrolysis. Collectively, these findings 

demonstrate the importance of modeling transporters with a network description that includes the 

influences of competing pathways. However, it remains an outstanding question if ion channels 

also involve competing transport pathways to the degree that a network description is essential to 

understanding their transport mechanisms. The methods described herein were designed to help 

address this question.  

Kinetic modeling can generally be approached in a ‘top-down’ physics-based theoretical manner 

using system knowledge and experimental data or in a ‘bottom-up’ tour-de-force quantification of 

rate coefficients for every transition, typically with simulations. Markov state modeling has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.606205doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606205
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

become a powerful approach of the latter form, stitching together simulation data to define 

metastable states and quantifying their transition probabilities.21, 22 MsRKM can be used in any 

combination of purely top-down, as demonstrated for the Shaker Kv channel herein, or purely 

bottom-up, using simulation-based rate coefficients to describe system behavior under non-

equilibrium conditions and test their ability to replicate experimental data. However, it is more 

powerfully employed by combining the two—narrowing the kinetic solution space based on 

calculated rate coefficients and refining the solution based on experimental data. This enables an 

experimentally driven theoretical framework that iteratively tests for consistency between 

molecular-level characterization and experimental behavior. 

The choice of the word ‘responsive’ in the acronym deserves explanation. The ability of a kinetic 

model to describe a range of conditions requires the underlying rate coefficients to adapt to the 

conditions of interest. Since unimolecular rate coefficients typically remain stable despite changes 

in reactant and product concentrations, a single set of rate coefficients can generally capture non-

equilibrium conditions by accommodating shifts in concentrations with bimolecular uptake 

coefficients. In contrast, rate coefficients can shift significantly in response to pH and voltage. 

MsRKM was developed to explicitly ‘respond to’ changes in voltage with voltage-dependent rate 

coefficients. This does not, however, include large voltage-induced conformational changes such 

as those seen in voltage-gated channels. Nor does the current implementation account for 

significant changes due to pH, which are often associated with a conformational change. Rather, 

distinct kinetic solutions should be developed for significantly different conformational 

ensembles. Future efforts will focus on an explicit inclusion of pH-dependent conformational 

changes and the corresponding rate changes. With the inclusion of voltage-dependent rate 

coefficients, processes driven by electrochemical gradients can be described by a single set of base 
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(DY = 0mV) rate coefficients, capturing non-equilibrium flux under varying electrochemical 

driving forces. This enables a direct comparison to typical electrophysiology assays.  

MsRKM is demonstrated on two membrane-bound proteins: ClC-ec1, a secondary-active 

exchanger, and the Shaker Kv channel. ClC-ec1 is a well-studied Cl–/H+ antiporter from 

Escherichia coli that is involved in cellular ion homeostasis and plays an important, though 

incompletely understood, role in the cell’s acid resistance mechanism.23, 24 Structurally, ClC-ec1 

operates as a homodimer, with each subunit containing an independent ion-conducting pore.25 

Based on its measured reversal potential, ClC-ec1 was shown to exchange ions with a 2.2 Cl– to 1 

H+ stoichiometry.26 This exchange is influenced by pH-dependent conformational changes near 

and within the pore26-29. Structure-function studies have identified the key residues involved in ion 

transport, and electrophysiology assays have revealed a range current-voltage behaviors under 

different electrochemical conditions.24-26, 29-32 Simulations have characterized the proton transport 

mechanisms33, 34 and pH-dependent conformational changes27-29. Additionally, previous kinetic 

models have suggested that ClC-ec1 uses multiple ion exchange pathways, each contributing to 

the total flux with varying magnitudes under different pH conditions.6, 9, 31 Collectively, the 

extensive experimental and simulation-based analyses make ClC-ec1 an ideal, though still very 

challenging, model system for MsRKM—testing the method’s ability to capture nuanced 

transporter behavior in response to changing electrochemical conditions. 

Shaker is a voltage-gated potassium channel originally found in Drosophila funebris35 that is 

essential for repolarizing the neuronal membrane after an action potential, thereby regulating 

neuronal excitability and firing patterns.36, 37 Shaker is comprised of four subunits that form a 

central pore through which potassium ions pass when unobstructed by the activation gate.38, 39 

While Shaker has two distinct inactivation modes,40 we focus on the fully open channel. Several 
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mechanisms have been proposed for Shaker that vary in ion occupancy, the order of uptake and 

release,41-44 and the presence or absence of water in the selectivity filter.45 However, mechanistic 

cycles proposed for the open-conformation of Shaker are primarily represented by single-pathway 

dominant mechanism regardless of the experimental conditions tested, though there is debate on 

the number of cycles present for homologous proteins.43, 46 Additionally, two interesting studies 

using molecular dynamics simulations run with applied voltages and combined with ion binding 

graph representations showed many contributing pathways and a mechanistic shift between those 

observed under chemical gradients and voltages.47, 48 However, the applied voltages were far larger 

than biologically or experimentally relevant magnitudes, which perhaps explains why the findings 

have not been followed up on. Collectively, these facets make Shaker ideal for testing ground for 

MsRKM—particularly testing if a full network kinetic characterization will retain the presumed 

mechanistic insensitivity to electrochemical conditions and if it supports a mechanism dominated 

by a single mechanistic pathway or if multiple pathways contribute. 

For ClC-ec1 we find that a combined bottom-up/top-down approach integrating sufficient 

simulation and experimental data in MsRKM produces robust kinetic models that are predictive 

of experimental behavior across a range of electrochemical conditions. For Shaker, MsRKM 

identifies robust solutions using a purely top-down approach integrating increasing types of 

experimental data and biophysical insight. Oversimplification of the involved intermediates proves 

incapable of reproducing all experimental trends, demonstrating how the method can help refine 

flawed network descriptions. Interestingly, through continued solution refinement MsRKM 

iteratively rules out many multi-pathway solutions to converge on a single-pathway dominant 

mechanism that does not vary significantly under electrochemical conditions. Yet even with this 
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mechanism, off pathway flux and a network description of the Shaker channel proves essential for 

replicating experimental observations.  

 

2. THEORY AND METHODS  

The essential ingredients for any 

kinetic model are the relevant 

intermediate states and rates of 

transitions between those connected 

states. Framed in network language, 

the states comprise the nodes and the 

rates define the edges (Figure 1). The 

reactive flux through the network is 

determined by the populations 

(normalized probability) of the nodes 

and the weights of the edges (transition rates). The relative flux through different reaction 

pathways can be considered the percentage of single molecules that carry out the process of interest 

by traveling through a particular series of intermediates (a particular pathway). Once defined, such 

a kinetic model maps the flux of population changes, such as ion flow in a channel, under any set 

of conditions, including equilibrium, steady-state, and non-equilibrium relaxation from a given set 

of starting populations. The MKM procedure can be broken into 9 steps, which will be successively 

described below in each section, but iteration through these steps is frequently essential (Figure 

2).  

2.1. Intermediate Identification (State Space): 

 

Figure 2. MsRKM process highlighting sequential 
steps (blue arrows) and iteration (orange arrows).  
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In principle, the selected state space 

should include all metastable 

intermediates that are separated from 

others by rate-influencing barriers, and 

which contribute above a given 

threshold value to the ensemble flux 

for the range of conditions of interest. 

This can be a challenging aspect of 

kinetic modeling since identifying all metastable intermediates requires extensive system 

characterization—often through a combination of experiments and simulations.49 If correctly 

identified, a kinetic network constructed from these intermediates and their transitions can describe 

protein behavior under a wide range of experimental conditions. Even when the intermediate state 

space is not precisely resolved, relevant trends and insights can still be obtained, ideally by 

comparing several kinetic networks with different state space definitions as demonstrated for the 

Shaker channel below.  

In the models described herein, intermediate states are assigned a binary descriptor (0/1) that is 

helpful for tracking each feature that can change, such as ion/ligand binding (empty/bound), 

conformational changes (conformation 1/conformation 2), or chemical state (reactant/product). 

The number of unique states can of course be increased for features with more than two possible 

definitions, such as the three competing conformations in a canonical alternating access 

mechanism (inward-facing, outward-facing, and occluded)50. For example, an ion channel with 

three ion binding sites would be defined as 000 when empty and 111 when bound by three ions. 

The binary can be reduced to a single number (e.g., 0 for 000 and 7 for 111) for an abbreviated 

 

Figure 3. Binary state descriptors for ClC-ec1 (left) 
and the Shaker Kv channel (right) 

 

State Descriptor

E148 Rota2on
E148 Protona2on State
E203 Protona2on State

E148

E203

Sout

Scen

Sin

Sin Occupancy

Scen Occupancy

Sout Occupancy

ClC-ec1

0 0 0 0 0 0

S3 Occupancy
S2 Occupancy
S1 Occupancy

Shaker KV

0 00

S4

S3

S2

S1

0

S4 Occupancy
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state definition. Retaining the binary description, this yields 𝑁 = 2#	#$%&'()*+'%	total states, 

although some may not be relevant (as demonstrated for ClC-ec1 below). Though not defined in 

the binary descriptor, MsRKM also allows competing orientations of the protein embedded in a 

membrane to replicate data from liposomal assays lacking protein orientation. The model assumes 

a 1:1 ratio of biological to opposite orientations for simplicity. This ratio can be modified for 

proteins that exhibit preferential membrane orientation or removed altogether for oriented systems 

such as Shaker. 

In this study, the intermediates of ClC-ec1 are defined by three Cl– binding sites (Sout, Scen, and 

Sin), two H+ loading sites (the lower E203 and upper E148 residues), and the rotation orientation 

of E148 (up/down) (Figure 3) as detailed in previous studies.6, 9, 33, 34 The Shaker channel is 

modeled with either three or four 4 K+ binding sites (Figure 3) located at the S6 ‘gate’ region (S1)39 

and within the selectivity filter at T441(S2), G443(S3), and G445(S4)38, 51. All intermediates are 

included in the Shaker model, but only 48 of the 64 total intermediates are physiologically relevant 

in ClC-ec1 model since the Scen site cannot be bound by Cl– when E148 is in the ’down’ 

conformation34.  

It is also possible to simplify a reaction network by grouping states together that exchange more 

quickly than a user-defined frequency. This can help alleviate numerical challenges and reveal 

important pathways. Considerable effort has been put into developing robust methods to 

accomplish this type of network reduction. Since they are not explored herein, the interested reader 

is directed to spectral clustering52, 53, model reduction54, and graph theory55 for examples of 

commonly used network reduction approaches.  

2.2. Defining Connectivity (Transitions) 
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The reaction network is bidirectional, such that each rare event transition connecting two 

states/nodes has a forward and reverse directional edge and corresponding forward and reverse 

rate coefficient. For a fully connected network, this results in N*(N-1) edges and rate coefficients. 

However, for most systems only certain states will be connected by physically meaningful 

transitions that contribute to ensemble flux. For example, an ion cannot tunnel through a binding 

site from Sout to Sint (Figure 3), and transitions involving simultaneous rare-event crossings (e.g., 

proton uptake to E203 and Cl– release from Sout) are excluded since the lack of coupling between 

these processes makes the probability of their simultaneous occurrence negligibly small.34 In cases 

where coupling introduces a unique rate for simultaneous transitions, these rates should be 

included.  

For ClC-ec1, this reduces 48 x (48-1) (2256) transitions to 248 transitions. Additionally, some 

transitions may have degenerate rate coefficients. For example, Cl– uptake to Sout is assumed to 

be independent of the protonation state of E203 in the presented model of ClC-ec1. This further 

simplifies the network to 68 unique rate coefficients that describe ClC-ec1. The Shaker model 

assumes the open conformation of the protein and has no such conformational constraints within 

the region of the selectivity filter.56 However, ions still cannot tunnel (e.g., from S1 to S3) and the 

current model assumes transitions are not coupled. Future work will explore the role of coupled 

transitions in Shaker. This reduces the number of transitions from 240 (16*(16-1) transitions from 

16 (24) states) to 56 transition rates that were modeled explicitly with no degeneracy assumed 

between the transitions.  

2.3. Rate Determination in the Absence of Voltage	

Rate coefficients can occasionally be directly measured in experiment57, but are most commonly 

obtained through either bottom-up in silico quantification or top-down refinement based on 
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experimental data. There is a wide array of approaches available to calculate rates from 

simulations, ranging from quantification of the transition free energy profiles, often called 

potentials of mean force (PMFs), combined with transition state theory, to the direct tracking of 

transition probabilities in, for example, Markov state modeling. Often, these methods are 

accompanied by methods to identify the proper reaction coordinates and to improve the statistical 

convergence via adaptive or enhanced free energy sampling58. The choice of the method depends 

on the nature of the transition. For example, when chemical reactions are involved, this step can 

require multiscale treatment, e.g., via quantum mechanics/molecular mechanics (QM/MM)59 

simulations or reactive MD, such as the multiscale reactive molecular dynamics (MS-RMD),60 

particularly developed for long-range proton solvation and dynamics. When highly interfacial or 

ionic systems are involved, polarization effects can be important, requiring polarizable MD. 

Taking ClC-ec1 as an example, multiple computational methods were used to calculate rates for 

Cl–/H+ exchange. MS-RMD was used to characterize the PMF of proton transport (PT) through 

the central region between E148 and E203,34 as well as between E148 and bulk solution61. In both 

cases, the influence of Cl– occupancy at the Scen binding site was explicitly accounted for. All-

atom MD with a DRUDE polarizable force field62, 63 was used to determine multidimensional 

PMFs for Cl– transport to capture the influence of ion-ion repulsion.6 Once the PMF has been 

characterized, transition state theory64 can then be used to convert the free energy barrier between 

metastable states and the dynamics of the system in the reactant well into the rate coefficient 

through the Eyring-Polanyi equation65:  

 𝑘',- =
.!
/0
𝑒
"∆$‡

&'(  (1) 

where 𝑘1 is Boltzmann’s constant, T is temperature, and ∆𝐺‡ is the free energy barrier height. The 

fundamental frequency 𝜔3 is specific to the transition and quantifies the frequency with which the 
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reactant attempts to cross the transition barrier. It can be approximated from the second derivative 

of the free energy profile in the reactant well:  

 𝜔3 =	*
4)5(')

4')8

9*++
+

':'!

 (2) 

Here 4
)5(')
4')

 is the second derivative of the free energy G(r) with respect to the reaction coordinate 

r, evaluated at the local minimum in the PMF (𝑟3). The effective mass (𝑚$;;) can be calculated 

using the thermal velocity of an ion, 𝑚$;;〈𝑣/〉 = 𝑘1𝑇 2⁄ , where 〈𝑣/〉 is calculated at 𝑟3. While the 

thermal velocity is not directly dependent on the reaction coordinate, the effective behavior of the 

ion along the reaction coordinate can vary due to variations in the local environment and potential 

energy surface. This is particularly important for transitions involving high-energy barriers, where 

the local thermal environment can influence the rate and mechanism of the reaction. 66 

Finally, a few rate coefficient values were estimated from alternative methods. BD simulations 

were performed to estimate Cl– uptake/release rates to/from Sin and Sout.6 E148 and E203 

protonation and deprotonation rates when Sout or Sint is occupied6 were estimated using the relative 

change in pKa calculated from PropKa.67, 68  

Regardless of how they are obtained, these initial rate coefficients act as a crucial ‘seeds’, 

helping to identify the correct region of parameter space while the error in their estimation can be 

used to set bounds for parameter optimization. Since biological systems operate in thermodynamic 

cycles, an additional thermodynamic constraint on the rate coefficients can help ensure good seed 

values. At chemical equilibrium, the rate constants for a thermodynamic cycle have the following 

relationship: 

 𝟏 =
∏=+,-
∏=-*.

 , (3) 
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where kfor are all rate constants taken in one direction around the cycle and krev are taken in the 

opposite direction. Since rate constants do not 

change as concentrations shift away from 

equilibrium, this relationship remains valid away 

from equilibrium as well, assuming no voltage, 

pH, or conformational changes occur. Using this 

relationship to precondition values for rate 

coefficients helps to provide a variety of 

optimization initiation points within the error of 

the rate coefficients while guaranteeing that none 

stray from thermodynamic feasibility. 

2.4 Voltage Quantification 

One important consequence of kinetic 

selection can be the shifting of mechanistic 

pathways due to reaction conditions, as demonstrated by molecular motors under high/low 

ATP/ADP concentrations.17, 18 A few candidate proteins20, 49 have demonstrated that this also 

happens outside of the realm of chemomechanical coupling. Most notable for the purposes of this 

paper, ClC-ec1 has shown that different pH9 and Cl– gradients6 generate significant mechanistic 

pathway changes. However, this work did not explicitly factor in the influence of voltage. The 

transmembrane potential includes both chemical and electrical gradients and the latter must be 

included to understand the role of kinetic selection in ion channels and transporters. With MsRKM, 

we seek to capture the influence of the transmembrane electrochemical gradient on the rates of ion 

transport in a system- and voltage-specific manner. Significant work has gone into developing and 

 

Figure 4. Membrane voltage captured by 
treating simulation box as a subsystem 
surrounded by a bath with ion exchange 
electrodes (right) inducing an applied 
potential (upper left). The system responds 
by rearranging charged species to create its 
own reaction potential (lower left). The 
summation of the applied and reaction 
potential localizes the total potential drop 
to the membrane region (right), mimicking 
the real membrane voltage created by a 
charge imbalance localized at the 
membrane interface. 

 

Total Poten*al

Applied Poten*al

+
Reac*on Poten*al
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validating computational methods to quantify the influence of voltage on substrate transport.69-72 

We focus herein on methods that combine the calculation of free energy profiles for ion permeation 

with the dimensionless coupling profile that captures the influence of voltage as a function of the 

permeation reaction coordinate (often simply the z-axis) across a given channel or transporter of 

interest. 

2.4.1 The constant electric field method 

The transmembrane voltage, or electric potential, originates from an asymmetric distribution of 

ions that is actively maintained by ion pumps and transporters. This charge imbalance creates an 

electric field that pulls complementary ions to the membrane-solution interface, localizing the 

voltage drop to the transmembrane and interfacial region. Unfortunately, capturing a charge 

imbalance in MD simulations that employ periodic boundary conditions (PBC) isn’t possible since 

the solution on either side of the membrane is continuous. 

A commonly implemented solution to this problem is to impose a uniform electric field, E, 

perpendicular to the membrane plane (conventionally through the z-axis) creating a voltage 

difference over the length of the simulation.73-76 The theoretical foundation of this approach has 

been well described77 and validated76. In essence, it mimics experimental ion exchange electrodes 

holding the solutions on either side of the membrane at different voltages via an electromotive 

force. The system is conceptually broken down into bath surrounding a subsystem, where the 

electromotive force in the bath creates a linear “applied potential” and thus constant electric field 

across the subsystem close to the membrane (i.e., the simulation box). The response of the system, 

redistributing ions to either side of the membrane, creates the “reaction potential”. The resulting 

total potential across the box, calculated as a sum of the reaction and applied potentials, 

concentrates the change in potential across the membrane76, 77 (Figure 4).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.606205doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606205
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

2.4.2 System-specific voltage 

The dimensionless coupling factor j(z), also called the fraction of the membrane potential, 

couples the charge movement of the region close to the membrane and the transmembrane voltage 

applied by the electromotive force in the bulk solution. j(z) can be determined from multiple 

methods; some using explicit solvent77 and some using the linearized PB-V continuum 

approximation78. The method used in this paper, the linear coupling method79, calculates j(z) by 

analyzing the ensemble averaged electrostatic potential with PMEpot75 module in VMD80. This 

yields a 3-D electrostatic potential map (∆𝜙$>$&(𝑥, 𝑦, 𝑧)) which is then integrated over the x and y 

dimensions to yield ∆𝜙$>$&(z). j(z) can then be calculated as the difference between two ∆𝜙$>$&(z) 

values: 

 j(𝑧) = 	 ∆@*/*0
"1 (A)B∆@*/*0

21 (A)	
C(

 (4) 

where ∆𝜙$>$&BC (𝑧) and ∆𝜙$>$&DC (𝑧) are the ensemble averaged electrostatic potentials for 

simulations run with a negative and positive applied voltage of equal magnitude; 𝑉E 	normalizes 

the expression79. This approximation provides a useful description of the voltage profile along the 

z-axis of a simulated protein and captures the shift in an ion permeation free energy profile for 

model systems surprisingly well76, 79. However, it cannot describe significant voltage-induced 

conformational changes for which other methods are more appropriate77-79. Alternative approaches 

to calculating j(z) and including voltage-induced conformational changes in the rate response will 

be the focus of future work. For this work, we limit our analysis to conditions under which we do 

not expect large voltage-induced conformational changes, or equivalently optimize unique 

solution sets for different conformations. 

2.4.3 Obtaining a voltage profile via simulation 
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Two simulation systems were used to determine j(z): one that consists of the ClC-ec1 dimer 

(PBD:1OTS)25 with the internally bound Cl– ions removed from each monomer saturated with 163 

POPE lipids and another of a protein-less membrane bilayer comprised of 231 POPE lipids used 

to represent a generic membrane-bound protein in the simple channel system. Both systems were 

saturated with 300mM NaCl and solvated with TIP3P81 water in a 92Å x 92Å x 100Å box with 

periodic boundary conditions. The CHARMM3682 forcefield was used for protein, and ions, while 

CHARMM36m83 was used for the phospholipid membrane. The protonation states of all residues 

were determined based on previous pKa calculations84 on the same crystal structure (E148, E113, 

and D417 were protonated), while standard protonation states were chosen for all other residues. 

The influence of pH on ClC-ec1 titration states and the complementary kinetic descriptions will 

be the focus of other work. 

Minimization and equilibration were carried out with NAMD2.1485 using a seven-step protocol 

suggested by CHARMM-GUI86-88. Both systems were minimized for 10,000 steps of conjugate 

gradient energy minimization with restraints on the protein’s heavy atoms (10 kcal mol-1 Å-2 

harmonic positional restraint) without SHAKE89. A six-step equilibration was then carried out, 

gradually removing position restraints on the lipid, protein backbone atoms, and ions. To prevent 

the spontaneous uptake of Cl–, additional wall potentials were placed at each side of a 35 Å x 30 

Å rectangular box located at the channel mouth on each monomer, which was large enough to 

cover the entire area of the pore. The SHAKE algorithm89 was introduced to constrain hydrogens 

in the 2nd equilibration step. The first two steps used the NVT ensemble, with the last four 

switching to the NPT ensemble. The first three steps were 125 ps, each with a timestep of 1 fs. The 

final three steps, each lasting for 0.5 ns with a timestep of 2 fs, decreased the force constant for 

backbone restraints from 1.0 kcal mol-1 Å-2 to 0.5 kcal mol-1 Å-2 to no positional restraints. The 
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temperature was maintained at 300 K using a Langevin thermostat with a relaxation time constant 

of 1 ps in the NVT ensemble. Anisotropic pressure scaling with a Langevin piston barostat was 

applied to maintain a constant pressure in the NPT simulations, with a damping coefficient of 1 

ps. Long-range electrostatics were evaluated using the particle-mesh Ewald method90. The cutoff 

of the van der Waals and short-range electrostatic interactions was set to 12 Å which was smoothed 

with switching functions.  

Each system (ClC-ec1 and the membrane only) next underwent two separate voltage 

equilibrations using a constant electric field (equal to a +500 mV and –500 mV voltage drop across 

the membrane) applied perpendicular to the membrane along the z-axis. The voltage equilibrations 

employed the same NVT ensemble as described above. Harmonic restraints with a spring constant 

of 2 kcal mol−1 Å−2 were applied to protein backbone atoms to prevent large conformational 

changes. Each system underwent 10 ns of simulation, with the last 2 ns used for analysis. Snapshots 

taken every 2 ps were analyzed in the VMD80 PMEpot plugin75 to compute 𝜙$>$&(𝑥, 𝑦, 𝑧), and j(z) 

was calculated using equation 4 (See figure 5).  
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2.4.4 Voltage-responsive rates (Derivation)  

An alternative way to derive a dimensionless voltage coupling profile, j(z), is to take the 

difference between ion translocation PMFs run at different voltages. This so-called W-route, which 

has been detailed in previous studies77, 78, can be used to describe an ion transport PMF under the 

influence of a transmembrane potential as:  

 𝐺(𝑧, 𝑉) = 	j(z)qV + 𝐺(𝑧, 0) (5) 

Rates of rare-event transitions are defined by the difference in free energy between meta-stable 

intermediates and transition barriers (DG‡). Using equation 5, we can estimate the voltage-induced 

changes in DG‡ using the relationship:  

 ∆𝐺(F
‡ (𝑧, 𝑉) = [j(F(𝑧

*)𝑞𝑉 + 𝐺(F(𝑧* , 0)] − [j(F(𝑧
')𝑞𝑉 + 𝐺(F(𝑧' , 0)]	 (6) 

 

Figure 5. Voltage coupling factor derived from PMEpot from simulations with ClC-ec1 present 
(A) and absent (B). Important site locations for ClC-ec1 (A) and Shaker (B) have been mapped 
on the coupling factor used for each model.  
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where 𝐺A;3* 	and	𝐺A;3' 	represent the free energy at the transition barrier and reactant basin, 

respectively. Placing equation 6 into equation 1, we can derive a relationship between the rate 

coefficients under different transmembrane potentials:  

 𝑘(F(𝑉) = 	𝑘(F3 𝑒
"(j4567

89"j4567
-9);1

&<(  (7) 

where 𝑘(FC  and 𝑘(F3  represent the rate coefficients for a transition from state i to j with and without 

the influence of voltage and kb is in units of eV K-1.  

2.5. Population Quantification 

Once states and transitions are defined and rate constants are obtained, the time-dependent state 

populations can be quantified with a kinetic master equation: 

 #H4
#*
= −∑ 𝑃(𝑘(F(IF +∑ 𝑃F𝑘F(FI(  , (8) 

where 𝑃( is the population of state 𝑖, and the summation includes all other states 𝑗 connected via 

a transition to state 𝑖. This set of linear differential equations can be cast in matrix form: 

 #H
#*
= −𝑲𝑃 , (9) 

where K, the rate matrix, has negative off-diagonal components Kji = -𝑘(F and positive diagonal 

components Kii = ∑ 𝑘F(FI(  for all states 𝑗 connected to state 𝑖 and Kji = 0 otherwise. K describes 

the physical flow or motion of ions and molecules in continuous time. K is directly related to T, 

the transition matrix used in Markov State Models (MSM). T describes the abstract flow of 

probability between states in discrete time and is the matrix exponent of K: 

 𝑻 = 𝑒B𝑲K , (10) 

where τ is the timestep size used in the MSM. 
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By setting dP/dt = 0, the system can be solved for the equilibrium population of states. This 

equilibrium solution is required to be microscopically reversible with detailed balance such that Pi 

kij = Pj kji. In biological systems, where ion/substrate concentrations are often maintained 

physiologically, the system may not reach equilibrium due to constant influx to and efflux from 

the local environment surrounding the protein of interest. In this situation, the system may instead 

approach a non-equilibrium steady state with constant populations and flux: 

 𝟎 = −𝑲𝑃LL , (11) 

where 0 is a zero column vector with rows equal to the rank of the rate matrix and 𝑃%% is the column 

vector containing the steady state populations. Steady-state solutions do not obey detailed balance. 

Adding these sources and sinks into the system of equations reduces the number of independent 

equations, necessitating the replacement of one state’s rate equation with a normalization 

condition, and the equivalent row in the zero vector with the desired norm. The steady-state 

solution corresponds to the solution of an eigenvalue-eigenvector problem with an eigenvalue of 

zero, the corresponding normalized eigenvector providing the steady-state populations. Other 

eigenvalues-eigenvector pairs correspond to the dynamics of the system as it relaxes to equilibrium 

or steady-state, with large eigenvalues corresponding to slower relaxation modes. 

The kinetic master equation also permits general time-dependent solution, allowing the 

evolution of the populations in time to be observed. If the environmental conditions are permitted 

to vary, these solutions show populations evolving toward equilibrium. If they are held constant, 

the populations will instead evolve toward a non-equilibrium steady state. 

2.6 Flux Quantification  

The net number of ions transferred through any transition is computed as: 

 𝒥(F =	𝑃(𝑘(F 	 (12) 
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Where 𝒥(F 	represents the flow in (+-%
9%
	going from state i to j. The net flow going through the 

protein is determined by summing all transitions to/from the inner-most or outer-most ion 

binding sites as: 

 𝒥-$* =	∑𝛼𝒥M(-#(-N − 𝛼𝒥'$>$O%$ 	 (13) 

where 𝛼 defines the directionality of the transitions as either outflux (𝛼	= -1) or influx(𝛼= 1). For 

example, when analyzing Cl– influx of ClC-ec1, equation 13 becomes:  

 𝒥(- =	∑𝒥'$>$O%$L(-* − 	𝒥M(-#(-NL(-*  (14) 

where we have defined negative net flux to be ions flowing out of the cell and positive net flux 

as ions flowing into the cell.  

2.7 Experimental Refinement 

2.7.1 Limitations of bottom-up kinetic modeling 

Although the rigor and accuracy of simulation-based thermodynamic and kinetic analyses are 

impressive and rapidly improving, systematic91 and statistical92 error is inevitable. In principle, 

obtaining a well-behaved kinetic model from bottom up is possible and has been demonstrated for 

select systems28. Frequently, however, compounding errors93-96 will quickly throw off a kinetic 

solution. The same challenge has been observed in microkinetic modeling, an arguably more 

advanced field focused on modeling chemical reactions and heterogeneous catalysis97, 98. To 

remedy this, a top-down quantification of the kinetic parameters by optimization with experimental 

results is performed with optimization boundaries set to the calculated error of MD simulations.  

2.7.2 Integrating experimental data 
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The solution space of kinetic networks tends to be vast, with the number of unknowns (rate 

coefficients) typically outnumbering the number of known data points with which to refine them. 

The ability to refine a solution thus hinges on two things: 1) good initial rate coefficients (seeds) 

with well-defined boundary conditions, and 2) the amount and quality of data that can be used as 

optimization constraints. High quality experimental data is not only that with small error bars, but 

also data that uniquely constrains the optimization. For example, five sets of IV curves under 

similar conditions will not refine the solution as well as three IV curves under highly different 

conditions and two liposomal flux assays. In general, adding additional experimental data will 

further reduce the solution space and improve the solution.49 An overdetermined system tends not 

to be a problem when extracting generalizable trends if the results are consistent. In such a case, 

some equations running within the optimization may end up superfluous, resulting in poor 

optimization performance. If the overdetermined model produces inconsistencies or a lack of 

solution, overfitting can be handled with regression techniques to reduce the total number of 

constraints or equations.  

 However, it is important to note that it is possible to get optimization solutions that show 

different protein behaviors or a lack of optimization solutions regardless of the system type. In our 

experience, this has often been due to some experimental inconsistencies or clashing physical 

realities with other experimental results placed in the optimization. For example, the presence of 

an undetected ion leak could lead to an I-V curve that appears similar in profile to other I-V curves 

but has designated a reversal potential where an efflux assay, under identical experimental 

conditions, has non-zero flux. Difficulty finding a solution may also be due to assumptions made 

in the model-building process, especially if one is reducing to the minimum possible states to 

describe a network99.  
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2.7.3 Loss function design 

The choice of optimization methodology is critical to the success of the optimization. To allow 

different methodologies in the fitting of experimental data, SpotPy100 global, SciPy101 global and 

local and user-defined optimization algorithms can be used. Though not the focus of this study, 

extensive work has been done to examine the best optimization algorithms for biological-based 

networks.102-104 The selected optimization method changes the intrinsic rate coefficient values 

while minimizing a least squares loss function incorporating experimental data. Each experimental 

data point reflects different pH and ion concentrations for the intra- and extracellular sides of the 

membrane and different values of ΔΨ that produce an experimental observable to be compared to. 

We currently support several experimental observables in the loss function, such as liposomal flux 

assays, I-V curves, and orientation-based blockage studies. Optimizations based upon flux through 

the liposomal system also allow for the optimization of net flux through different orientations 

separately, i.e., net flux through the biological orientation only. The optimization also allows for 

flux component differentiation to be accounted for within the loss function, such as differential 

orientation influx/outflux, total influx (defined as all flow moving inwards from both orientations), 

total outflux (defined as all flow moving outwards), and the ability to turn the microscopic 

reversibility term on or off for functionally irreversible systems. The model also allows for the 

user to optimize to normalized flux values such as normalized IV curves, normalized IV curves 

with differential orientation preferences, or normalized flow assays. Microscopic reversibility has 

been represented as a mean squared error function normalized over the total number of transitions 

within the loss function:  

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 	
∑ Q

R𝒥45B	𝒥54T
〈𝒥45254〉
W X

)

45

#45
+	∑ 𝑊X𝒥&O>& − 𝒥#$;Y

/
%Y%  (15) 
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where microscopic reversibility is included in the first term of the objective function, the second 

term calculates the least squares difference between the flow values calculated through MsRKM 

and the user-defined values for every experimental system input. MsRKM also allows for the 

weighting of different experimental values within the loss function dependent upon the 

experimental type represented by W in the equation above.  

2.8 Cyclic Pathway Decomposition 

Once a kinetic solution is obtained, the relative contribution of different pathways must be 

quantified. This is a nontrivial task as the flux into and out of any given node can contribute to 

multiple pathways. Although it is more straightforward to identify the dominant path by tracking 

the largest minimal flux transition,105 this does not quantify the relative contributions of all 

pathways. To accomplish this goal, we previously developed CycFlowDec106, an algorithm that 

quantifies the expected flux through simple cycles (each containing any given node no more than 

once) in a closed network. Based on established methods in Markov circulation theory,107, 108 the 

algorithm in its simplest form decomposes the total flux into relative cycle contributions based on 

random walks generated from Markov transition probabilities. It is then made efficient for complex 

networks by using a percolation with burn-in and minimum contribution tolerance. Herein we 

implemented CycFlowDec106 for ClC-ec1 and Shaker with a 100,000-step percolating algorithm 

with a burn-in of 4500 steps, a flow tolerance of 1x10-7 (+-%
9%

, and an MRE cutoff of 9x10-3.  

2.9 Mechanism Interpretation 

The above analyses provide a full network description of the system’s flux through various 

intermediates, which can be tracked under the equilibrium, steady state, or non-equilibrium 

conditions for which the rates remain applicable. Thus, the mechanism can be compared under 
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varying reaction conditions and the role of competing pathways can be delineated. Understanding 

the mechanism at the molecular level, and hence the structure-dynamics-function relationships that 

control the process efficiency and selection between competing pathways, is of course benefitted 

by simulations probing the transition ensembles. Simulations are also best suited to probe the 

impacts of point mutations on rate-influencing transitions. In addition, MsRKM can be used to 

probe and compare the network descriptions that differentiate wild type from mutant behavior, as 

demonstrated for Shaker below. 

2.9.1 Pathway diagram visualization 

Network flux can be tracked graphically as a function of time, or via network diagrams for 

equilibrium or steady-state conditions. For the latter, all significant pathways of a solution set can 

be plotted in a corresponding full network diagram or a subset of dominant or related pathways 

can be plotted in a pathway diagram. In this work, each diagram uses a series of cartoon 

representations of either ClC-ec1 or the Shaker channel states connected by arrows that represent 

transitions. The depictions include (Figure 6): 

1. the non-interacting portion of the protein represented by two empty rectangles, 

2. three dotted circles representing the ion binding sites that are filled  when occupied or 

empty  when unoccupied, 

3. H+ binding sites for ClC-ec1, E148 and E203 either protonated  or deprotonated , 

4. E148 rotating “up”  towards the extracellular side or “down”  towards the central 

Cl– binding site (Scen) of ClC-ec1, 
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5. the ‘Biological’ orientation of the protein with the extracellular solution on top and 

intracellular solution on bottom and vice versa for the “Opposite” orientation, 

6. Flux Limiting Steps (FLS) of the cycle denoted with * and Rate Limiting Steps (RLS) 

denoted with #. 

 

3. RESULTS AND DISCUSSION 

3.1 Model Robustness and Predictions 

A central challenge in kinetic modeling is narrowing the solution space. Typically, the problem 

is underdetermined with far more parameters (rate coefficients) than known data to fit. Thus, 

kinetic modeling hinges on the quantity and quality of data available. For systems with a range of 

experimental results (often top-down macroscopic data, but sometimes rates for specific 

transitions) and simulation-derived kinetic parameters (bottom-up molecular data), MsRKM can 

 

Figure 6. Example Cycles for (A) ClC-ec1 and (B) Shaker 
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display robust predictive power—not only narrowing the solution space but also demonstrating 

when the underlying network (state space definition) is insufficient (as demonstrated below).  

ClC-ec1 as a case study demonstrates the need for experimental and simulation-based data to 

determine robust solutions. For this system, previous studies employing state-of-the-art multiscale 

and polarizable simulations quantified most of the ion transition rates with reported errors in the 

corresponding free energy barriers ranging from 0.8 to 2 kcal/mol6, 33, 34. The remaining rates were 

estimated based on pKa calculations. Despite significant effort to quantify these rates as accurately 

as possible, they produced unphysical results when placed into a kinetic model due to 

 

Figure 7. (A) ClC-ec1 highlighting ion binding sites. (B-D) MsRKM results (dashed lines) 
compared to experimental data (solid lines) for ClC-ec1, highlighting the model’s ability to 
replicate IV curves (B,D) and predict reversal potentials (C) over a range of conditions. 
Experimental ion concentrations are reported as extracellular: intracellular with Cl– in mM and 
H+ in pH. In the reversal potential assays (C), either extracellular Cl– was varied with intracellular 
Cl– at 300 mM, maintaining symmetrical pH (Top), or extracellular pH was varied with internal 
pH 3, maintaining symmetric 300mM Cl– concentrations (Bottom). (D) MsRKM prediction of 
directed current (purple) through one-orientation via DIDS-based inhibition at the intracellular 
side of ClC-ec1. 
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compounding errors. Note that even small errors in free energy profiles lead to larger errors when 

exponentiated to estimate rates. Additionally, new work has pointed to a significant 

conformational change at low pH values that was not accounted for in the simulations29. During 

solution refinement, MsRKM accounts for these errors by adjusting rate coefficients within user-

defined boundaries of their reported error to produce a kinetic model consistent with macroscopic 

and molecular data. These adjustments can be essential, both to meet the requirement of 

microscopic reversibility and to fit experimental data. Interestingly, even before the 

conformational change had been published, the solutions that were able to fit the data at low pH 

absolutely required opening up the error bounds on several rates in a manner that is consistent with 

the low pH structure. At the time, it was not clear why. The details of these models and their 

implications will be the focus of separate work. However, the process of determining these models 

demonstrates how integrating data from both simulations and experiment can be essential to 

identify robust kinetic solutions.  

Starting from the simulation-based seed rates, the solution refinement for ClC-ec1 included 

constraints of: 1) microscopic reversibility at 0mV with pH 3:3 and Cl– 300:300; 2) five current 

values at pH 4:4 and a Cl– gradient of 30:300 (Figure 7B, red IV curve109) and at pH 5:5 with a Cl– 

gradient of 40:300 (Figure 7D, light blue IV curve)31; 3) five efflux assay values at pH 4, 4.5, and 

5109; 4) five influx assay values at pH 4, 4.5, and 5109; and 5) only two specific reversal potential26 

values—one at symmetric pH 5:5 and a Cl– gradient of 45mM:300mM (from Figure 7C, top) and 

the other at pH 5:3 with symmetric Cl– concentrations 300mM:300mM (from Figure 7C, bottom). 

This combination of experimental data limited the solution space significantly, resulting in an 

MsRKM model that then successfully predicts: 1) the remaining normalized I-V curves under 

different conditions (Figure 7B, blue, green, and yellow IV curves)30, 2) the remaining reversal 
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potential values for concentration gradients evaluated at pH 3 and 5 (Figure 7C Top), and 3) pH 

gradients at symmetric 300mM Cl– concentration (Figure 7C Bottom). Since these assays are 

different from the assays included in the objective function, this offers the first essential validation 

check for solution robustness. 

To further benchmark MsRKM solutions, it is important to test their ability to replicate 

experimental results for assays that are increasingly different. As a word of caution, the model 

should only be extended within the conditions under which the rates and rate responses are valid 

(see Methods). Thus, to further test the ClC-ec1 solutions we modeled a blockage assay31 in which 

stilbenedisulfonate 4,4-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) incompletely blocks 

the internal side of ClC-ec1, providing the only reported estimate of directional flux through the 

transporter. The opposite orientation is unaffected, so 100% of opposite flow is included, while 

the biological side is incompletely blocked, so 6% of the biological flow is included. With this 

single correction to the flows, MsRKM replicated the DIDS-blockage assay normalized I-V curves 

(Figure 7D). This is a striking result. Although further model testing is always warranted, the 

ability to fit a weighted unidirectional flow supports the model’s validity and ability to predict 

ClC-ec1 current under the broad range of conditions tested. This example demonstrates the 

potential robust and predictive power of MsRKM when the solution space is sufficiently refined 

and the response of the rates to the range of conditions modeled is properly included. 
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3.2 Top-Down Modeling with MsRKM 

Even when specific rate constants are not 

known, MsRKM can identify robust and 

predictive models as long as there is sufficient 

molecular insight to define the state space and 

experimental data to narrow the solution space. 

Although the most insight is gained by combining 

top-down modeling from experimental data and 

bottom-up characterization of the dynamics and 

rates of individual transitions, purely top-down 

modeling can still generate new biological insight, 

reveal mechanistic control, and inform 

experimental design. It additionally provides a 

framework to fold in increasing bottom-up 

characterization and test contrasting predictions. 

We demonstrate the process of top-down 

modeling with the Shaker voltage-activated potassium channel (Figure 8A), modeling only the 

open conformation.  

We first constructed a four-binding site model of Shaker with one site located at the internal 

pore entrance (S1) and three binding sites in the region of the selectivity filter, (Figure 5B and 8A) 

consistent with MD generated K+ density plots2. We then generated 50 starting rate coefficient sets 

using a random-number generator to enable the optimizer to broadly sample the solution space. 

Only K+ uptake rate coefficients were constrained with an upper boundary of 1x108 M-1s-1 (1x105 

 

Figure 8. (A) Shaker channel showing 
site locations modeled in the four-site 
model (adapted from 2). (B) Single-
channel I-V curves for the Shaker 
channel with symmetric K+ 

concentrations, comparing experimental 
data1 (solid lines) to four-site MsRKM 
results (dashed lines).  
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mM-1ms-1), approximating the diffusion limit. Sets of rate coefficients were considered successful 

solutions if they deviated by less than 0.3 pA from experimental single-channel I-V curves (Figure 

8B). This criterion was met by 52% (26/50) of optimization runs. However, the was considerable 

heterogeneity in the resulting 26 Shaker solutions, including different voltage and chemical 

gradient current profiles, demonstrating the need for additional refinement.  

One strategy for solution refinement is to use biophysical insight. Since all K+ channels share a 

strictly conserved selectivity filter but have a wide range in current (from 1.5pA for the Shaker 

KV channel1 to 25 pA in the BK Channel110), it has been suggested that the RLS for slower K+ 

channels like Shaker must be outside of the selectivity filter2. Specifically, the RLS should be 

uptake to S1 or transfer from the vestibule into the selectivity filter (S1 to S2). Although it seems 

unlikely for Shaker, release from S4 could also be considered if structural elements beyond the 

selectivity filter contribute to the barrier for K+ release. Based on these considerations, 13 of the 

26 Shaker solutions could potentially be ruled out since their dominant pathways have a RLS in 

the selectivity filter. The remaining 13 solutions, however, remain viable solutions—11 with 

uptake to S1 as their RLS, 1 with S1-S2 transfer, and 1 with release from S4.  
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An alternative strategy for solution refinement is to test the solutions on new experimental data. 

Following this path, we further refined our solution space by modeling the Shaker-P475D 

mutation2. This mutant is particularly informative because the Pro to Asp mutation lies just inside 

the inner vestibule near the activation gate and significantly speeds up ion flux, promoting a 6 to 

8-fold higher single-channel current. We modeled the P475D mutation using the rate coefficient 

sets of all 26 possible solutions as seeds in a secondary optimization fitting P475D’s single-channel 

I-V curves (Figure 9A). Since the mutation is 17 Å below the selectivity filter, we only allowed 

rate coefficients near the mutation to change between the wildtype (WT) seeds and mutant. This 

 

 

Figure 9: (A) Extension of four-site Shaker models to the P475D mutant with single-channel I-
V curves at symmetric K+ concentrations comparing experimental data2 (solid lines) and 
MsRKM results (dashed lines). (B-D) Free energy profiles for the dominant pathway in the three 
best Shaker solutions. 
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included uptake to S1, S1 release to bulk, and S1à S2 transfer. Notably, only 3 solutions were 

able to fit the mutant I-V curves within the <0.3pA acceptance criterion (Figure 9A dashed lines). 

As expected, the WT RLS of these three solutions is outside the selectivity filter (two are uptake 

to S1 and one is S1 to S2 transfer at 100 mM Cl–). As a less stringent alternative test, we performed 

a secondary optimization allowing all rates to vary to fit the mutant data. This found an additional 

7 solutions. The WT RLS of each of these seven additional solutions remains outside of the 

selectivity filter. Thus, both the WT and mutant results support the notion that the RLS for Shaker 

is either ion uptake or transfer into the selectivity 

filter. 

We analyzed their dominant mechanistic 

pathways at 1:1 mM symmetric K+ equilibrium 

conditions (Figure 9B, C, and D) to differentiate 

between the three solutions. Analyzing pathways 

in the outward direction, solutions 1, 2, and 3 all 

have a RLS of uptake to S1 at this low 

concentration. Since uptake is rate limiting, the 

RLSs of the solutions are sensitive to the internal 

concentration of K+. Solution 1 switches its RLS at 

400mM from S1 uptake to S2 à S3 transfer. 

Solutions 2 and 3 switch their RLSs from S1 

uptake to S1 à S2 transfer at 496mM and 25mM, 

respectively. The mutant solutions still have RLSs 

of S1 uptake, but they reduce the uptake barrier heights by ~1.8, ~3, and ~0.4 kcal/mol for solutions 

 

Figure 10: MsRKM solutions compared to 
experimental data at higher symmetric K+ 
concentrations. (A) Solutions 1 and 3 show 
clear deviations between 605 mM (solid) 
and 1.12 M (dashed) results, contrary 
experiment and (B) solution 2, which are 
nearly overlapping. 
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1, 2 and 3, respectively. Thus, the RLS moves at much lower concentrations. The RLS of solution 

1 RLS shifts to S2 → S3 at 9mM, while the RLSs of solutions 2 and 3 shift to S1 → S2 at 2mM 

and 23mM, respectively. Collectively, the three solutions are unified in RLS at low K+ 

concentration, but they diverge significantly both as K+ concentrations increase and as they fit the 

mutant. 

We turned to additional experimental data to further delineate which of the three solutions is 

best. Like other K+ channels, Shaker exhibits saturation of the channel, where increased 

concentration does not result in increased conduction. Saturation of the channel occurs between 

325mM and 600mM, with concentrations >600mM minimally increasing flux through the 

transporter1.We tested the prediction capabilities of the three remaining solutions using the WT 

saturated I-V curves (Figure 10). All solutions correctly predict the 600mM single-channel I-V 

curve, but only solution 2 exhibits saturation at 1.15M.  

The aforementioned process demonstrates how gradually integrating experimental insights and 

observations can narrow the solution space, enabling us to identify a single set of rate coefficients 

(solution 2) that is consistent with experimental data and biophysical insight. However, we caution 

against assuming additional solutions do not exist. The global optimization procedure explores the 

phase space stochastically, with a deterministic local optimization to provide locally optimal 

solutions, but it provides no guarantee that we have found the true global optimum. As solution 2 

best describes all experimental data to date, we focus our mechanistic analysis below on solution 

2. 

 

3.3 MsRKM Can Identify Mechanisms Dominated by a Single Pathway 

All previously published MKM models displayed mechanisms with multiple pathways 

contributing to the net flux6, 9 that shifted under different reaction conditions. Thus, a critical test 
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of the MsRKM methodology is not in its ability to identify competing pathways, which it is 

designed to do, but rather in its ability to eliminate superfluous mechanisms in single-pathway 

dominant systems. The Shaker four-site model is a good test in this sense. Most of the solutions 

identified displayed some degree of multiple contributing pathways. However, solution 2 is almost 

entirely single-pathway dominant, with >99% of ion flow at physiologically and experimentally 

relevant voltages and concentrations going through the pathway shown in Figure 11A. 

Interestingly, this mechanism is consistent with 

that proposed by previously through double 

membrane computational electrophysiology 

simulations.70, 71, 111 Flux through other 

pathways only becomes significant at high 

voltages or concentrations. Although 

additional mechanistic pathways appear at high 

concentrations, we observe no significant 

increase in total flux through the protein at 

concentrations above 500mM.  

In contrast, solution 2 for the P475D mutant 

does not retain this mechanistic homogeneity (Figure 11B). The secondary pathway of the mutant 

solution contributes 12.27% to the net flux at -25mV, within normal physiological conditions 

(Figure 6B blue). This system also shows more voltage-dependent kinetic selection, with the 

secondary pathway’s contribution to the net flux increasing and decreasing with increasing and 

decreasing voltage, respectively. Thus, MsRKM correctly identified both a single-pathway 

 

Figure 11: Dominant pathways from solution 
2 for WT (A) and mutant (B) at physiological 
conditions (-25mV, [6mM] ext: [158mM] int). 
# RLS, * FLS  
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dominant mechanism and a multi-pathway mechanism in closely related systems, suggesting that 

MsRKM is sufficiently flexible to capture the nuances of real data.  

While the mechanistic differences between this study’s WT and mutant models are enlightening 

in exploring MsRKM capabilities, we caution against drawing Shaker-specific mechanistic 

conclusions. We constructed a simplified Shaker model to find the minimum number of states 

necessary to replicate experimental data. Most MD and experimentally derived models show 

additional binding sites43, 45, 47, 111 that likely need to be included to draw physiological conclusions. 

We also used a model membrane voltage coupling factor for Shaker instead of a system-specific 

profile, such as that shown for ClC-ec1 (Figure 5A). A more detailed MsRKM model of Shaker 

will be the goal of future work, including more sites, the role of water, and coupled ion transitions. 

However, if the results described above for our simple four-site model hold in more detailed 

models, it suggests that Shaker evolved a kinetic network that supports a robust, single-pathway 

dominant mechanism for K+ transport in the ‘open’ configuration. 

 

3.4 Model Refinement Provides Clear Feedback between Acceptable Simplification and 

Oversimplification 

While the four-site MsRKM model was capable of fitting all Shaker experimental data to date, 

theoretical models using fewer sites have provided valuable insights. For example, Mosoco et al. 

used three potassium ion binding sites in their Eyring model, an early kinetic model that altered 

barrier heights and well stabilities of a mechanistic pathway,64 to explain the P475D mutant’s 

increased conductance2. This suggests that further simplification from the four-site MsRKM could 

produce viable solutions. To test this, we constructed a three-site Shaker model that combines S2 

and S3 (Figure 8A) to form a single site. We then fit the WT Shaker single-channel I-V curves 
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with the same procedure, boundaries, and acceptance criterion detailed above. Out of 100 

optimizations, 62 (62%) resulted in a solution that met the acceptance criteria. The I-V curves for 

one such solution is shown in Figure 12A. These 62 WT solutions were then used as seeds for a 

secondary optimization to the mutant data, as detailed above. Surprisingly, this secondary 

optimization did not produce a single viable solution, with the best fit having a 2.96pA average 

deviation from experimental data (Figure 12B). 

 

 

 

 

Figure 12. Single-channel I-V curves of WT Shaker1 and Shaker-P475D2. Solid lines 
represent experimental data; Dashed lines represent MsRKM results for 3-site models. (A) 
WT optimization. (B) P475D constrained optimization starting from WT seeds, only 
adjusting S1 binding, release, and S1à S2 transfer rate coefficients. (C) Corresponding WT 
constrained optimization starting from mutant seeds and only adjusting S1 uptake, release, 
and S1àS2 transfer. D) P475D optimization. 
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A critical difference between the three-site MsRKM model and the previously proposed P475D 

Eyring model is the assumed impact of electrostatics across the entire pore region. The MsRKM 

model assumes that electrostatic changes at the channel mouth would not dramatically impact the 

free energy of transitions >17 Å away in the selectivity filter. Meanwhile, the Eyring model 

assumed the mutant would alter the stability of all the binding sites and barriers, including that of 

S4, which is ~35 Å away. To test if the MsRKM could replicate the results of the Eyring model, 

we did an initial optimization of mutant experimental data using the same boundaries and 

acceptance criterion as the WT optimization. This optimization produced 95 (95%) mutant 

solutions that met the acceptance criterion. We repeated the secondary optimization using the 95 

mutant solutions as seeds to test if the new mutant solutions could then back-map to reproduce the 

WT single-channel I-V curves. Again, only S1 uptake and release, and S1 à S2 transfer were 

allowed to change. None of the 95 mutants à WT optimizations produced a viable solution within 

the acceptance criterion (Figure 12C). 

Thus, the 3-site MsRKM model could not find a solution that accurately describes both WT and 

mutant experimental data. This is distinct from the four-site model and suggests that limiting state 

space to only 3 binding sites is an oversimplification for the Shaker channel. Future work will 

explore the ramifications of additional sites and the optimal representation for Shaker. Regardless 

of the optimal representation, these results demonstrate that the number of binding sites directly 

impacts the model’s ability to replicate experimental data. 

3.5 A Network Representation is Still Essential in Single-Pathway Dominant Mechanisms  

Previous studies have demonstrated that non-dominant mechanistic pathways contribute to ion 

flux in ClC-ec1 and can eventually shift to be dominant under different electrochemical gradients. 

This suggests that kinetic selection in ClC-ec1 changes mechanistic pathways as a function of 
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reaction conditions. However, understanding how the reaction network, including off-pathway and 

competing pathway flux, influences these dominant pathways remains relatively unknown. We 

initially assumed that off-pathway cycles would not impact the dominant pathway in Shaker since 

a single mechanistic cycle prevails under a wide range of experimental conditions (solution 2). 

However, when we pruned the network down to the dominant pathway alone (Figure 11A), we 

saw completely different model behavior (Figure 13A), indicating that the off-pathway flux 

remains essential in this solution. 

Since many published mechanisms of ion channels and secondary active transporters depict a 

single-cycle dominant mechanism, as seen for potassium channels43, 45, 111 and ClC-ec1,27, 32, 112 it 

is important to understand whether or not a network description of such mechanisms is important. 

 

Figure 13. A) Single-channel I-V curves of WT1 (A, B) and P475D2 (C) Shaker channel. Solid 
lines represent experimental data; dashed lines represent MsRKM results for the dominant 
single pathway shown in 7A. A) WT network (solution 2). B) WT single pathway optimized. 
C) P475D mutant single pathway optimized 
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Thus, to test if the contribution of off-pathway flux in solution 2 is simply an artifact of the 

MsRKM network solution refinement, we constructed a single-cycle kinetic model of the dominant 

pathway in solution 2 and optimized it to fit the WT experimental data using the same refinement 

methods used in the network implementation. However, the single-cycle kinetic model struggled 

to replicate the experimental data, deviating >0.3pA at every non-0 point along the I-V curve 

(Figure 13B). We then optimized the model to mutant data with a similar unconstrained 

optimization. Despite the mutant sharing the same dominant mechanistic pathway as the WT 

(Figure 11A, B), we observed significantly larger deviations (Figure 13C), potentially due to the 

larger flux observed in the mutant. 

As noted in the three-site MsRKM, the number of intermediates strongly influences model 

behavior. Further, the single-cycle mechanism that we used was derived from the multi-pathway 

MsRKM solution 2, potentially biasing the system towards a multiple-cycle description. To 

remove these biases, we modeled the six-site mechanism described from MD simulations of the 

KcsA channel, a similar potassium channel43 (Figure 14). The fit of the six-site single-cycle model 

to the experimental data improves relative to the four-site single-cycle model, with the greatest 

single-point deviation just outside our acceptance criteria for the WT solution (Figure 14A). 

Notably, these deviations are still larger than the network optimized solution 2. The mutant six-

site also performs better in an unconstrained mutant optimization (Figure 14B) compared to the 

four-site single-pathway model, but significant deviations remain compared to both experiment 

and the network optimized four-site model (Figure 11A). 
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To further test the validity of a single-cycle representation, we examined the rectification 

properties of the P475D mutant, which change as a function of K+ concentration. Specifically, the 

degree of rectification decreases as concentration increases: the rectification ratio is ~0.94 for 

+100mV/-100mV at 500 mM but drops to 0.36 for +100mV/-100mV at 50 mM. The WT data does 

not display this behavior, with rectification maintaining a ratio of roughly 0.60 for +90mV/-90mV 

from 43 mM to 325 mM. Surprisingly, none of the single-cycle models tested capture the changing 

rectification behavior of the P475D mutant. Instead, they maintain a rectification ratio close to that 

of the WT experimental data (~0.64 for +/-100mV at all concentrations tested). The six-site, single-

pathway mutant solution shows small changes in rectification as a function of concentration, which 

allows for a slightly better fit, but is still far off from the ~0.58 rectification ratio change in the 

experimental data (Figure 14B). This problem was not observed for the multi-pathway model 

(Figure 12D), which implies that multiple mechanistic pathways may play an important role in 

concentration-dependent rectification. However, changing rectification as a function of 

concentration may be affected by site location and the dimensionless coupling factor. Future 

studies with a more detailed Shaker model will explore these relationships further. However, if the 

 

Figure 14. Single-channel I-V curves of WT (A) and P475D (B) Shaker channel. Solid lines 
represent experimental data; Dashed lines represent MsRKM results for optimized six-site 
MsRKM single-cycle models. 
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results found herein hold for more detailed models, a network representation that includes 

competing and off-pathway flux may be essential to describe concentration-dependent rectification 

properties. 

 

CONCLUSIONS 

We have presented a new multiscale kinetic modeling framework that describes biomolecular 

processes involving multiple rare event transitions with reaction networks and the reactive flux 

through them under a range of equilibrium and non-equilibrium conditions. The framework was 

designed to combine the strengths of bottom-up rate quantification from multiscale simulations 

with top-down numerical solution refinement with experimental data to iteratively converge 

kinetic networks that not only describe known observables but are consistent with our best 

microscopic understanding. The obtained network descriptions can reveal when and how 

competing mechanistic pathways and off-pathway flux influence mechanistic outcomes. 

Motivated by the challenge of describing channels and transporters, the framework was designed 

to be responsive to electrochemical reaction conditions via voltage-dependent rate coefficients. 

This enables the use of and comparison to electrophysiology assays. Although MsRKM captures 

a system’s non-equilibrium response to a range of conditions, care should be taken to apply it to 

conditions for which the influence on underlying rate coefficients remains valid. In present form, 

this does not include significant conformational changes, such as those demonstrated in voltage-

gated channels’ gating and inactivation.  

The methods are demonstrated on the ClC-ec1 antiporter and the Shaker channel. For the more 

complex antiporter, ClC-ec1, determining a robust MsRKM solution requires integrating 

molecular-level data from simulations6, 33, 34 with ensemble data from experiments26, 30, 31, 109. 

Specifically, multiscale simulations provide estimated rate coefficients that help limit the vast 
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solution space but require refinement based on experimental data. Increasing the variety in the 

experimental data further refines the solution space until robust and consistent solutions emerge. 

Importantly, the kinetic modeling predicted that certain rates require larger error bounds for low 

pH behavior than originally obtained in simulations. This prediction is consistent with recent 

cryoEM data demonstrating a pH-dependent conformational change.29 This is an example of how 

kinetic modeling can combine simulation and experimental data to iteratively converge on a 

consistent mechanistic description and to identify inconsistencies between the two. 

The Shaker channel is modeled to test MsRKM in a purely top-down kinetic modeling approach 

based on experimental data. We demonstrate that robust solutions and physical insight can still be 

obtained in the absence of simulation-based rates. By iteratively increasing the integrated 

experimental data,1, 2 MsRKM converges to a solution that best predicts channel behavior, while 

revealing several interesting biophysical features. First, solutions that best fit WT Shaker and the 

P475D mutant had rate limiting steps before the selectivity filter, consistent with previous 

predictions2 for low-conductance K+ channels. Second, despite the inclusion of the entire reaction 

network, MsRKM converged on a single-pathway dominant mechanism (solution 2), verifying 

that the method can eliminate noise to identify single-pathway dominant processes. Third, the 

MsRKM process can reveal limitations in the state space definition. Reducing the four-site Shaker 

model to three binding sites failed to fit all known experimental data. Fourth, despite being 

dominated by a single pathway, the network representation, including competing and off-pathway 

flux, is still essential. The dominant pathway alone, with any rate definitions, fails to replicate 

experimental data. Even with the addition of binding sites and the use of a dominant pathway 

identified in simulations43, the six-site single-pathway model remains insufficient. In particular, 

single-pathway models fail to describe concentration-dependent rectification, suggesting that 
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variable rectification ratios may require a network description. This is supported by the full four-

site mutant solution, which revealed pathways sensitive to changing K+ and voltage gradients, 

resulting in variable rectification ratios. 

While this paper focuses on channels and transporters, the MsRKM formalism is apt to treat any 

process involving multiple rare event transitions. It serves as a helpful bridge between experiment 

and simulation, enabling self-consistent data integration to identify and remedy inconsistencies. It 

additionally describes the non-equilibrium reaction flux that is often both biologically relevant and 

experimentally measured. This provides a consistent framework to describe and interpret a 

system’s equilibrium characterization and nonequilibrium behavior. Perhaps most importantly, it 

captures a complete picture of the reaction network and quantifies how competing mechanistic 

pathways collectively define the reactive flux and, thus, mechanism.  

Future work will explore the incorporation rates responsive to pH-driven conformational changes. 

We will also test the hypotheses presented herein on more detailed Shaker models with more ion 

binding sites, the inclusion of competing water molecules, and system-specific voltage coupling 

factors.  
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