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Abstract
High RNA integrity is essential for good quality of transcriptomics profiling. Nevertheless, in some cases samples with low 
RNA integrity is the only available material to study. This work was set to investigate the impact of thermal-induced RNA 
degradation on the transcriptomic profiles of human leukemic cells. DNA microarray-based transcriptomics was conducted 
on two groups of samples; high RNA integrity samples (n = 4) and low RNA integrity samples (n = 5). RNA degradation 
caused limited but noticeable changes in the transcriptomes. Only 1945 (6.7%) of 29,230 genes showed altered quantitation 
(fold change ≥ two-fold, p value ≤ 0.03, corrected p value ≤ 0.05). RNA degradation had the most impact on short transcripts 
and those with short distance between their 5’end and the probe binding position. Overall, the present work identified the 
genes whose relative quantification is sensitive to RNA degradation. Therefore, altered expression of these genes should be 
interpreted with caution when studied in low integrity RNA samples.
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Introduction

In contrast to conventional methods of molecular biology 
where the expression of a single or few genes can be evalu-
ated in a single assay, transcriptomics approach enables gene 
expression profiling of all human coding-genes in a single 
experiment (Lowe et al. 2017). Therefore, transcriptomic 
approach saves time and effort; and most importantly pro-
vides an almost comprehensive picture of the whole tran-
scriptome (the sum of all RNA transcripts) of a sample. 
This has made transcriptomics to be commonly utilized for 
studying the molecular bases of human diseases, especially 
tumors (Iacobas 2020; Uhlen et al. 2017). Transcriptomics-
based findings have heavily contributed to a better under-
standing of the molecular pathology of human cancer; and 
facilitated the discovery of therapeutic targets and biomark-
ers (Alsagaby 2019a; Rodon et al. 2019; Supplitt et al. 2021; 
Wang et al. 2017).

There are two main approaches of transcriptomics; DNA-
based hybridization, where a large number of oligonucleo-
tides (probes) that correspond to all human coding-genes are 
attached on a surface of a microscopic slide (Barbulovic-Nad 
et al. 2006). The location of each probe on the microarray 
slide is annotated; hence each probe location corresponds to 
a specific gene. When fluorescent-labeled cDNA converted 
from total RNA of a sample is added to the microarray slide, 
the fluorescent-labeled cDNAs hybridize specifically with 
probes. Next, the intensity of the fluorescent signal at a 
probe location on the microarray slide is used to indicate the 
relative quantity of a transcript (Barbulovic-Nad et al. 2006). 
The other approach of transcriptomics is RNA sequencing 
(RNASeq), in which the total RNA expressed in a sample is 
sequenced and the number of sequenced RNA copies from 
a gene is used as quantitative data of the gene expression 
(Ozsolak et al. 2011). Each approach has its strengths and 
weaknesses, but they are both well established and widely 
used (Tachibana 2015).

Good quality of high-throughput technology-based find-
ings, such as those produced by “omics” approaches, is 
dependent on high quality samples (Alsagaby 2019b; Horgan 
et al. 2011; Lowe et al. 2017). Preserved integrity of RNA 
sample is greatly needed to truly reflect the status of in vivo 
transcriptome (Husseini et al. 2021). RNA degradation is a 
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physiological process that is tightly regulated to determine 
the fate of RNA (Houseley et al. 2009). Sample storage and 
in vitro handling negatively impact RNA integrity (Hatzis 
et al. 2011; Koh et al. 2021a). Therefore, the assessment of 
RNA integrity is an essential quality control check prior to 
performing a transcriptomics analysis. The RNA integrity 
number (RIN) that is calculated on the basis of an entire 
electrophoretic trace of RNA using Agilent’s Bioanalyzer 
provides a simple and reproducible method for determining 
RNA quality (Mueller et al. 2004; Schroeder et al. 2006). As 
a result, RIN is widely accepted as quality control checker of 
RNA quality in transcriptomics studies (Dong et al. 2013). 
Although there has been no consensus on a RIN value to be 
used as determinant for sample inclusion, RIN value equal 
or above 6 appeared to be most commonly reported in tran-
scriptomics studies (Alsagaby et al. 2020; Hoffman 2004; 
Letzkus et al. 2014; Vartanian et al. 2009).

In clinical settings, where sample storage or RNA iso-
lation and processing cannot be made immediately, RNA 
decoying is unavoidable (Botling et al. 2009; Chung et al. 
2008b; Hentze et al. 2019; Koh et al. 2021b; Ohashi et al. 
2004). Moreover, in cancer patients, chemotherapy dis-
rupts RNA of malignant cells, reducing their RIN value 

(Narendrula et al. 2016). In fact, low RIN value of cancer 
cells was proposed as a biomarker of good response to 
chemotherapy (Parissenti et al. 2015). Therefore, in these 
situations investigators are left with no other option but to 
use samples with compromised RNA integrity. In the present 
study, the goal was to investigate the impact of RNA deg-
radation on the complete transcriptome of leukemia cells.

Materials and methods

Cell culture

The methodology workflow of the current study is repre-
sented in Fig. 1. To make the present study relevant to differ-
ent types of leukemia, four human leukemia cell lines (rep-
resenting different type of leukemia) were obtained from the 
American Type Culture Collection (ATCC) and used in this 
study; THP-1 (cell line of acute monocytic leukemia), HL60 
(cell line of acute promyelocytic leukemia), K562 (cell line 
of chronic myelogenous leukemia) and NALM-1 (cell line 
of acute lymphoblastic leukemia). RPMI 1640 medium 
supplemented with 10% fetal calf serum (FCS), 100 U/mL 

Fig. 1  Workflow of the major 
steps of the study’s methodol-
ogy. Four leukemia cell lines 
were cultured. Next, RNA was 
extracted from the leukemia 
cell lines and 300 ng RNA 
from each leukemia cell line 
was transferred into one tube 
to make a pooled RNA sample 
(1200 ng). Then, 100 ng from 
the pooled RNA sample was 
transferred into nine tubes 
(100 ng each). Four tubes were 
kept in ice for 30 min and the 
other five tubes were incu-
bated at 60 °C for 30 min. Post 
incubation, RIN was meas-
ured in the nine tubes. Next, 
transcriptomics analyses were 
conducted on the high RIN 
samples (n = 4) and the low RIN 
samples (n = 5). Finally, bioin-
formatics and data analysis were 
conducted on the transcriptom-
ics profiles. RIN RNA integrity 
number
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penicillin, 40 μg/mL gentamycin, 100 μg/mL streptomycin 
sulphate, 4.5 mg/mL glucose and 2 mg/mL sodium bicarbo-
nate was used to cultivate the cancer cells at 37 °C under an 
atmosphere of humidified air containing 5%  CO2.

Extraction of RNA and measurement of RNA 
integrity number

RNeasy Mini Kits from QIAGEN were used to extract total 
RNA from the leukemia cells. Next, NanoDrop ND-1000 
spectro-photometer (Thermo Fisher Scientific, Inc.) was 
employed to evaluate the purity and measure the quantity 
of the isolated RNA. Samples that were admitted for fur-
ther analysis were those that possessed a good purity of the 
extracted RNA (260 nm/280 nm > 2).

Induction of RNA degradation and evaluation 
of RNA integrity number

Equal amount (300 ng) of the extracted RNA from each one 
of the leukemia cell lines (THP-1, HL60, K562 and NALM-
1) was transferred into a single tube and mixed to create a 
pool sample (RNA = 1200 ng). Next, 100 ng of the pooled 
RNA was transferred into nine tubes (each tube contained 
100 ng). Of these tubes, four were kept in ice for 30 min, 
whereas the other five were incubated in water bath at 60 °C 
for 30 min. The RNA integrity number (RIN) in each of 
the nine tubes was then assessed using the materials and 
instructions of the Agilent Nano 6000 chip kit (capillary 
electrophoresis assay) and the Agilent 2100 Bioanalyzer. 
Post running the RNA samples in the Agilent Nano 6000 
chips, the Agilent 2100 Bioanalyzer produces a gel image 
with an electropherogram of the analyzed RNA and calcu-
late the RIN.

Transcriptomics profiling

The Agilent procedure of “one-color microarray-based 
gene expression analysis” was used to conduct transcrip-
tomic profiling of the leukemia cells (nine samples: four 
samples with RIN ≥ 7.9 and five samples with RIN ≤ 3.8). 
Briefly, the low input quick amp labeling (one-color) kit 
(Agilent) was applied to 80 ng of the extracted RNA and 
the RNA spikes from RNA Spike-In Kit, One-Color (Agi-
lent) in order to convert them to cDNA. Next, using the 
same kit, the cDNA was transcribed and amplified to fluo-
rescent-labeled cRNA. The materials and protocol of RNe-
asy Mini Kits (QIAGEN) was used to purify the labeled 
cRNA. The quality and quantity of the labeled cRNA was 
assessed using NanoDrop ND-1000 spectro-photometer 
(Thermo Fisher Scientific, Inc.). Samples that were further 
processed were those that exhibited the following character-
istics: with 260 nm/280 nm > 2, cRNA yield ≥ 825 ng and 

specific activity (pmol Cy3/μg cRNA) ≥ 6. To prepare the 
hybridization samples, 600 ng of the labeled cRNA with 5 
μL of 10 × Gene Expression Blocking Agent (Agilent) and 
1 μL of 25 × Fragmentation Buffer (Agilent) were mixed 
(sample volume = 25 μL). Incubation for 30 min at 60 °C 
was conducted to induce fragmentation of the labeled cRNA 
in hybridization samples. Post cooling of the hybridization 
samples, the cleaving if the cRNA was stopped by adding 
25 μL of 2 × Hi-RPM hybridization Buffer (Agilent) (sample 
volume = 50 μL). Next, 40 μL of each hybridization sample 
was transferred onto a gasket that was assembled to Sure-
Print G3 Human Gene Expression 8 × 60 K Microarray slide 
(Agilent) and incubated at 65 °C for 17 h. Post incubation, 
the Gene Expression Washing Buffer 1 and 2 with 0.005% 
Triton X-102 (Agilent) were used to the microarray slides. 
The scanning of the microarray slide was performed using 
Agilent SureScan Microarray Scanner with the AgilentG3_
GX_1color protocol. Agilent Feature Extraction Software 
(version 11.0.1.1; Agilent Technologies, Inc.) was employed 
to extract the quantitative data of probe features from the 
scanned microarray slide. The quantitative data were saved 
for further analysis.

Data analysis and filter criteria

The quantitative data extracted earlier from the microarray 
slides (see previous section) were loaded into the Gene-
Spring GX version 12.1 software package (Agilent Tech-
nologies, Inc.). Next, the raw signal data of the probes were 
log2 transformed and normalized using the percentile shift 
algorithm with percentile target = 75. The analysis was 
restricted to probes with a flag call of either “detected” 
or “not detected”. The study included two of conditions: 
RIN ≥ 7.90 (four samples) and RIN ≤ 3.80 (five samples). 
The flag “detected” in all samples in one of the two condi-
tions was used to filter the probes included in the analysis. 
Differentially expressed genes (DEGs) in the two condi-
tions were identified on according to fold change (FC) 
that set at twofold or greater with corrected p value ≤ 0.05. 
Cluster analyses and heatmap presentations of DEGs were 
conducted using hierarchical algorithm and were based on 
probes (normalized signal value of probes) and conditions 
with Euclidean method for similarity measure and Wards for 
linkage rule. gProfiler (Raudvere et al. 2019) was employed 
for the gene ontology (GO) enrichment analysis; the statisti-
cal domain scope was set to be “only annotated genes” and 
corrected p value cut-off was set at ≤ 0.05.

Statistical analysis

The p values were calculated on the basis of Student’s 
t-test. For the corrected p values, Benjamini–Hochberg 
false discovery rate (FDR) was used. GeneSpring GX 



 3 Biotech (2022) 12:160

1 3

160 Page 4 of 12

version 12.1 software package (Agilent Technologies, 
Inc.) was employed for calculation of p values and cor-
rected p values of the DEGs. The p value of the other 
analyses was calculated using excel software. Column 
graphs were also constructed using Excel software.

Results

Evaluation of RNA integrity number

The RNA integrity number (RIN) of RNA samples (n = 4) 
that were incubated in ice for 30 min and the RNA sam-
ples (n = 5) that were incubated at 60 °C for 30 min was 
measured (Fig. 2). RIN ranged from 7.90 to 8.10 (aver-
age = 8) for the samples that were kept in ice for 30 min 
(these samples termed high RIN) and from 3.40 to 3.80 
(average = 3.60) for the samples that were incubated at 
60 °C for 30 min (these samples denoted low RIN). As 
expected, heat induced a significant drop in the RIN 
(Fig. 2; p = 3 × 10–10). The high RIN samples (n = 4) and 
low RIN samples (n = 5) were used for the subsequent 
transcriptomics analysis.

Impact of RNA degradation on transcriptome profile

In attempt to investigate the impact of RNA degradation on 
the global gene expression profiling, DNA-microarray-based 
transcriptomics analysis was conducted for each one of the 
high RIN samples (n = 4) and the low RIN samples (n = 5). 
Then, the transcriptomic profiles of the high RIN samples 
were compared with that of the low RIN samples. The com-
parison was limited to genes (probes) that were detected in 
all samples of either condition; high RIN or low RIN (num-
ber of probe IDs = 29,230). Principle component analysis 
(PCA) showed that compromised RNA integrity induced 
noticeable changes in the transcriptomes of the samples; 
the low RIN samples were clustered together and distinctly 
separated from the high RIN samples (Fig. 3A). Next, fold 
change (≥ two-fold) with p value ≤ 0.03 and corrected p 
value ≤ 0.05 were used to identify alteration in the relative 
quantitation of gene expression in the low RIN samples ver-
sus the high RIN samples. A total of 1945 genes (probe IDs), 
representing 6.7% of the studied transcriptomes, showed sig-
nificant changes in their expression in the low RIN samples 
compared with the high RIN samples (Online Resource 1). 
In contrast, 27,285 genes (probe IDs), which represent 93.3% 
of the examined transcriptomes, showed stable expression in 
two groups of samples, as they did not meet the criteria made 

Fig. 2  Heat-induced degra-
dation of RNA. The RNA 
integrity number (RIN) was 
determined using Nano 6000 
chips and the Agilent 2100 
Bioanalyzer in two group of 
samples: RNA samples incu-
bated in ice for 30 min (n = 4) 
and RNA samples incubated 
at 60 °C for 30 min (n = 5). 
Representative examples of 
electrophoretic trace of RNA 
samples are shown (A, B). Heat 
induced a significant decrease in 
the RIN values (C). The p val-
ues were calculated on this basis 
Student’s t-test using Excel 
software. Asterisk symbol: **** 
is p value ≤ 0.0001
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to defined altered relative gene expression; these genes were 
termed “stable genes”. Figure 3B shows a volcano plot of 
the evaluated transcriptomes of the two groups of samples. 
Of the 1945 genes, 1146 (59%) showed reduced quantitative 
data in the low RIN samples compared with high RIN sam-
ples (denoted down-represented genes). These genes were 
down-represented probably because they were more degra-
dable than the rest of the transcripts. In contrast, 781 genes 
(41%) of the 1945 exhibited increased quantitative data in 
the low RIN samples as opposed to the high RIN samples 
(termed over-represented genes). These genes were over-
represented perhaps because they were more stable (less 
degradable) compared with rest of the transcripts. Similar 
to PCA, cluster analysis with heatmap presentation grouped 
the low RIN samples closely together and high RIN samples 
closely together; and identified genes that were impacted 
by the heat-induced RNA decoy (Fig. 3C, FC ≥ two-fold, p 
value ≤ 0.03, corrected p value ≤ 0.05).

Type of RNA enrichment

Next, investigation on the type of RNA among the three 
groups of genes (the stable genes, over-represented genes 
and down-represented genes) was conducted to determine 
whether a type of RNA was enriched in either one of the 
three groups (Fig. 4). Protein coding RNA appeared to domi-
nate the three groups of genes; the stable genes showed the 
largest proportion (58%) followed by the down-represented 
genes (53%) and the over-represented genes (46%). The 
recorded percentage of other types of RNA was below 20% 
in the three groups of genes. Interestingly, long non-coding 
RNA (lncRNA) showed the least proportion in the down-
represented genes (3%) versus 10% and 12% for the stable 
genes and the over-represented genes, respectively. In con-
trast, retained introns showed bigger percentage (17%) in 
the down-represented genes compared with the stable genes 
(11%) and the over-represented genes (11%).

Sequence characteristics

Next, analyses were conducted on the three groups of genes 
with respect to their sequence features. The analysis reported 
no significant differences between the three groups of genes 
in the context of 5’ UTR length (Fig. 5A). In contrast, the 
over-represented genes (p ≤ 0.01) and the down-represented 
genes (p ≤ 0.0001) possessed significantly shorter 3’UTR 
compared with the stable genes (Fig. 5B). Transcript length 
and gene length appeared to be the longest in the over-repre-
sented genes (p ≤ 0.0001) and the shortest in the down-rep-
resented genes (p ≤ 0.0001, Fig. 5C, D). The percentage of 
GC was found to be higher in the stable genes (p ≤ 0.0001) 
and down-represented genes (p ≤ 0.0001) compared with 
over-represented genes (Fig. 5E). The distance between a 

transcript complementary sequence to its corresponding 
probe and the 5’ end of the same transcript was the longest 
in the over-represented genes (p ≤ 0.0001) and the shortest 
in the down-represented genes (p ≤ 0.0001, Fig. 5F).

Gene ontology enrichment

Gene ontology (GO) analysis using gProfiler was performed 
on the over-represented and the down-represented genes in 
order to determine whether significant enrichments of GO 
terms can be found in the two groups of genes (Tables 1 and 
2). Protein binding appeared to be a significantly enriched 
molecular function term in both groups of genes. Never-
theless, catalytic activity (p = 0007) and enzyme binding 
(p = 0007) were specifically enriched in the down-rep-
resented genes. On the other hand, nucleic acid binding 
(p = 0.04), DNA binding (p = 0.05) and chromatin band-
ing (p = 0.05) were enriched only in the over-represented 
genes. While metabolic process was commonly enriched 
as a biological process term in the two groups of genes, 
metabolic process of RNA (p = 3.97 × 10–5) and nucleic acid 
(p = 8.93 × 10–5) appeared to be specifically enriched in the 
over-represented genes. Furthermore, the over-represented 
genes uniquely enriched for biological processes, such as 
regulation of gene expression (p = 3.97 × 10–5), positive reg-
ulation of gene expression (p = 0.0002), positive regulation 
of RNA biosynthetic process (p = 0.0002) and mRNA trans-
port (p = 0.0003). Nucleus, nuclear lumen and nucleoplasm 
were commonly enriched in both groups of genes. However, 
cytoplasm (p = 2.69 × 10–19), vesicle (p = 1.47 × 10–18), 
Golgi-associated vesicle (p = 0.001) and endoplasmic retic-
ulum (p = 0.001) were enriched specifically in the down-
represented genes.

Discussion

In global gene expression studies, preserving RNA integ-
rity is a very essential step to insure true reflection of cel-
lular transcriptome (Lightfoot et al. 2005; Lowe et al. 2017). 
However, saving RNA from decoying in clinical samples is 
not always possible despite the big effort made in the opti-
mization and standardization of protocols that deal with the 
extraction, handling and processing of RNA (Chung et al. 
2008a; Debey et al. 2006; Farina et al. 2014; Hatzis et al. 
2011; Hewitt et al. 2008). As a result, working on clinical 
samples with compromised RNA integrity is inevitable in 
some cases. In such cases, knowledge of: (i) to what extent 
low integrity of RNA influences overall transcriptomic pro-
file; (ii) what are the name of transcripts or what are the 
characteristics of transcripts whose relative quantification 
does not show true measurement of gene expression due 
to RNA degradation, may provide a mean through which 
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transcripts with RNA decoy-dependent altered expression 
can be excluded from the transcriptomic profile. This may 
give tolerance for working on low quality RNA samples 
without compromising the credibility of the results. Fol-
lowing the same concept and attempting to contribute to 
such knowledge, the present work studied the impact of heat-
induced RNA degradation on the transcriptome of human 
leukemic cells.

The results of the PCA, the cluster analysis and the vol-
cano plot showed RNA degradation-dependent changes in 
the transcriptomes of the human leukemic cells. However, 
these alterations appeared to have happened to a small 
proportion of the studied transcriptomes. In fact, only 
6.7% (1945 transcripts; FC ≥ 2, p value ≤ 0.03, corrected 
p value ≤ 0.05) of the leukemic cells transcriptome was 
affected by RNA degradation. In contrast, 93.3% (27,285 
transcripts) of the transcriptomes showed stable expression. 
This finding may give rationale that working on precious 
samples from leukemia patients with low RIN values might 
be justifiable, as the vast majority of the transcripts studied 
here appeared to be stable. This idea becomes more sensi-
ble when pre-existing knowledge of the transcripts that are 
likely to be affected by RNA degradation is available for 
researchers. This way, investigators can rule out these tran-
scripts (whose relative quantification is prone to alteration 

by RNA degradation) from the rest of the transcriptomic 
profile.

Normalization of the relative quantitative data of DNA 
microarray experiments is a main step that has to be per-
formed in order to reduce the impact of technical (handling) 
variations and make the transcriptomic profiles compara-
ble (Do et al. 2006). The normalization done on this study 
may explain the over-representation of the 781 transcripts 
(FC ≥ 2, p value ≤ 0.03, corrected p value ≤ 0.05). These 
genes are the least transcripts affected by the thermal deg-
radation of RNA compared with the rest of the transcripts. 
In contrast, the down-representation of the 1146 transcripts 
(FC ≥ 2, p value ≤ 0.03, corrected p value ≤ 0.05) indicates 
that these transcripts are the most affected by the thermal 
decoy of RNA compared with the rest of the transcripts. 
Taken together, the over and down-represented transcripts 
are of interest for researchers working on the transcriptome 
of clinical leukemic samples with low RIN value, as altered 
expression of these transcripts may highlight the poor integ-
rity of RNA samples more than variation in the biology of 
the disease between samples.

Transcript length appeared in the present study to be a 
determinant factor of whether a transcript is sensitive to ther-
mal degradation; long transcripts (over-represented genes) 
were the least affected by the thermal-induced degradation, 
whereas short transcripts (down-represented genes) were the 
most sensitive to heat-induced decoy. Similar findings were 
reported in colorectal cancer cells, where lost RNA integrity 
had the least impact on long transcripts and the most effect 
on short RNA (Opitz et al. 2010). Another stability marker 
of transcript against thermal-induced degradation was the 
distance between a probe complementary sequence and 5’ 
end of a transcript. This distance was found to be the long-
est in the over-represented transcripts and shortest in the 
down-represented transcripts. Different mechanisms were 

Fig. 3  Heat-induced degradation of RNA alters the transcriptome 
of human cancer cells. Principle component analysis (A) shows that 
low RIN samples (RIN ≤ 3.8) were grouped together and distinctly 
separated from the high RIN samples (RIN ≥ 7.9). Volcano plot (B) 
compares the gene expression in the two groups of samples. Cluster 
analysis with heatmap presentation (C) also grouped the low RIN 
samples together and the high RIN samples together; and identifies 
genes with altered quantification (FC ≥ two-fold, p value ≤ 0.03, cor-
rected p value ≤ 0.05)

◂

Fig. 4  Comparison of the types 
of RNA in the three groups of 
genes. Ensemble database was 
interrogated to identify the type 
of RNA transcribed from the 
stable genes, the over-repre-
sented genes and the down-
represented genes. lncRNA long 
noncoding RNA
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described for RNA degradation in eukaryotic cells (Parker 
et al. 2004; Tatosyan et al. 2020), one of which was shown 
to take place in the direction from 5’ to 3’ (Cannistraro et al. 
1985). The fact that the conversion of RNA to cDNA in 
Agilent DNA microarray was conducted using a universal 
primer that base pairs with the poly A tail (3’ end); and the 
direction of RNA digestion from 5’ to 3’ made the majority 
of Agilent probes to be complementary to sequences close 
to the 3’ end of transcripts. This may explain why long tran-
scripts and those with long distance between their 5’ end the 
sequence complementary to their corresponding probes were 
the least affected by thermal-induced RNA degradation.

The over and down-represented genes significantly 
enriched for GO terms. Transcripts involved in catalytic 
activity and enzymatic binding appeared to be most affected 
by RNA degradation. On the other hand, transcripts that 
play roles in nucleic acid binding, regulation of RNA bio-
synthesis, and mRNA transport were the least sensitive to 
RNA decoy. The enrichment of GO terms here was related 
to the sequence features of the down-represented and over-
represented genes. For example, in contrast to the down-
represented genes that enriched for catalytic activity and 
enzymatic binding, the over-represented genes that enriched 
for nucleic acid binding, regulation of RNA biosynthesis, 

Fig. 5  Sequence character-
istics of the three groups of 
genes. Sequence features were 
extracted from Ensemble 
database and NCBI reference 
RNA sequence database. 5' 
UTR length of transcripts (A); 
3' UTR length of transcripts 
(B); transcript length (C); gene 
length (D); percentage of GC 
content in transcripts (E); dis-
tance between probe positions 
and the 5’ end of transcripts 
(F). UTR  untranslated region. 
The p values were calculated 
on this basis Student’s t-test 
using Excel software. Asterisk 
symbols: * is p value ≤ 0.05; 
** is p value ≤ 0.01; *** is 
p value ≤ 0.001; **** is p 
value ≤ 0.0001
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and mRNA transport had longer gene and transcript length 
and longer distance between the probe position and their 
5’end. As expected from the experimental design of this 
study, where the thermal treatment was applied directly 
on isolated RNA rather on living cells, GO terms (or path-
ways) like heat shock response, apoptosis, necrosis, DNA 
fragmentation, or RNA disruption, which would have been 
activated if the thermal treatment was applied directly to the 
cell (Dinh et al. 2001; Furusawa et al. 2011; Ren et al. 2019), 
were not enriched.

Overall, the present work provided valuable insights 
into the impact of RNA degradation on the transcrip-
tomes of leukemia cells, and highlighted the genes and 
the characteristics of genes whose relative quantification 

is influenced by RNA decoy. Therefore, this study has 
the potential to help investigators to distinguish between 
RNA decoy-dependent changes in genes expression from 
pathology-dependent alteration of gene expression when 
low quality RNA samples are the only available material 
to use. However, cautions should be taken when relating 
the current finings to clinical settings because of two rea-
sons: (i) the present work was conducted on human leuke-
mic cell lines rather than clinical samples from leukemic 
patients, (ii) the RNA degradation induced by thermal 
treatment was a simulation (not necessarily identical) to 
RNA decoy of patient samples in clinical settings. Fur-
ther evaluation of the relative expression of some of the 
over-represented and under-represented using quantitative 

Table 1  Gene ontology 
enrichment analysis of the 
down-represented genes

FDR False discovery rate, term size the number of genes that were annotated to a term, intersection size the 
number of genes found in the present study that were annotated to a term

Term name Corrected p 
value (FDR)

Term size Inter-
section 
size

Molecular function Protein binding 2.66 ×  10–8 14,752 749
Binding 0.0007 17,052 816
Catalytic activity 0.0007 5879 334
Enzyme binding 0.0007 1866 128

Biological process Cellular metabolic process 0.00007 10,855 574
Metabolic process 0.01 11,998 606
Response to nutrient 0.01 183 23
Cellular component organization or biogenesis 0.01 6767 367
Protein metabolic process 0.01 5806 321
Phosphorus metabolic process 0.01 3125 188
Tricarboxylic acid cycle 0.01 36 9
Vacuole organization 0.01 182 22
Protein modification process 0.02 4027 232
Protein catabolic process 0.02 983 72
Autophagy 0.03 545 45
Macromolecule modification 0.03 4245 240
Macroautophagy 0.03 312 30
Organic substance catabolic process 0.03 2271 140
Organic substance metabolic process 0.04 11,403 571
Endoplasmic reticulum to Golgi vesicle-medi-

ated transport
0.04 207 22

Autophagosome organization 0.04 102 14
Cell component Cytoplasm 2.69 ×  10–19 11,888 659

Membrane-bounded organelle 1.47 ×  10–18 12,836 693
Vesicle 5.61 ×  10–10 4071 265
Nuclear lumen 6.05 ×  10–8 4343 269
Endomembrane system 1.76 ×  10–7 4633 281
Endomembrane system 1.76 ×  10–7 4633 281
Nucleus 0.0003 7565 399
Nucleolus 0.0008 938 69
Golgi-associated vesicle 0.001 178 21
Endoplasmic reticulum 0.002 1975 123
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real-time polymerase chain reaction (qRT-PCR) may add 
validity to the transcriptomics data. However, limitations 
in the project budget and in the logistic support, which has 
been caused by the COVID19 pandemic, did not allow per-
forming additional experimental work for the assessment 
of gene expressing using qRT-PCR. Our planned future 
work will apply the same concept of the present work on 
leukemia samples isolated from leukemia patients to iden-
tify genes whose transcripts’ relative quantitation is sensi-
tive to RNA degradation in clinical settings.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13205- 022- 03223-1.
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Table 2  Gene ontology enrichment analysis of the over-represented genes

FDR False discovery rate, term size the number of genes that were annotated to a term, intersection size the number of genes found in the pre-
sent study that were annotated to a term

Term name Corrected p 
value (FDR)

Term size Inter-
section 
size

Molecular Function Protein binding 4.92 ×  10–5 14,752 330
Histone binding 0.03 241 15
Nucleic acid binding 0.04 4353 115
DNA binding 0.04 2519 74
Chromatin binding 0.05 604 25

Biological Process Regulation of RNA metabolic process 3.97 ×  10–5 3850 118
Regulation of nucleobase-containing compound metabolic process 3.97 ×  10–5 4123 125
Regulation of gene expression 3.97 ×  10–5 5162 147
Regulation of macromolecule metabolic process 6.34 ×  10–5 6626 176
Nucleic acid metabolic process 8.93 ×  10–5 5247 146
Positive regulation of gene expression 0.0002 2396 79
Positive regulation of nucleic acid-templated transcription 0.0002 1679 61
Positive regulation of RNA biosynthetic process 0.0002 1680 61
Nucleobase-containing compound metabolic process 0.0002 5766 154
Positive regulation of transcription by RNA polymerase II 0.0002 1276 50
mRNA transport 0.0003 154 14
Positive regulation of transcription, DNA-templated 0.0003 1592 58
RNA metabolic process 0.0003 4732 131
Gene expression 0.0006 6270 161
Nucleobase-containing compound biosynthetic process 0.0007 4211 117
Cellular macromolecule metabolic process 0.0007 8357 202
Regulation of transcription, DNA-templated 0.0008 3494 101
Nitrogen compound metabolic process 0.001 10,057 233
Nucleic acid-templated transcription 0.001 3734 105
RNA biosynthetic process 0.002 3749 105
Transcription by RNA polymerase II 0.002 2735 82
Organic substance metabolic process 0.007 11,403 253
Protein metabolic process 0.02 5806 142
Cell cycle 0.03 1914 56

Cell Component Nucleoplasm 5.21 ×  10–6 3991 122
Nuclear lumen 4.1 ×  10–6 4343 124
Nucleus 0.001 7565 182
Plasma membrane region 0.04 1255 38
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